AUTOMATA THEORY SEMINAR

BÜCHI COMPLEMENTATION VIA ALTERNATING AUTOMATA

Fabian Reiter

July 16, 2012

BÜCHI COMPLEMENTATION

BA: Büchi Automaton

AA: Alternating Automaton

- Expensive: If \mathcal{B} has n states, $\overline{\mathcal{B}}$ has $2^{\Theta(n \log n)}$ states in the worst case (Michel 1988, Safra 1988).
- Complicated: Direct approaches are rather involved.

Consider indirect approach: detour over alternating automata.

Transition Modes (1)

Existential: some run is accepting

$$\begin{aligned} &(q_0 \rightarrow q_{1_s} \rightarrow q_{2_s} \rightarrow q_{3_s} \rightarrow q_{4_s} \rightarrow q_{5_s} \rightarrow \cdots) \\ &(q_0 \rightarrow q_{1_b} \rightarrow q_{2_b} \rightarrow q_{3_b} \rightarrow q_{4_b} \rightarrow q_{5_b} \rightarrow \cdots) \\ &(q_0 \rightarrow q_{1_c} \rightarrow q_{2_c} \rightarrow q_{3_c} \rightarrow q_{4_c} \rightarrow q_{5_c} \rightarrow \cdots) \\ &(q_0 \rightarrow q_{1_d} \rightarrow q_{2_d} \rightarrow q_{3_d} \rightarrow q_{4_d} \rightarrow q_{5_d} \rightarrow \cdots) \\ &(q_0 \rightarrow q_{1_c} \rightarrow q_{2_c} \rightarrow q_{3_c} \rightarrow q_{4_c} \rightarrow q_{5_c} \rightarrow \cdots) \end{aligned}$$

Universal: every run is accepting

$$\begin{aligned} q_0 &\to q_{1_s} \to q_{2_s} \to q_{3_s} \to q_{4_s} \to q_{5_s} \to \cdots \\ q_0 &\to q_{1_b} \to q_{2_b} \to q_{3_b} \to q_{4_b} \to q_{5_b} \to \cdots \\ q_0 &\to q_{1_c} \to q_{2_c} \to q_{3_c} \to q_{4_c} \to q_{5_c} \to \cdots \\ q_0 &\to q_{1_d} \to q_{2_d} \to q_{3_d} \to q_{4_d} \to q_{5_d} \to \cdots \\ q_0 &\to q_{1_e} \to q_{2_e} \to q_{3_e} \to q_{4_e} \to q_{5_e} \to \cdots \end{aligned}$$

Transition Modes (2)

Alternating: in some set of runs every run is accepting

$$\begin{aligned} q_0 &\rightarrow q_{1_s} \rightarrow q_{2_s} \rightarrow q_{3_s} \rightarrow q_{4_s} \rightarrow q_{5_s} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_b} \rightarrow q_{2_b} \rightarrow q_{3_b} \rightarrow q_{4_b} \rightarrow q_{5_b} \rightarrow \cdots \end{aligned}$$

$$\begin{aligned} q_0 &\rightarrow q_{1_c} \rightarrow q_{2_c} \rightarrow q_{3_c} \rightarrow q_{4_c} \rightarrow q_{5_c} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_c} \rightarrow q_{2_c} \rightarrow q_{3_d} \rightarrow q_{4_d} \rightarrow q_{5_d} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_e} \rightarrow q_{2_e} \rightarrow q_{3_e} \rightarrow q_{4_e} \rightarrow q_{5_e} \rightarrow \cdots \end{aligned}$$

$$\begin{aligned} q_0 &\rightarrow q_{1_e} \rightarrow q_{2_e} \rightarrow q_{3_e} \rightarrow q_{4_e} \rightarrow q_{5_e} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_f} \rightarrow q_{2_f} \rightarrow q_{3_f} \rightarrow q_{4_f} \rightarrow q_{5_f} \rightarrow \cdots \end{aligned}$$

$$\begin{aligned} q_0 &\rightarrow q_{1_g} \rightarrow q_{2_g} \rightarrow q_{3_g} \rightarrow q_{4_g} \rightarrow q_{5_g} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_h} \rightarrow q_{2_h} \rightarrow q_{3_h} \rightarrow q_{4_h} \rightarrow q_{5_h} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_h} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \end{aligned}$$

3 / 33

1/33

ALTERNATION AND COMPLEMENTATION

Special case: ${\cal A}$ in existential mode

- lacksquare $\mathcal A$ accepts iff \exists run ho : ho fulfills acceptance condition of $\mathcal A$
- $\overline{\mathcal{A}}$ accepts iff \forall run ρ : $\neg(\rho)$ fulfills acceptance condition of \mathcal{A})

 iff \forall run ρ : ρ fulfills **dual** acceptance condition of \mathcal{A}
- \Rightarrow complementation $\widehat{=}$ dualization of:
 - transition mode
 - acceptance condition

Want acceptance condition that is **closed under dualization**.

