Decision Procedures J

Jochen Hoenicke

g Software Engineering

-=2- Albert-Ludwigs-University Freiburg

&
i

Summer 2012

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 1/41

Quantifier-free Theory of Equality

The Theory of Equality Tg

ZE {:7 a? b7 C7 "'7f7 g7 h7 "‘7p7 q7 r7 A

uninterpreted symbols:

e constants a, b,c,...
e functions f,g,h,...
e predicates p,q,r,...

Jochen Hoenicke (Software Engineering) Decision Procedures

3

Summer 2012 3/41

Axioms of Tg g

2

-

=]y

Q Vx. x = x (reflexivity)
QO Vx,y.x=y—>y=x (symmetry)

QO Vx,y,zx=yANy=z—-x=1z2 (transitivity)
define = to be an equivalence relation.

Axiom schema
@ for each positive integer n and n-ary function symbol f,
VXl?' s Xny Y1y .-+ Yn- /\,'Xi =Y

—f(x1, ..y xn) = F(y1,---,Yn) (congruence)
© for each positive integer n and n-ary predicate symbol p,

VXl?"'aXm)/h"'ayn- /\Xi = Yi—
i

(p(x1,..-,xn) < p(y1,---,¥n)) (equivalence)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 4 /41

Congruence Closure Algorithm £

F:s1=HAN--ANSp = tn A Sm+17étm+1/\--'/\5n75tn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 5/41

Congruence Closure Algorithm &

F: si=t A ANSpyp=tnm /\Sm+17étm+1/\-”/\5n7étn

generate congruence closure search for contradiction

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 5/41

Congruence Closure Algorithm &

F: si=t A ANSpyp=tnm /\$m+17étm+1/\-”/\$n7étn

generate congruence closure search for contradiction

The algorithm performs the following steps:

© Construct the congruence closure ~ of
{51 =t1,...,5m = tm}
over the subterm set Sg. Then
N}:slz A ANSyp=1tn.

@ Ifforanyi € {m+ 1,...,n}, s; ~ t;, return unsatisfiable.
© Otherwise, ~= F, so return satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 5/41

Congruence Closure Algorithm &

F: si=t A ANSpyp=tnm /\$m+17étm+1/\---/\$n7étn

generate congruence closure search for contradiction

The algorithm performs the following steps:

© Construct the congruence closure ~ of
{51 =t1,...,5m = tm}
over the subterm set Sg. Then
N}:slz A ANSyp=1tn.

@ Ifforanyi € {m+ 1,...,n}, s; ~ t;, return unsatisfiable.
© Otherwise, ~= F, so return satisfiable.

How do we actually construct the congruence closure in Step 17

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 5/41

Congruence Closure Algorithm (Details) -

Begin with the finest congruence relation ~q:

{{s} : s € SF}.

Each term of Sg is only congruent to itself.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 6 /41

Congruence Closure Algorithm (Details) -

Begin with the finest congruence relation ~q:
{{s} : s € SF}.

Each term of S¢ is only congruent to itself.
Then, for each i € {1,..., m}, impose s; = t; by merging

[Si]'\“i—l and [t’.]Nifl

to form a new congruence relation ~;. To accomplish this merging,
e form the union of [si]~,_, and [ti]~,_,
@ propagate any new congruences that arise within this union.

The new relation ~; is a congruence relation in which s; ~ t;.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 6 /41

Ingredients of Algorithm &

Efficient data structure for computing the congruence closure.

e Directed Acyclic Graph (DAG) to represent terms.

e f(f(a, b), b)
e‘ f(a, b)
e e a b

@ Union-Find data structure to represent equivalence classes:

@7
o=6

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 7 /41

Directed Acyclic Graph (DAG) £

For every subterm of the X g-formula F, create
@ a node labelled with the function symbols.
@ and edges to the argument nodes.

