Validity of FOL is undecidable

Jochen Hoenicke

May 15, 2012

Theorem 1 (FOL is undecidable (Turing & Church)). There is no algorithm for deciding if a FOL formula F is valid, i.e. an algorithm that always halts and says "yes" if F is valid or says "no" if F is invalid.

Proof. We reduce the halting problem for deterministic Turing machines on the empty tape to the validity problem for first order-logic. For a TM τ we build a first-order-logic formula F_{τ} such that τ terminates when started on the empty tape if and only if F_{τ} is valid.

Let $\tau = (Q, \Sigma, \Gamma, \delta, q_0, q_n)$ be a deterministic Turing Machine with states $Q = \{q_0, \dots, q_n\}$, input alphabet $\Sigma = \{\}$ (we consider the halting problem on an empty tape), tape alphabet $\Gamma = \{a_0, \dots, a_m\}$ where a_0 is the blank symbol, start state q_0 , final state q_n , and a total transition function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$. We build a formula that encodes the run of τ . There is one constant zero and two one-argument functions succ, pred. Furthermore we have n+m+2 predicates of arity $2, q_0, \dots, q_n, a_0, \dots, a_m$. The intended meaning of the predicate $q_i(s, p)$ is that in the sth step, the Turing Machine is at position p in state q_i . The intended meaning of the predicate $a_i(s, p)$ is that at the sth step the symbol at position p is a_i .

The formula F_{τ} consists of several components:

• Functions *succ* and *pred* are inverse to each other:

$$F_1 = \forall s \ (pred(succ(s)) = s \land succ(pred(s)) = s)$$

• Always at every position there is at most one symbol on the tape:

$$F_2 = \forall s \ \forall p \qquad \bigwedge_{\substack{i,j \in \{0,\ldots,m\}\\i \neq j}} (\neg a_i(s,p) \lor \neg a_j(s,p))$$

Note that this can be written as a valid first-order formula once the number of symbols m is known. In particular there is an algorithm that computes formula F_2 from a given Turing Machine τ .

• Always the TM is only in one state

$$F_3 = \forall s \ \forall p_1 \ \forall p_2 \qquad \bigwedge_{\substack{i,j \in \{0,\ldots,n\}\\i \neq j}} (\neg q_i(s,p_1) \lor \neg q_j(s,p_2))$$

• Always the TM is only at one position

$$F_4 = \forall s \ \forall p_1 \ \forall p_2 \ \bigwedge_{i \in \{0,\dots,n\}} (p_1 \neq p_2 \rightarrow \neg q_i(s,p_1) \lor \neg q_i(s,p_2))$$

• Only the symbol at the position of the TM may change.

$$F_5 = \forall s \ \forall p \ \bigwedge_{i \in \{0, \dots, m\}} (a_i(s, p) \land \neg a_i(succ(s), p) \rightarrow \bigvee_{j \in \{0, \dots, n\}} q_j(s, p))$$

• The TM writes the correct symbol: For each $q \in Q, a \in \Gamma$ with $\delta(q, a) = (q', a', R)$, we define

$$F_{q,a} = \forall s \ \forall p \ (a(s,p) \land q(s,p) \rightarrow a'(succ(s),p) \land q'(succ(s),succ(p)))$$

For each $q \in Q, a \in \Gamma$ with $\delta(q, a) = (q', a', L)$, we define

$$F_{q,a} = \forall s \ \forall p \ (a(s,p) \land q(s,p) \rightarrow a'(succ(s),p) \land q'(succ(s),pred(p)))$$

then F_6 is the conjunction of these formulas.

• The TM starts at step zero on the empty tape:

$$F_7 = q_0(zero, zero) \land \forall p \ a_0(zero, p)$$

The formula F_{τ} specifies that every run of τ is terminating:

$$F_{\tau} = F_1 \wedge \ldots \wedge F_7 \rightarrow \exists s \; \exists p \; q_n(s, p)$$

We show that F_{τ} is valid if and only if τ terminates when starting on the empty tape.

only if We show that there is a falsifying model I for F_{τ} if τ does not terminate on the empty tape. Let $D_I = \mathbb{Z}$, $\alpha_I(zero) = 0$, $\alpha_I(succ)(x) = x + 1$, $\alpha_I(pred)(x) = x - 1$.

We set $\alpha_I[q_i](s,p) = \top$ if and only if $s \geq 0$ and the TM τ is in step s at position p in state q_i . Note that for s < 0 the predicate $q_i(s,p)$ is always false. This is consistent with F_1, \ldots, F_7 .

We set $\alpha_I[a_i](s,p)$ if and only if s < 0 and i = 0 or $s \ge 0$ and the tape contains symbol a_i at position p in step s.

One can see that F_1, \ldots, F_7 are true and $\exists s \ \exists p \ q_n(s, p)$ is false. Hence I is a falsifying interpretation for F_{τ} .

if Let $succ^{i}(zero)$ denote the term $succ(\dots(succ(zero)\dots))$ with i applications of succ. If i < 0 we denote by $succ^{i}(zero)$ the term $pred(\dots(pred(zero)\dots))$ with -i applications of pred.

One can show by induction over i that for every interpretation satisfying F_1, \ldots, F_7 that if at step i the TM is in state q_j and at position p the predicate $q_j(succ^i(zero), succ^p(zero))$ holds and that if at step i the tape contains symbol a_j at position p the predicate $a_j(succ^i(zero), succ^p(zero))$ holds. Since τ terminates, there is a step i and a position p at which the τ reaches the final state, hence $q_n(succ^i(zero), succ^p(zero))$ holds. Hence F_τ is true for every interpretation.