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Theorem 1 (FOL is undecidable (Turing & Church)). There is no algorithm
for deciding if a FOL formula F is valid, i.e. an algorithm that always halts
and says “yes” if F' is valid or says “no” if F is invalid.

Proof. We reduce the halting problem for deterministic Turing machines on the
empty tape to the validity problem for first order-logic. For a TM 7 we build a
first-order-logic formula F;, such that 7 terminates when started on the empty
tape if and only if F is valid.

Let 7 = (Q,%,T,6,q0,¢,) be a deterministic Turing Machine with states
Q ={qo,---,qn}, input alphabet ¥ = {} (we consider the halting problem on an
empty tape), tape alphabet I' = {ay, . . ., a,, } where ag is the blank symbol, start
state qo, final state ¢,, and a total transition function § : Q xI" = QxT'x{L, R}.
We build a formula that encodes the run of 7. There is one constant zero and two
one-argument functions succ, pred. Furthermore we have n 4+ m + 2 predicates
of arity 2, qo,- .-, qn, a0, - - -, @m. The intended meaning of the predicate ¢;(s, p)
is that in the sth step, the Turing Machine is at position p in state ¢;. The
intended meaning of the predicate a;(s, p) is that at the sth step the symbol at
position p is a;.

The formula F’- consists of several components:

e Functions succ and pred are inverse to each other:

Fy =Vs (pred(succ(s)) = s A succ(pred(s)) = s)
e Always at every position there is at most one symbol on the tape:

Fy, =VsVp /\ (—a;(s,p) V —a;(s,p))
i,7€40,...,m}
i

Note that this can be written as a valid first-order formula once the number
of symbols m is known. In particular there is an algorithm that computes
formula F5 from a given Turing Machine 7.

e Always the TM is only in one state

F3 = Vs Vp1 Vp2 N (—ai(s,p1) V —q; (s, p2))

i,7€40,...,n}
i# ]



e Always the TM is only at one position

Fy=VsV¥pi Vp2 N\ (01 #p2 = =qi(s,p1) V ~4i(s,p2))
1€{0,...,n}

e Only the symbol at the position of the TM may change.

Fs=VsV¥p N\ (ai(s,p) A-ai(suce(s),p) = \/  qi(s.p))
i€{0,...,m} j€{0,...,n}

e The TM writes the correct symbol: For each ¢ € Q,a € T with §(q,a) =
(¢',a’, R), we define

Fya =Vs p (a(s,p) Aq(s,p) = a'(succ(s), p) A ¢ (succ(s), suce(p)))
For each ¢ € Q,a € T with 6(¢q,a) = (¢',a’, L), we define
Fya =Vs Vp (a(s,p) Aq(s,p) = d(suce(s), p) A g (succ(s), pred(p)))
then Fg is the conjunction of these formulas.
e The TM starts at step zero on the empty tape:

Fr = qo(zero, zero) AVp ag(zero, p)

The formula F; specifies that every run of 7 is terminating:
F,=F A...\NF; — 3s 3p qa(s,p)

We show that F is valid if and only if 7 terminates when starting on the empty
tape.

only if We show that there is a falsifying model I for F, if 7 does not ter-
minate on the empty tape. Let D; = Z, as(zero) = 0, ar(succ)(x) = x + 1,
ar(pred)(z) =« — 1.

We set aglgi](s,p) = T if and only if s > 0 and the TM 7 is in step s at
position p in state ¢;. Note that for s < 0 the predicate ¢;(s,p) is always false.
This is consistent with Fi,..., Fr.

We set agla;](s,p) if and only if s < 0 and ¢ = 0 or s > 0 and the tape
contains symbol a; at position p in step s.

One can see that Fi,..., F; are true and 3s 3p ¢, (s, p) is false. Hence T is
a falsifying interpretation for Fi.

if Let succ’(zero) denote the term succ(. .. (succ(zero)...) with i applications
of succ. If i < 0 we denote by succ’(zero) the term pred(. .. (pred(zero)...) with
—1 applications of pred.

One can show by induction over ¢ that for every interpretation satisfying
Fy,..., F; that if at step ¢ the TM is in state ¢; and at position p the pred-
icate g;j(succ’(zero), succP(zero)) holds and that if at step i the tape contains
symbol a; at position p the predicate a;(succ’(zero), succ?(zero)) holds. Since
T terminates, there is a step ¢ and a position p at which the 7 reaches the fi-
nal state, hence g, (succ’(zero), succP(zero)) holds. Hence F; is true for every
interpretation. O