If two subterms are equal, only one node is created.

f(f(a, b), b)

f(a, b)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 8 /41

Union-Find Data Structure

BURG

52

D
Equivalence classes are connected by a tree structure, with arrows pointing
to the root node.

k — — — — — — =

Two operations are defined:
@ FIND: Find the representative of an equivalence class by following the
edges. O(logn)
@ UNION: Merge two classes by connecting the representatives. O(1)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9 /41

Summary of idea £

f(a,b) = a N f(f(a,b),b) # a

Initial DAG

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 41

Summary of idea £

f(a,b) = a N f(f(a,b),b) #

Initial DAG f(a,b) = a =
MERGE f(a, b) a

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 41

Summary of idea £

Initial DAG f(a,b) = a =
MERGE f(a, b) a

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 41

Summary of idea £

Initial DAG f(a,b) = a =
MERGE f(a, b) a

FIND f(f(a,b),b) = a = FIND a
f(f(a, b),b) # a

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 41

} = Unsatisfiable

DAG representation g

type node = {
id :id
node’s unique identification number
fn . string
constant or function name
args o id list
list of function arguments

}

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 11 / 41

DAG representation

type node = {
id

fn
args

mutable find

}

Jochen Hoenicke (Software Engineering)

id

node’s unique identification number
string

constant or function name

id list

list of function arguments

id

the edge to the representative

Decision Procedures Summer 2012

11/ 41

DAG representation g

type node = {
id :id
node’s unique identification number

fn . string

constant or function name
args o id list

list of function arguments
mutable find : id

the edge to the representative

mutable ccpar : id set
if the node is the representative for its
congruence class, then its ccpar
(congruence closure parents) are all
parents of nodes in its congruence class

}

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 11 / 41

DAG Representation of node 2

type node = {
id
fn
args
mutable find
mutable ccpar

id
string
idlist
id

idset

L2
f
... [3.4]
.3
.0

Jochen Hoenicke (Software Engineering) Decision Procedures

Summer 2012 12 / 41

DAG Representation of node 3

type node = {
id
fn
args
mutable find
mutable ccpar

id
string
idlist
id

idset

Jochen Hoenicke (Software Engineering) Decision Procedures

0

.3
{1,2)

Summer 2012 13 / 41

The Implementation: FIND

FIND function
returns the representative of node's congruence class
let rec FIND | =

let n = NODE / in
if n.find = / then / else FIND n.find

Example: FIND 2 = FIND 3 = 3
3 is the representative of 2.

Jochen Hoenicke (Software Engineering) Decision Procedures

Summer 2012 14 / 41

The Implementation: UNION 2

UNION function

let UNION ij ip =
let n1 = NODE (FIND /1) in
let np = NODE (FIND h) in
ny.find < np.find;
ny.ccpar < ni.ccpar U np.ccpar;
ni.ccpar <«

ny is the representative of the union class

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 15 / 41

Example g

UNION 1 2 nn=1 n=3

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 16 / 41

Example &

UNION 1 2 nn=1 n=3
1.find + 3
3.ccpar « {1,2}
l.ccpar < 0

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 16 / 41

The Implementation: CONGRUENT

2
%]
CCPAR function

Returns parents of all nodes in i’s congruence class

let CCPAR | =

(NODE (FIND i)).ccpar
CONGRUENT predicate
Test whether i1 and i» are congruent

let CONGRUENT /| ip =
let m

= NODE /1 in

let np = NODE fp in

nl.fn = ng.fn
Alni.args| = |m.args|

AYi € {1,...,|ni.args|}. FIND nj.args[i] = FIND np.args]i]

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 17 / 41

Example &

Are 1 and 2 congruent?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 18 / 41

Example &

Are 1 and 2 congruent?

fn fields — both f

of arguments — same

left arguments f(a, b) and a — both congruent to 3
right arguments b and b — both 4 (congruent)

Therefore 1 and 2 are congruent.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 18 / 41

The Implementation: MERGE 2

MERGE function

let rec MERGE i1 lh =
if FIND ;i # FIND ip then begin

let P; = CCPAR /1 in
let P, = CCPAR i» in
UNION fy ip;

foreach t;,tp € Py x P, do
if FIND t; # FIND tp A CONGRUENT t; tp
then MERGE tj o
done
end