OUTLINE

- 1 WEAK ALTERNATING PARITY AUTOMATA
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
- 4 Büchi Complementation Algorithm

5 / 33

OUTLINE

- Weak Alternating Parity Automata
 - Definitions and Examples
 - Dual Automaton
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
- 4 BÜCHI COMPLEMENTATION ALGORITHM

Preview

Example ($(b^*a)^\omega$)

Büchi automaton \mathcal{B} :

Equivalent WAPA A:

WEAK ALTERNATING PARITY AUTOMATON

DEFINITION (Weak Alternating Parity Automaton)

A weak alternating parity automaton (WAPA) is a tuple

$$\mathcal{A} := \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$$

where

- \blacksquare Q finite set of states
- Σ finite alphabet
- \bullet $\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$ transition function
- \blacksquare q_{in} initial state
- lacksquare $\pi: Q o \mathbb{N}$ parity function

(Thomas and Löding, ~ 2000)

 $\mathbb{B}^+(Q)$: set of all positive Boolean formulae over Q(built only from elements in $Q \cup \{ \land, \lor, \top, \bot \}$)

TRANSITIONS

DEFINITION (Minimal Models)

 $Mod_{\downarrow}(\theta) \subseteq 2^Q$: set of minimal models of $\theta \in \mathbb{B}^+(Q)$, i.e. the set of minimal subsets $M \subseteq Q$ s.t. θ is satisfied by

$$q \mapsto \begin{cases} true & \text{if } q \in M \\ false & \text{otherwise} \end{cases}$$

EXAMPLE

 $\mathsf{Mod}_{\downarrow}(q_0 \lor (q_1 \land q_2))$ $= \{\{q_0\}, \{q_1, q_2\}\}\$

Run Graph (1)

Run Graph (2)

Example (a^{ω})

Accepting run:

Rejecting run:

Let \mathcal{A} be a WAPA, $w \in \Sigma^{\omega}$ and $R = \langle V, E \rangle$ a run of \mathcal{A} on w.

 $\ensuremath{\mathcal{A}}$ iff the smallest occurring parity is even, i.e.

 \blacksquare An infinite path ρ in R satisfies the acceptance condition of

 $\min\{\pi(q) \mid \exists i \in \mathbb{N} : \langle q, i \rangle \text{ occurs in } \rho\} \text{ is even.}$

 \blacksquare R is an accepting run iff every infinite path ρ in R satisfies

A accepts w iff there is some accepting run of A on w.

11 / 33

13 / 33

DEFINITION (Run)

A run of a WAPA $\mathcal{A}=\langle Q,\Sigma,\delta,q_{\it in},\pi
angle$ on a word $a_0a_1a_2\ldots\in \Sigma^\omega$ is a directed acyclic graph

$$R:=\langle V,E\rangle$$

where

- $\blacksquare V \subseteq Q \times \mathbb{N} \quad \text{with} \ \langle q_{in}, 0 \rangle \in V$
- V contains only vertices reachable from $\langle q_{in}, 0 \rangle$.
- E contains only edges of the form $\langle \langle p, i \rangle, \langle q, i+1 \rangle \rangle$.
- lacksquare For every vertex $\langle p,i \rangle \in V$ the set of successors is a minimal model of $\delta(p, a_i)$

$$\{q \in Q \mid \langle \langle p, i \rangle, \langle q, i+1 \rangle \rangle \in E\} \in \mathsf{Mod}_{\downarrow}(\delta(p, a_i))$$

ACCEPTANCE

Infinitely many a's

Example ($(b^*a)^\omega$)

Run on b^{ω}

Run on $(ba)^{\omega}$:

Dual Automaton (1)

DEFINITION (Acceptance)

Dual Automaton (2)

DEFINITION (Dual Automaton)

the acceptance condition.

