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BUcHI COMPLEMENTATION

BA: Biichi
Automaton

AA: Alternating
Automaton

AAA—AA A

m Expensive: If B has n states, B has 2°9(nlogn) gtates in
the worst case (Michel 1988, Safra 1988).

m Complicated: Direct approaches are rather involved.

Consider indirect approach: detour over alternating automata.
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TRANSITION MobDEs (1) TRANSITION MoDES (2)
Existential: some run is accepting . . . .
Alternating: in some set of runs every run is accepting
(90— q1, — G2, — g3, — qa, — g5, — ")
(90— q1, — G2, — G3, — qa, — G5, — ") WD = iy T Gy e B o T Gy o0
(g0 — q1. — 2. —> q3. — Ga. — G5, —> - Go = 1, 7 G, 7 G5, 0 by 2 95, 2
(qoﬂfhdH‘hd%qad%%cfﬂ%dﬁ“ j &= il 4 TR A T e T 0
(90— q1. — G2, — @3, — qa, — G5, — ") o= g = 2q = G3g = Gag = G5y 7
. ] ) q0 — 91, —> 92, —* 43, — Q4. —7 G5, —7 **
Universal: every run is accepting
ey (g0 = 91, — G2, — q3, —> Ga — Gs, — )
qo — q1, =7 92, —> q3, = Qa, —7 G5, — -~ qo — q1, — G2, — 3, — Ga, — G5, —> -
90 = qu, =7 G2, = G3, — G4, 7 G, 7 o —> G, — G2, — G3, — Ga, —> G5, = -
G0 =7 1 = G2 —* 43, = Q4 = G5 =7 Qo — G, — G2, —> g3, — Ga, — G5, —> --
qo — Qg —7 G2 — Q34 — qag — G5, —7 -
qo — 1. —> 92, — 43, —7 Q4. —7 G5, —7 **
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ALTERNATION AND COMPLEMENTATION OUTLINE
SPECIAL cASE: A in existential mode
m A accepts iff 3 run p: p fulfills acceptance condition of A WEAK ALTERNATING PARITY AUTOMATA
= A accepts iff ¥ run p: —(p fulfills acceptance condition of .A) INFINITE PARITY GAMES
iff V¥ run p: p fulfills dual acceptance condition of A
2] ProOF OF THE COMPLEMENTATION THEOREM
H
= complementation = dualization of:
. BUcHI COMPLEMENTATION ALGORITHM
t t d
m transition mode
m acceptance condition
Want acceptance condition that is closed under dualization.
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OuUTLINE PREVIEW
ExampLE ((b*a)*)
WEAK ALTERNATING PARITY AUTOMATA Biichi automaton B:
m Definitions and Examples
m Dual Automaton
INFINITE PARITY GAMES
ProoF oF THE COMPLEMENTATION THEOREM Equivalent WAPA A:
a b a, b
BUcHI COMPLEMENTATION ALGORITHM b
qo0 q1 a q2
2 AN,
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WEAK ALTERNATING PARITY AUTOMATON ®

DeriniTioN (Weak Alternating Parity Automaton)

A weak alternating parity automaton (WAPA) is a tuple

A :=(Q,X, 4, gin, )
where
m @ finite set of states
m ¥ finite alphabet
m6:QxY —BT(Q) transition function
® gj, initial state
m 7: Q — N parity function
(Thomas and Léding, ~ 2000)

B*(Q): set of all positive Boolean formulae over Q
(built only from elements in QU {A,V, T, 1})

TRANSITIONS ®

ExAMPLE (a“)

5:Qx T —BHQ)
(q0,a) = qo V(g1 A q2)
(q1,a) = (90 A q1) V (a1 A q2)
(q2,3) = q

DeriNiTIoN (Minimal Models) EXAMPLE

Mod (6) C 29: set of minimal models
of € BT(Q), i.e. the set of minimal
subsets M C Q s.t. 0 is satisfied by
true ifgeM
g+
false otherwise

Mod(go V (g1 A g2))