Pi, and P;, store the current values of CCPAR i; and CCPAR i>.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 19 / 41

Decision Procedure: Tg-satisfiability g
52
=]
Given X g-formula
F: s =t AN ASy=1tnASmt1 # tme1 N - A Sy # tn,
with subterm set Sg, perform the following steps:
@ Construct the initial DAG for the subterm set Sg.
@ Fori € {1,...,m}, MERGE s; t;.
© If FIND s; = FIND t; for some i € {m + 1,...,n}, return
unsatisfiable.
© Otherwise (if FIND s; # FIND t; for all i € {m + 1,...,n}) return
satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 20 / 41

Example f(a,b) = a A f(f(a,b),b) # a -

f(a,b) = a A f(f(a,b),b) # a

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 21 /41

Example f(a,b) = a A f(f(a,b),b) # a 2

f(a,b) = a A f(f(a,b),b) # a
N
Initial DAG

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 21 /41

Example f(a,b) = a A f(f(a,b),b) # a -

f(a,b) = a A f(f(a,b),b) # a

Initial DAG MERGE 2 3
UNION 2 3
P, = {1}
P3 = {2}
CONGRUENT 1 2

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 21 /41

Example f(a,b) = a A f(f(a,b),b) # a -

f(a,b) = a A f(f(a,b),b) # a

Initial DAG MERGE 2 3 MERGE 1 2
UNION 2 3 UNION 1 2
P, = {1} Py = {}
P3:{2} 'D2:{1’2}

CONGRUENT 1 2

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 21 /41

Example f(a,b) = a A f(f(a,b),b) # a -

f(a,b) = a N f(f(a,b),b)

Initial DAG MERGE 2 3 MERGE 1 2
UNION 2 3 UNION 1 2
P, = {1} Py = {}
P3:{2} 'D2:{1’2}

CONGRUENT 1 2
FIND f(f(a,b),b) = a = FIND a = Unsatisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 21 /41

Given ¥ g-formula

F : f(a,b) = an f(f(a,b),b) # a.
The subterm set is

Sg = {a, b, f(a,b), f(f(a,b),b)},
resulting in the initial partition

(1) {{a}, {b}, {f(a,b)}, {f(f(a,b),b)}}

in which each term is its own congruence class. Fig (1).

Final partition

(2) {{a,f(a,b), f(f(a, b), b)}, {b}}
Does

(3) {{a,f(a, b), f(f(a,b),b)}, {b}} = F 7
No, as f(f(a, b),b) ~ a, but F asserts that f(f(a, b), b) # a. Hence, F
is Te-unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 22 /41

Example f3(a) = a A f°(a) = a A f(a) # a 2

a))) = a N F(F(f() =a A f(a) # a

Initial DAG

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 23 /41

Example f3(a) = a A f°(a) = a A f(a) # a 2

a))) = a N F(F(f() =a A f(a) # a

OOOO@

f(f(f(a))) = a = MERGE30 P; = {4} Py = {1}

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 23 /41

Example f3(a) = a A f°(a) = a A f(a) # a 2

a))) = a N F(F(f() =a A f(a) # a

OOOO@

f(f(f(a))) = a = MERGE30 P; = {4} Py = {1}
= MERCE41 P, = {5} P = {2}

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 23 /41

Example f3(a) = a A f°(a) = a A f(a) # a 2

a))) = a N F(F(f() =a A f(a) # a

OOOO@

= MERCE30 P; = {4} Py = {1}
= MERCE41 P, = {5} P = {2}
= MERGE52 P; = {} P, = {3}

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 23 /41

Example f3(a) = a A f°(a) = a A f(a) # a 2

a))) = a N F(F(f() =a A f(a) # a

OOOO@

f(f(f(a))) =a = MERGE30 P3; = {4} Py = {1}
= MERCE41 P, = {5} P = {2}
= MERGE52 P; = {} P, = {3}

f(f(f(f(f(a))))) = a = MERGES50 Ps = {3} Py = {1,4}

ochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 23 /41

Example f3(a) = a A f°(a) = a A f(a) # a 2

a))) = a N F(F(f() =a A f(a) # a

OOOO@

f(f(f(a))) =a = MERGE30 P3; = {4} Py = {1}
= MERCE41 P, = {5} P = {2}
= MERGE52 P; = {} P, = {3}

f(f(f(f(f(a))))) = a = MERGES50 Ps = {3} Py = {1,4}
= MERGE 31 P3; = {1,3,4},P1 = {2,5}