The dual of a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{\textit{in}}, \pi \rangle$ is

$$\overline{\mathcal{A}} := \langle Q, \Sigma, \overline{\delta}, q_{in}, \overline{\pi} \rangle$$

where

- lacksquare $\overline{\delta}(q,a)$ is obtained from $\delta(q,a)$ by exchanging \wedge,\vee and \top,\bot
- $\blacksquare \overline{\pi}(q) := \pi(q) + 1$

for all $q \in Q$ and $a \in \Sigma$

 $\delta(q_1, a) = q_2$ $\delta(q_1,b)=q_1$ $\delta(q_2,a)=q_2$

 $\delta(q_0, a) = q_0$ $\delta(q_0, b) = q_0 \wedge q_1$

 $\delta(q_2,b)=q_2$

Dual $\overline{\mathcal{A}}$:

 $\overline{\delta}(q_0, a) = q_0$ $\overline{\delta}(q_0,b) = q_0 \vee q_1$

 $\overline{\delta}(q_1,a)=q_2$ $\overline{\delta}(q_1,b)=q_1$

 $\overline{\delta}(q_2, a) = q_2$

 $\overline{\delta}(q_2,b)=q_2$

COMPLEMENTATION THEOREM

Main statement of this talk:

THEOREM (Complementation)

The dual $\overline{\mathcal{A}}$ of a WAPA \mathcal{A} accepts its complement, i.e.

$$\mathcal{L}(\overline{\mathcal{A}}) = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$$

(Thomas and Löding, ~ 2000)

16 / 33

 \odot

OUTLINE

- 1 Weak Alternating Parity Automata
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
- 4 BÜCHI COMPLEMENTATION ALGORITHM

17/33

AUTOMATON VS. PATHFINDER

INFINITE PARITY GAME (1)

19 / 33

Infinite Parity Game (2)

DEFINITION (Game)

A game for a WAPA $\mathcal{A}=\langle Q,\Sigma,\delta,q_{in},\pi\rangle$ and $w=a_0a_1a_2\ldots\in\Sigma^\omega$ is a directed graph

$$G_{A,w} := \langle V_A \dot{\cup} V_P, E \rangle$$

where

- $V_A := Q \times \mathbb{N}$ (decision nodes of player A)
- $V_P := 2^Q \times \mathbb{N}$ (decision nodes of player P)
- $\blacksquare E \subseteq (V_A \times V_P) \cup (V_P \times V_A)$
 - s.t. the only contained edges are
 - $\langle \langle q, i \rangle, \langle M, i \rangle \rangle$ iff $M \in \mathsf{Mod}_{\downarrow}(\delta(q, a_i))$
 - $\langle \langle M, i \rangle, \langle q, i+1 \rangle \rangle$ iff $q \in M$

for $q \in Q$, $M \subseteq Q$, $i \in \mathbb{N}$

(Thomas and Löding, ~ 2000)

PLAYING A GAME

 \odot

Definition (Play)

A **play** γ in a game $G_{A,w}$ is an infinite path starting with $\langle q_{in}, 0 \rangle$.

DEFINITION (Winner)

The **winner** of a play γ is

- \blacksquare player A iff the smallest parity of occurring V_A -nodes is even

 $X \in \{A, P\}$: a player, \overline{X} : its opponent

Definition (Strategy)

- A **strategy** $f_X: V_X \to V_{\overline{X}}$ for player X selects for every decision node of player X one of its successor nodes in $G_{A,w}$.
- **I** f_X is a **winning strategy** iff player X wins every play γ that is played according to f_X .

21 /

STRATEGIES

EXAMPLE Winning strategy for player A (so far): $q_0,0 \rightarrow (q_0),0 \rightarrow (q_0,1) \rightarrow (q_0,1) \rightarrow (q_0,2) \rightarrow (q_0,2) \rightarrow (q_0,q_1,1) \rightarrow (q_0,q_1),1 \rightarrow (q_1,q_2) \rightarrow (q_1,q_2) \rightarrow (q_1,q_2),1 \rightarrow (q_1,q_2$

OUTLINE

- 1 Weak Alternating Parity Automata
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
 - Lemma 1
 - Lemma 2
 - Lemma 3
 - SublemmaPutting it All Together
- 4 BÜCHI COMPLEMENTATION ALGORITHM

23 / 33

LEMMA 1

Let \mathcal{A} be a WAPA and $w \in \Sigma^{\omega}$.

LEММА 1

Player A has a winning strategy in $G_{A,w}$ iff A accepts w.

EXPLANATION (oral):

Player A wins every play γ played according to f_A .

There is a run graph R in which every path ρ is accepting.

LEММА 2

Let \mathcal{A} be a WAPA and $w \in \Sigma^{\omega}$.

LEММА 2

Player P has a winning strategy in $G_{A,w}$ iff A does not accept w.