= {{q0}, {91, 92}}
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RuN GraPH (1) ©) RuN GraPH (2) ©)
ExampLE (a*)
g 2 DeriNITION (Run)
2 (ﬂ) A run of a WAPA A = (Q, %, 4, gin, 7) on a word agaraz ... € T
’v is a directed acyclic graph
\2/ 2 R:=(V,E)
ﬂ a where
Accepting run: m VCQRxN with (gj,0) € V
m V contains only vertices reachable from (gin, 0).
m E contains only edges of the form {(p, i), (q,i +1)).
Rejecting run: m For every vertex (p,i) € V the set of successors is a minimal
model of §(p, a;)
{ae Q| ({p.i),{q,i+1)) € E} € Mody(5(p, a;))
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ACCEPTANCE ® INFINITELY MANY a’s
ExampLE ((b*a)”)
a, b
DerINITION (Acceptance) a 2
_ b
Let A be a WAPA, w € ¥ and R = (V, E) a run of A on w. @ % 2 /B
2 1 0
m An infinite path p in R satisfies the acceptance condition of U
A iff the smallest occurring parity is even, i.e. Run on b*:
min{m(q) | 3i€N:(q, i) occurs in p} is even.
®m R is an accepting run iff every infinite path p in R satisfies
the acceptance condition.
m A accepts w iff there is some accepting run of A on w.
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DuAL AuToMATON (1) ©®) DuAL AuTOoMATON (2)
ExampLE ( (b*a)*)
WAPA A: ()i(q[), a)=qo
DeriNITION (Dual Automaton) a b a,b 9(q0, b) = g0/
_ ) ; 6(q1,a) = g2
The dual of a WAPA A = (Q, £, 6, gin, ) is 4 b /% . /% i
A:=(Q,%,5, Gin,7) 2 1 W 0(q2;2) = q2
where (g2, b) = @2
[ ] i(q7 a) is obtained from §(gq, a) by exchanging A,V and T, L Dual 4: 5d0.2) = a0
= 7(q) :=7(q) +1 a, b b a, b (o b) = qoVa
forallge Q and ae & E(ql.a) o
9\ b [\ a /@ 5(q1, b) = a1
3/ \2/ 1/ Z(Gz- a) = q2
(g2, b) = q»
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COMPLEMENTATION THEOREM

Main statement of this talk:

THEOREM (Complementation)
The dual A of a WAPA A accepts its complement, i.e.
L(A) =X\ L(A)

(Thomas and Léding, ~2000)

OUTLINE

WEAK ALTERNATING PARITY AUTOMATA
INFINITE PARITY GAMES
ProoF oF THE COMPLEMENTATION THEOREM

BUcHI COMPLEMENTATION ALGORITHM
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AUTOMATON VS. PATHFINDER INFINITE PARITY GAME (1) ©
ExAMmPLE (a*)
a a
Y LD
A @ e o
- (eX— ,
—r ~ N,
\ / Game G4 w:
A (90 O —Hao} 07 ~--~{a0. T}, 11—
{a, a2} 1h/
player A ! player Pil 5 l:{qo, a1}, 1:12‘{
find accepting run R find rejecting path in R L{,C,Illqg}:;(,),k\ 77777 \\
{eD-{ah A2
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INFINITE PARITY GAME (2) ) PravinG A GAME ©)

DEerINITION (Game)

A game for a WAPA A = (Q, X, 4, gjn, 7) and w = agaiap... € X¥
is a directed graph

GA,w = <VAU Vp, E)
where
B Vj:=Q x N (decision nodes of player A)
B Vp:=29 x N (decision nodes of player P)
[ ] EQ(VAX VP)U(VPX VA)
s.t. the only contained edges are
e {(q,i),(M,i)) iff M € Mod,(6(q, a;))
o ((M,i),(q,i+1)) iff qeM
forge Q MCQ,ieN
(Thomas and Léding, ~ 2000)

DerINITION (Play)

A play v in a game G4 is an infinite path starting with (gin, 0).

DeriniTion (Winner)

The winner of a play 7 is

m player A iff the smallest parity of occurring Va-nodes is even

X € {A, P}: a player, X: its opponent
DerFINITION (Strategy)

m A strategy fx : Vx — V5 for player X selects for every
decision node of player X one of its successor nodes in G4 ..

m fx is a winning strategy iff player X wins every play 7 that is
played according to fx.
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STRATEGIES OuUTLINE
EXAMPLE
Winning strategy for player A (so far): parities
. WEAK ALTERNATING PARITY AUTOMATA
qo— 2
INFINITE PARITY GAMES
g —1
ProOF oF THE COMPLEMENTATION THEOREM
m Lemmal
g — 0
m Lemma 2
m Lemma 3
= Sublemma
m Putting it All Together
BUcHI COMPLEMENTATION ALGORITHM
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LEmMMA 1

Let A be a WAPA and w € X%.
LEMMA 1

Player A has a winning strategy in G4, iff A accepts w.

ExpLANATION (oral):

Player A wins every play v
played according to fa.

There is a run graph R in which
every path p is accepting.

G_A,w:

@

LEMMA 2

Let A be a WAPA and w € ¥¥.
LEMMA 2
Player P has a winning strategy in G4,,, iff A does not accept w.

(pointed out by Jan Leike)
ExpLANATION (oral):

Player P wins every play 7
played according to fp.

77777777 L
foa ) b¥a ) R

Every run graph R contains a
rejecting path p.