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 23 /41

Example f3(a) = a A f°(a) = a A f(a) # a 2

a))) = a N F(F(f() =a A f(a) # a

OOOO@

= MERCE30 P; = {4} Py = {1}
= MERCE41 P, = {5} P = {2}
= MERGE52 P; = {} P, = {3}

f(f(f(f(f(a))))) = a = MERGES50 Ps = {3} Py = {1,4}
= MERGE 31 P3; = {1,3,4},P1 = {2,5}

FIND f(a) = f(a) = FIND a = Unsatisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 23 /41

Given X g-formula

F o £(f(f(a)) = an f(£(f(f(f(a)))) = anf(a) # a,
which induces the initial partition

0 {{a}, {f(a)}. {F2(}, {F(a)}, {F(a)}, {F(a)}}.

The equality £3(a) = a induces the partition

@ {{a. (a)}, {f(a), f(a)}, {f*(a). F°(a)}} .

The equality £°(a) = a induces the partition

0 {{a, f(a), f*(a), f3(a), f*(a), f*(a)}} .

Now, does

{{a,f(a), f*(a), f*(a), f*(a). f°(a)}} = F ?

No, as f(a) ~ a, but F asserts that f(a) # a. Hence, F is
Te-unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

24 /41

Correctness of the Algorithm g

Theorem (Sound and Complete)

Quantifier-free conjunctive ¥ g-formula F is Tg-satisfiable iff the
congruence closure algorithm returns satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 25 /41

Correctness of the Algorithm g

Theorem (Sound and Complete)

Quantifier-free conjunctive ¥ g-formula F is Tg-satisfiable iff the
congruence closure algorithm returns satisfiable.

Proof:

= Let | be a satisfying interpretation.
By induction over the steps of the algorithm one can prove:
Whenever the algorithm merges nodes t; and tp, | |= t; = t, holds.

Since | = s # tifori € {m+ 1,..., n} they cannot be merged.

Hence the algorithm returns satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 25 /41

Correctness of the Algorithm (2) g
55
Proof:
< Let S denote the nodes of the graph and
Let [t] :== {t' | t ~ t’} denote the congruence class of t and

S/~ = {[t] | t € S} denote the set of congruence classes.
Show that there is an interpretation /:

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 26 / 41

Correctness of the Algorithm (2) g
55
Proof:
< Let S denote the nodes of the graph and
Let [t] :== {t' | t ~ t’} denote the congruence class of t and

S/~ = {[t] | t € S} denote the set of congruence classes.
Show that there is an interpretation /:

D, = S/N U {Q}

[f(t1,...,tn)] vi = [t1],.--, Ve = [ta],
ar[fl(vi, ... va) = f(tr,...,ta) €S
Q otherwise

a[=](vi,v2) = T iff vi = w

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 26 / 41

Correctness of the Algorithm (2) g
55
Proof:
< Let S denote the nodes of the graph and
Let [t] :== {t' | t ~ t’} denote the congruence class of t and

S/~ = {[t] | t € S} denote the set of congruence classes.
Show that there is an interpretation /:

D, = S/N U {Q}
[f(t1,...,tn)] vi = [t1],.--, Ve = [ta],
ar[fl(vi, ... va) = f(tr,...,ta) €S
Q otherwise
Oé[[:](vl,VQ) = T iff Vi = W