(pointed out by Jan Leike)

EXPLANATION (oral):

Player P wins every play γ played according to f_P .

Every run graph ${\it R}$ contains a rejecting path ρ .

25 / 33

SUBLEMMA

Let $\theta \in \mathbb{B}^+(Q)$ be a formula over Q.

SUBLEMMA

 $S \subseteq Q$ is a model of $\overline{\theta}$ iff for all $M \in \mathsf{Mod}_{\downarrow}(\theta)$: $S \cap M \neq \emptyset$.

PROOF:

■ W.I.o.g. θ is in DNF, i.e.

$$\theta = \bigvee_{M \in \mathsf{Mod}_{\downarrow}(\theta)} \bigwedge_{q \in M} q$$

■ Then $\overline{\theta}$ is in CNF, i.e.

$$\overline{\overline{\theta}} = \bigwedge_{M \in \mathsf{Mod}_{\downarrow}(\theta)} \bigvee_{q \in M} q$$

■ Thus $S \subseteq Q$ is a model of $\overline{\theta}$ iff it contains at least one element from each disjunct of θ .

LEMMA 3 (1)

24 / 33

(3)

Let \mathcal{A} be a WAPA, $\overline{\mathcal{A}}$ its dual and $w = a_0 a_1 a_2 \ldots \in \Sigma^{\omega}$.

LЕММА 3

Player A has a winning strategy in $G_{A,w}$ **iff** player P has a winning strategy in $G_{\overline{A}_{W}}$.

PROOF:

 \implies Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{A},w}$.

 \leftarrow Construct a winning strategy f_A for player A in $G_{A,w}$.

LEMMA 3 (2)

 \Longrightarrow Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{\mathcal{A}},w}$.

At position $\langle S, i \rangle \in V_P$

■ f_A : winning strategy for player A in $G_{A,w}$

in $G_{\overline{A},w}$

■ Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{\underline{\mathcal{A}},w}$ played according to f_A s.t. $S \in \mathsf{Mod}_{\downarrow}(\overline{\delta}(p,a_i))$ (otherwise don't care).

 $\blacksquare f_A(\langle p,i\rangle) = \langle M,i\rangle \Rightarrow M \in \mathsf{Mod}_{\downarrow}(\delta(p,a_i))$

 $\overset{(\mathsf{sublemma})}{\Longrightarrow}$ There exists a $q \in S \cap M$.

■ Define $\overline{f_P}(\langle S, i \rangle) := \langle q, i+1 \rangle$

■ $\forall \ \overline{\gamma}$: play in $G_{\overline{A},w}$ played according to $\overline{f_P}$ $\exists \gamma$: play in $G_{A,w}$ played according to f_A s.t. $\overline{\gamma}$ and γ contain the same V_A -nodes.

- Player A wins γ in G_{A,w}.
- $\forall q \in Q : \overline{\pi}(q) = \pi(q) + 1$
- \Rightarrow Player P wins $\overline{\gamma}$ in $G_{\overline{A},w}$.

LEMMA 3 (3)

Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $\langle p, i \rangle \in V_A$

 \blacksquare $\overline{f_P}$: winning strategy for player P in $G_{\overline{A},w}$

in $G_{\mathcal{A},w}$:

 $M^* := \{ q \in Q \mid \exists S \in \mathsf{Mod}_{\downarrow}(\overline{\delta}(p, a_i)) : \}$ $\overline{f_P}(\langle S, i \rangle) = \langle q, i+1 \rangle$ $\overset{\text{(sublemma)}}{\Longrightarrow} M^* \text{ is a model of } \delta(p, a_i).$

 \blacksquare M: subset of M^* that is a minimal model $M \subseteq M^*$, $M \in Mod_{\downarrow}(\delta(p, a_i))$

in $G_{\overline{\mathcal{A}},w}$

■ Define $f_A(\langle p,i\rangle) := \langle M,i\rangle$

 $\forall \ \gamma$: play in $G_{\mathcal{A},w}$ played according to $f_{\mathcal{A}}$ $\exists \ \overline{\gamma}$: play in $G_{\overline{A},w}$ played according to $\overline{f_P}$ s.t. γ and $\overline{\gamma}$ contain the same V_A -nodes.

- Player P wins $\overline{\gamma}$ in $G_{\overline{A},w}$. $\forall q \in Q : \pi(q) = \overline{\pi}(q) 1$
- \Rightarrow Player A wins γ in $G_{A,w}$

29 / 33 \odot

ALL THREE LEMMAS

Let \mathcal{A} be a WAPA, $\overline{\mathcal{A}}$ its dual and $w \in \Sigma^{\omega}$.