Gaw:

: q/_,"]_ R P oA
g i+1 N+ T\ T N
777777777 o . e
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SUBLEMMA ®) LEmmA 3 (1)
Let 0 € B (Q) be a formula over Q.
SUBLEMMA Let A be a WAPA, A its dual and w = agajap... € ¥¥.
S C Qisamodel of § iff forall M€ Mod(): SN M . LEMMA 3
Player A has a winning strategy in G4 w
ProoF: iff player P has a winning strategy in Gz .
m W.lo.g. 0isin DNF, i.e.
0 = \/ /\ q PROOF:
u Then @ is in CNF, i.. MeMod,(9) geM .C.o.nstruct a winning strategy fp for player P in GH -
i= N Vg . |
= Construct a winning strategy fa for player Ain G4 .
MeMod,(0) qeM = g 8Y TA play A,w
m Thus S C Q is a model of 8 iff it contains at least one
element from each disjunct of 6.
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LEmmA 3 (2)

Construct a winning strategy fp for player P in G7 -

At position (S, i) € Vp m fa: winning strategy for player A in G4,
m Assume there is (p, i) € V4 occurring in a
play v in G4, played according to f4 s.t.

... Prey S € Mod(d(p, a;)) (otherwise don't care).
S¥a ) w fa((p. i) =(M,i) = Me Mody(5(p, a)
. N

(sublemma)

m = ThereexistsageSNM.

in GZ,W:

m Define 7 ((S,i)) :=(q,i+1)

m V7 play in Gz, played according to fp
3 v: play in G4, played according to fa
s.t. ¥ and =y contain the same Vj-nodes.

o Player A wins vy in G4 .
° VqeQ:7(q) =7(q) +1
= Player P wins ¥ in Gg ,,.

LEmmA 3 (3)

Construct a winning strategy fa for player Ain G4, .

At position (p, i) € Va m fp: winning strategy for player P in GZ,W

m M*:={q€ Q|3ISeMod(6(p,a)):
fo((S,1) = (g.i+1)}
M* is a model of §(p, a;).

in Gaw:

&)

(sublemma)

® M: subset of M* that is a minimal model
M C M*, M e Mod(d(p, ai))

m Define fa((p,i)) = (M, )

m YV v: play in G4, played according to f4
37: play in Gz, played according to fp
s.t. v and 7 contain the same Vjs-nodes.

e Player P wins ¥ in Gz .
° VqeQ:m(q) =7(q) — 1
= Player A wins vy in G4, .
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ALL THREE LEMMAS ®) COMPLEMENTATION THEOREM )
Let A be a WAPA, A its dual and w € X%. Theorem (Complementation)
LEMMA 1 The dual A of a WAPA A accepts its complement, i.e.
Player A has a winning strategy in G4, iff A accepts w. L(A) =3\ L(A)
(Thomas and Léding, ~ 2000)
LEMMA 2
o ) . PrOOF:
Player P has a winning strategy in G4, iff A does not accept w. (lemma 1)
A accepts w <= player A has a winning strategy in G4
(lemma 3) L. .
Lemma 3 <= player P has a winning strategy in Gz,
Player A has a winning strategy in G4 .
q ’ o2 a (lemma 2) _
iff player P has a winning strategy in Gz, . <= A does not accept w
O
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OUTLINE

WEAK ALTERNATING PARITY AUTOMATA
INFINITE PARITY GAMES
ProoF oF THE COMPLEMENTATION THEOREM

BUcHI COMPLEMENTATION ALGORITHM

BUcHI COMPLEMENTATION ALGORITHM

wAPA A D \wapA A

= Total complexity: 20(n)

m Can reach 29("°8") (lower bound) by improving A — B.
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FroM BA To WAPA ©) From WAPA 10 BA ®)
GIVEN: GIVEN:
B B=(Q,X,0,qin, F): BA B A= (Q,X,4, qgin,m): stratified WAPA, i.e.
= n=|Q| VpeQ Vaex : §(p,a) € B ({ge Q|n(p) > n(q)})

ConsTruUCcTION (BA — WAPA)

A:=(Qx{0,...,2n}, T, &, (qin,2n), T)
O(n?)

Vaes(p.a) (9:0)

( if i=0
\/qeé(p,a) <q7 ’> A <q’ i— 1>

(

(

if ieven,i>0

qua(p,a) q, i) if fodd, p¢ F
VqE§(p7a) q,i—1) if iodd, peF
u 7T(<p7 I)) =1
for pe Q, acX, i€{0,...,2n}

(Thomas and Léding, ~2000)

m E C Q: all states with even parity

ConsTrucTION (WAPA — BA)

B:= (2922 5, &, ({qin},0), 29x{0})

O(n]
where 200)

= O((M,0),a) = {<M', M’\E)‘ M’ € Mod,( Ageps 8(a, a))}

= §'((M, 0),2) = { (M, 0'\E) ‘ M’ € Mod,( A gen 8(, 3)),
ocm,
0’ € Mody( Aeo 8(a,2)) }
foraeYX, M,OCQ, O#(
(Miyano and Hayashi, 1984)