I is well-defined!
ay[=] is a congruence relation,

I = F.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 26 / 41

Example: f(a,b) = a A f(f(a,b),b) # b g

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 27 / 41

Jocl

Example: f(a,b) = a A f(f(a,b),b) # b -

S = {f(f(a, b), b),f(a, b),a, b}
5/~ = {{f(f(a b),b),f(a, b),a},{b}} = {[a],[b]}
— {[a]. [b].9)
a/[f] | [a] [6] © all=] | [a] [b] @
[a] [a]
[6] [6]
Q Q

hen Hoenicke (Software Engineering) Decision Procedures Summer 2012 27 / 41

Jocl

Example: f(a,b) = a A f(f(a,b),b) # b -

S = {f(f(a, b),b),f(a,b),a, b}
5/~ = {{f(f(a, b), b), f(a, b),a}, {b}} = {[a], [b]}
= {[a], [5], Q}
ou[f] [[a] [Q@ a[=] | [a] [p] €@
[a] [a] @ [| T L L
]| @ Q Q [b] | L T L
Q1 Q Q Q Q| L 1L 7T

hen Hoenicke (Software Engineering) Decision Procedures Summer 2012 27 / 41

How to handle predicates?

We can get rid of predicates by
@ Introduce fresh constant e corresponding to T.
@ Introduce a fresh function f, for each predicate p.
@ Replace p(t1,...,ty) with fy(t1,...,ts) = e.
Compare the equivalence axiom for p
with the congruence axiom for f,.
© Vx1,%0,y1,¥2- X1 = y1 A X2 = ya2 = p(x1,x2) < p(y1,y2)
© Vx1, %0, y1,¥2- X1 = y1 A X2 = ya2 = fp(x1,x2) = fp(y1,2)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

28 / 41

Example &

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 29 / 41

Example &

x = F(x) A plx, F(x)) A p(F(x),2) A =p(x, 2)
is rewritten to

x = f(x) A fp(x,f(x)) = o A fp(f(x),2) = @ N fr(x,2) #

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 29 / 41

Example &

x = F(x) A plx, F(x)) A p(F(x),2) A =p(x, 2)
is rewritten to

x = f(x) A fp(x,f(x)) = o A fp(f(x),2) = @ N fr(x,2) #

FIND fy(x,z) = ®
FIND @ = e
= Unsatisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 29 / 41

Theory of Lists

Theory of Lists Teons g

Ycons : {cons, car, cdr, atom, =}

@ constructor cons: cons(a, b) list constructed by
prepending a to b

e left projector car: car(cons(a, b)) = a
@ right projector cdr: cdr(cons(a, b)) = b

@ atom: unary predicate

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 31 /41

Axioms of Tons £

o reflexivity, symmetry, transitivity

@ congruence axioms:
Vxi, X2, y1,¥2- X1 = X2 A y1 = y2 — cons(xi,y1) = cons(xz, y2)
Vx,y.x =y — car(x) = car(y)
Vx,y.x =y — cdr(x) = cdr(y)

@ equivalence axiom:

Vx,y.x =y — (atom(x) <« atom(y))

e Vx,y. car(cons(x,y)) = x (left projection)
Vx,y. cdr(cons(x,y)) = y (right projection)
Vx. matom(x) — cons(car(x),cdr(x)) = x (construction)
Vx, y. —atom(cons(x, y)) (atom)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 32 /41

Satisfiabilty of Quantifier-free >, U 2g-formulae g

First simplify the formula:
@ Consider only conjunctive ¥ ons U Zg-formulae.
Convert non-conjunctive formula to DNF and check each disjunct.
e —atom(u;) literals are removed:
replace —atom(u;) with u; = cons(u}, u?)

by the (construction) axiom.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 33 /41

Satisfiabilty of Quantifier-free >, U 2g-formulae g

First simplify the formula:
@ Consider only conjunctive ¥ ons U Zg-formulae.
Convert non-conjunctive formula to DNF and check each disjunct.
e —atom(u;) literals are removed:
replace —atom(u;) with u; = cons(u}, u?)
by the (construction) axiom.
Result is a conjunctive ¥ ons U Zg-formula with the literals:

es=1t
°os £t
e atom(u)
where s, t, u are Tcons U Tg-terms.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 33 /41