Player A has a winning strategy in $G_{A,w}$ iff A accepts w.

LEММА 2

Player P has a winning strategy in $G_{A,w}$ iff A does not accept w.

LЕММА 3

Player A has a winning strategy in $G_{A,w}$

iff player P has a winning strategy in $G_{\overline{A},w}$.

COMPLEMENTATION THEOREM

THEOREM (Complementation)

$$\mathcal{L}(\overline{\mathcal{A}}) = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$$

(Thomas and Löding, \sim 2000)

PROOF:

 $\overset{\text{(lemma 1)}}{\Longleftrightarrow}$ player A has a winning strategy in $G_{\mathcal{A},w}$ ${\cal A}$ accepts w

player P has a winning strategy in $G_{\overline{A},w}$

 $\overline{\mathcal{A}}$ does *not* accept w

28 / 33

(3)

OUTLINE

- 1 WEAK ALTERNATING PARITY AUTOMATA
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
- 4 BÜCHI COMPLEMENTATION ALGORITHM

BÜCHI COMPLEMENTATION ALGORITHM

- Total complexity: $2^{\mathcal{O}(n^2)}$
- Can reach $2^{\mathcal{O}(n \log n)}$ (lower bound) by improving $\overline{\mathcal{A}} \to \overline{\mathcal{B}}$.

32 / 33 33 / 33

REFERENCES

Thomas, W. (1999) Complementation of Büchi Automata Revisited.

In J. Karhumäki et al., editors, Jewels are Forever, Contributions on Th. Comp. Science in Honor of Arto Salomaa, pages 109-122, Springer.

Klaedtke, F. (2002) Complementation of Büchi Automata Using Alternation. In E. Grädel et al., editors, *Automata, Logics, and Infinite Games*, LNCS 2500, pages 61-77. Springer.

Löding, C. and Thomas, W. (2000) Alternating Automata and Logics over Infinite Words. In J. van Leeuwen et al., editors, IFIP TCS 2000, LNCS 1872, pages 521-535. Springer.

Kupferman, O. and Vardi, M. Y. (2001) Weak Alternating Automata Are Not that Weak. In ACM Transactions on Computational Logic, volume 2, No. 3, July 2001, pages 408-429.

APPENDIX

FROM BA TO WAPA

GIVEN:

 \blacksquare $\mathcal{B} = \langle Q, \Sigma, \delta, q_{in}, F \rangle$: BA

 \blacksquare n = |Q|

Construction (BA \rightarrow WAPA)

for $p \in Q$, $a \in \Sigma$, $i \in \{0, ..., 2n\}$

(Thomas and Löding, ~ 2000)

FROM WAPA TO BA

(:)

(:)

GIVEN:

(:)

lacksquare $\mathcal{A}=\langle Q, \Sigma, \delta, q_{\it in}, \pi \rangle$: stratified WAPA, i.e. $\forall p \in Q \ \forall a \in \Sigma : \ \delta(p,a) \in \mathbb{B}^+ \big(\{q \in Q \mid \pi(p) \geq \pi(q) \} \big)$ ■ $E \subseteq Q$: all states with even parity

Construction (WAPA \rightarrow BA) $\mathcal{B} := \big\langle \underbrace{2^Q \!\! \times \! 2^Q}_{2^{\mathcal{O}(n)}}, \; \Sigma, \; \delta', \; \big\langle \{\textit{q}_{\textit{in}}\}, \emptyset \big\rangle, \; 2^Q \!\! \times \!\! \{\emptyset\} \big\rangle$

 $\label{eq:delta-def} \blacksquare \ \delta'(\langle M,\emptyset\rangle,a) \ := \left\{ \langle M',M'\backslash E\rangle \,\middle|\, M' \in \mathsf{Mod}_{\downarrow}\big(\bigwedge_{q \in M} \delta(q,a)\big) \right\}$

 $\blacksquare \delta'(\langle M, O \rangle, a) := \Big\{ \langle M', O' \backslash E \rangle \mid M' \in \mathsf{Mod}_{\downarrow} \big(\bigwedge_{q \in M} \delta(q, a) \big),$ $O' \in \mathsf{Mod}_{\downarrow}(\bigwedge_{q \in O} \delta(q, a))$ for $a \in \Sigma$, $M, O \subseteq Q$, $O \neq \emptyset$

(Mivano and Havashi, 1984)