Algorithm: To,s-Satisfiability (the idea) g

F: S =1t AN -+ N Sy =ty
generate congruence closure

AN Smil # tmp1r A o0 N Sy F ty
search for contradiction
A atom(ui) A .-+ A atom(uy)

~—
search for contradiction

where s;, t;, and u; are Teons U Tg-terms.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 34 /41

Algorithm: Tons-Satisfiability &

© Construct the initial DAG for Sg

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 /41

Algorithm: Tons-Satisfiability &

@ Construct the initial DAG for Sg
@ for each node n with n.fn = cons

o add car(n) and MERGE car(n) n.args[1]
o add cdr(n) and MERGE cdr(n) n.args|2]

by axioms (left projection), (right projection)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 /41

Algorithm: T ons-Satisfiability g

@ Construct the initial DAG for Sg
@ for each node n with n.fn = cons

o add car(n) and MERGE car(n) n.args[1]
o add cdr(n) and MERGE cdr(n) n.args|2]

by axioms (left projection), (right projection)
@ forl < < m, MERGE s; t;

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 /41

Algorithm: T.,,s-Satisfiability g

@ Construct the initial DAG for Sg
@ for each node n with n.fn = cons

o add car(n) and MERGE car(n) n.args[1]
e add cdr(n) and MERGE cdr(n) n.args[2]

by axioms (left projection), (right projection)
Q forl <
Q form+1

< m, MERGE §; t;
<

i < n, if FIND s; = FIND t;, return unsatisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 /41

Algorithm: Tons-Satisfiability &

@ Construct the initial DAG for Sg
@ for each node n with n.fn = cons

o add car(n) and MERGE car(n) n.args[1]

e add cdr(n) and MERGE cdr(n) n.args[2]
by axioms (left projection), (right projection)
for1 < i < m, MERGE s; t;

form+ 1 < j < n, if FIND s; = FIND t;, return unsatisfiable

© 00

forl < j </ ifdv.FINDv = FIND u; A v.fn = cons,
return unsatisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 /41

Algorithm: T.,,s-Satisfiability g

@ Construct the initial DAG for Sg
@ for each node n with n.fn = cons

o add car(n) and MERGE car(n) n.args[1]

e add cdr(n) and MERGE cdr(n) n.args[2]
by axioms (left projection), (right projection)
for1 < i < m, MERGE s; t;

form+ 1 < j < n, if FIND s; = FIND t;, return unsatisfiable

© 00

forl < j </ ifdv.FINDv = FIND u; A v.fn = cons,
return unsatisfiable

@ Otherwise, return satisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 /41

Example &

Given (Xcons U X)-formula

car(x) = car(y) A cdr(x) = cdr(y)
A —atom(x) A —atom(y) A f(x) # f(y)
where the function symbol f is in g

F :

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 36 / 41

Example &

Given (Xcons U X)-formula

car(x) = car(y) A cdr(x) = cdr(y)
A —atom(x) A —atom(y) A f(x) # f(y)
where the function symbol f is in g

F :

car(x) = car(y) A (1)
cdr(x) = cdr(y) A (2)
F': x = cons(x1,x2) A (3)
y = cons(y1,y2) A (4)
f(x) # £(y) (5)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 36 / 41

Example' car(x) = car(y) A cdr(= cdr(y)/\ g
x = cons(xy,x) Ay = cons(yi, y») x) # f(y) 55
- -» congruence

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 /41

Example: car(x) = car(y) A cdr(x) = cdr(y)A
x = cons(xi,x2) Ny = cons(yi,y) N f(x) # f(y)

UNI
1

FREIBURG

Step 1
Step 2

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 /41

Example: car(x) = car(y) A cdr(x) = cdr(y)A

x = cons(xy,x2) Ny = cons(yi,y2) A f(x) # f(y) 'g%‘
Step 1
Step 2
Step 3 :

MERGE car(x) car(y)
MERGE cdr(x) cdr(y)

- -» congruence

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 /41

Example: car(x) = car(y) A cdr(x) = cdr(y)A
x = cons(xy,x2) Ny = cons(yi,y2) A f(x) # f(y)

Step 1

Step 2

Step 3 :

MERGE car(x) car(y)
MERGE cdr(x) cdr(y)
MERGE x cons(xy, x2)

- -» congruence

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

UNI
1

FREIBURG

37 /41

Example: car(x) = car(y) A cdr(x) = cdr(y)A

x = cons(xy,x2) Ny = cons(yi,y2) A f(x) # f(y) 'g%‘
Step 1
Step 2
Step 3 :

MERGE car(x) car(y)
MERGE cdr(x) cdr(y)
MERGE x cons(xy, x2)
MERGE car(x) car(cons(x1,x2))

- -» congruence

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 /41

Example: car(x) = car(y) A cdr(x) = cdr(y)A

x = cons(xy,x2) Ny = cons(yi,y2) A f(x) # f(y) 'g%‘
Step 1
Step 2
Step 3 :

MERGE car(x) car(y)
MERGE cdr(x) cdr(y)
MERGE x cons(xy, x2)
MERGE car(x) car(cons(x1, x2))
MERGE cdr(x) cdr(cons(x, x2))

- -» congruence

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 /41

Example: car(x) = car(y) A cdr(x) = cdr(y)A

x = cons(xy,x2) Ny = cons(yi,y2) A f(x) # f(y) 'g%‘
Step 1
Step 2
Step 3 :

MERGE car(x) car(y)
MERGE cdr(x) cdr(y)
MERGE x cons(xy, x2)
MERGE car(x) car(cons(x1, x2))
MERGE cdr(x) cdr(cons(x, x2))
MERGE y cons(yi, y2)

- -» congruence

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 /41

Example: car(x) = car(y) A cdr(x) = cdr(y)A

x = cons(xy,x2) Ny = cons(yi,y2) A f(x) # f(y) _gg_
Step 1
Step 2
Step 3 :

MERGE car(x) car(y)
MERGE cdr(x) cdr(y)
MERGE x cons(xy, x2)
MERGE car(x) car(cons(xi, x2))
MERGE cdr(x) cdr(cons(x, x2))
MERGE y cons(yi, y2)
MERGE car(y) car(cons(y1, y2))

- -» congruence

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 /41

Example: car(x) = car(y) A cdr(x) = cdr(y)A

x = cons(xy,x2) Ny = cons(yi,y2) A f(x) # f(y) 'g%‘
Step 1
Step 2
Step 3 :

MERGE car(x) car(y)
MERGE cdr(x) cdr(y)
MERGE x cons(xy, x2)
MERGE car(x) car(cons(x1, x2))
MERGE cdr(x) cdr(cons(x, x2))
MERGE y cons(yi, y2)
MERGE car(y) car(cons(y1, y2))
MERGE cdr(y) cdr(cons(y1, y2))

- -» congruence

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 /41

Example: car(x) = car(y) A cdr(x) = cdr(y)A

x = cons(xy,x2) Ny = cons(yi,y2) A f(x) # f(y) 'g%‘
Step 1
Step 2
Step 3 :

MERGE car(x) car(y)

MERGE cdr(x) cdr(y)

MERGE x cons(xy, x2)

MERGE car(x) car(cons(x1, x2))
MERGE cdr(x) cdr(cons(x, x2))

MERGE y cons(yi, y2)

MERGE car(y) car(cons(y1, y2))
MERGE cdr(y) cdr(cons(y1, y2))
MERGE cons(xy, x2) cons(y1, ¥2)

- -» congruence

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 /41

Example: car(x) = car(y) A cdr(x) = cdr(y)A

x = cons(xy,x2) Ny = cons(yi,y2) A f(x) # f(y) 'g%‘
Step 1
Step 2
Step 3 :

MERGE car(x) car(y)

MERGE cdr(x) cdr(y)

MERGE x cons(xy, x2)

MERGE car(x) car(cons(x1, x2))

MERGE cdr(x) cdr(cons(x, x2))

MERGE y cons(yi, y2)

MERGE car(y) car(cons(y1, y2))

MERGE cdr(y) cdr(cons(y1, y2))
MERGE cons(xy, x2) cons(y1, ¥2)
MERGE f(x) f(y)

- -» congruence

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 /41

Example: car(x) = car(y) A cdr(x) = cdr(y)A

x = cons(xy, x2)

- -» congruence

Jochen Hoenicke (Software Engineering)

Decision Procedures

Ay = cons(yi, ys) N\ f(x) # f(y) 'g%‘
Step 1
Step 2
Step 3 :

MERGE car(x) car(y)

MERGE cdr(x) cdr(y)

MERGE x cons(xy, x2)

MERGE car(x) car(cons(x1, x2))

MERGE cdr(x) cdr(cons(x, x2))

MERGE y cons(yi, y2)

MERGE car(y) car(cons(y1, y2))

MERGE cdr(y) cdr(cons(y1, y2))
MERGE cons(xy, x2) cons(y1, ¥2)
MERGE f(x) f(y)

Step 4 :

FIND f(x) = FIND f(y)

= unsatisfiable

Summer 2012 37 /41

Correctness of the Algorithm &

Theorem (Sound and Complete)

Quantifier-free conjunctive X cons-formula F is Teons-satisfiable iff the
congruence closure algorithm for T.ons returns satisfiable.

Proof:

= Let / be a satisfying interpretation.
By induction over the steps of the algorithm one can prove:
Whenever the algorithm merges nodes t; and t, | = t; = t» holds.

Since | = s; # tifori € {m+ 1,...,n} they cannot be merged.
From | = —atom(cons(t1, t2)) and | = atom(u;)

follows | |= u; # cons(t1, t2) by equivalence axiom.

Thus u; for i € {1,...,¢} cannot be merged with a cons node.

Hence the algorithm returns satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 38 /41

Correctness of the Algorithm (2) -

Proof: o8
< Let S denote the nodes of the graph and
let S/~ denote the congruence classes computed by the algorithm.
Show that there is an interpretation /:

Dy = {binary trees with leaves labelled with S/~}

\ {trees with subtree [tll/\[tﬂ with cons(ti,) € S}

[cons(t,)] wvi = [t1],v2 = [t2],cons(t1,t2) € S

consy(v, ve) = < otherwise
vi Vo
[car(t)] if v = [t],car(t) € S
carj(v) = ¢ w» if v = Vl/\v2

arbitrary otherwise

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 39 /41

Correctness of the Algorithm (3) 8

([cdr(t)] if v = [t],cdr(t) € S
cdri(v) = ¢ v if v = Vl/\vz
arbitrary otherwise

(false if v = [cons(t1, t2)]

atom;(v) = { false ifv = <

vi V2

true otherwise

ar[=](v1,v2) = trueiff vi = v

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 40 / 41

Correctness of the Algorithm (3) 8

([cdr(t)] if v = [t],cdr(t) € S
cdri(v) = ¢ v if v = Vl/\vz
arbitrary otherwise

(false if v = [cons(t1, t2)]

atom;(v) = { false ifv = <

vi V2

true otherwise
OCI[:](Vl, V2) = true iff Vi = W

I is well-defined! «;[=] is obviously a congruence relation.

Vx,y. car(cons(x,y)) = x (left projection)
Vx,y. cdr(cons(x,y)) = y (right projection)
Vx. —matom(x) — cons(car(x), cdr(x)) = x (construction)
Vx, y. matom(cons(x, y)) (atom)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 40 / 41

Example: car(x) = car(y) A cdr(x) = cdr(y)A
x = cons(xy,x2) ANy = cons(yi, y»)

UNI
1

FREIBURG

- - congruence

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 41 /41

	Quantifier-free Theory of Equality
	Congruence Closure Algorithm

	Theory of Lists

