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Organisation

Dates

Lecture is Tuesday 14–16 (c.t) and Thursday 14–15 (c.t).

Tutorials will be given on Thursday 15–16.
Starting next week (this week is a two hour lecture).

Exercise sheets are uploaded on Tuesday.
They are due on Tuesday the week after.

To successfully participate, you must

prepare the exercises (at least 50 %)

actively participate in the tutorial

pass an oral examination
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Literature

The Calculus of Computation:
Decision Procedures with

Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007
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Motivation



Motivation

Decision Procedures are algorithms to decide formulae.
These formulae can arise

in Hoare-style software verification.

in hardware verification
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Motivation (2)

Consider the following program:

for

@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
(int i := `; i ≤ u; i := i + 1) {
if ((a[i ] = e)) {
rv := true;
}

}

How can we prove that the formula is a loop invariant?
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Motivation (3)

Prove the Hoare triples (one for if case, one for else case)

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
assume i ≤ u
assume a[i ] = e
rv := true;
i := i + 1
@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
assume i ≤ u
assume a[i ] 6= e
i := i + 1
@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
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Motivation (4)

A Hoare triple {P} S {Q} holds, iff

P → wp(S ,Q)

(wp denotes is weakest precondition)
For assignments wp is computed by substitution:

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
assume i ≤ u
assume a[i ] = e
rv := true;
i := i + 1
@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)

holds if and only if:

` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e) ∧ i ≤ u ∧ a[i ] = e

→` ≤ i + 1 ≤ u ∧ (true ↔ ∃j . ` ≤ j < i + 1 ∧ a[j ] = e)
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Motivation (5)

We need an algorithm that decides whether a formula holds.

` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e) ∧ i ≤ u ∧ a[i ] = e

→` ≤ i + 1 ≤ u ∧ (true ↔ ∃j . ` ≤ j < i + 1 ∧ a[j ] = e)

If the formula does not hold it should give a counterexample, e.g.:

` = 0, i = 1, u = 1, rv = false, a[0] = 0, a[1] = 1, e = 1,

This counterexample shows that i + 1 ≤ u can be violated.

This lecture is about algorithms checking for validity and producing these
counterexamples.
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Topics

Propositional Logic

First-Order Logic

First-Order Theories

Quantifier Elimination

Decision Procedures for Linear Arithmetic

Decision Procedures for Uninterpreted Functions

Decision Procedures for Arrays

Combination of Decision Procedures

DPLL(T)

Craig Interpolants
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Foundations: Propositional Logic



Syntax of Propositional Logic

Atom truth symbols >(“true”) and ⊥(“false”)

propositional variables P,Q,R,P1,Q1,R1, · · ·
Literal atom α or its negation ¬α
Formula literal or application of a

logical connective to formulae F ,F1,F2
¬F “not” (negation)
(F1 ∧ F2) “and” (conjunction)
(F1 ∨ F2) “or” (disjunction)
(F1 → F2) “implies” (implication)
(F1 ↔ F2) “if and only if” (iff)
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Example: Syntax

formula F : ((P ∧ Q) → (> ∨ ¬Q))
atoms: P,Q,>
literal: ¬Q
subformulas: (P ∧ Q), (> ∨ ¬Q)
abbreviation

F : P ∧ Q → > ∨ ¬Q
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Semantics (meaning) of PL

Formula F and Interpretation I is evaluated to a truth value 0/1
where 0 corresponds to value false

1 true

Interpretation I : {P 7→ 1,Q 7→ 0, · · · }

Evaluation of logical operators:

F1 F2 ¬F1 F1 ∧ F2 F1 ∨ F2 F1 → F2 F1 ↔ F2

0 0
1

0 0 1 1
0 1 0 1 1 0

1 0
0

0 1 0 0
1 1 1 1 1 1
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Example: Semantics

F : P ∧ Q → P ∨ ¬Q
I : {P 7→ 1,Q 7→ 0}

P Q ¬Q P ∧ Q P ∨ ¬Q F

1 0 1 0 1 1

1 = true 0 = false

F evaluates to true under I
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Inductive Definition of PL’s Semantics

I |= F if F evaluates to 1 / true under I
I 6|= F 0 / false

Base Case:
I |= >
I 6|= ⊥
I |= P iff I [P] = 1
I 6|= P iff I [P] = 0

Inductive Case:
I |= ¬F iff I 6|= F
I |= F1 ∧ F2 iff I |= F1 and I |= F2
I |= F1 ∨ F2 iff I |= F1 or I |= F2
I |= F1 → F2 iff, if I |= F1 then I |= F2
I |= F1 ↔ F2 iff, I |= F1 and I |= F2,

or I 6|= F1 and I 6|= F2
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Example: Inductive Reasoning

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ 1, Q 7→ 0}

1. I |= P since I [P] = 1
2. I 6|= Q since I [Q] = 0
3. I |= ¬Q by 2, ¬
4. I 6|= P ∧ Q by 2, ∧
5. I |= P ∨ ¬Q by 1, ∨
6. I |= F by 4, → Why?

Thus, F is true under I .
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Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that I |= F .

Definition (Validity)

F is valid iff for all interpretations I , I |= F .

Note

F is valid iff ¬F is unsatisfiable

Proof.

F is valid iff ∀I : I |= F iff ¬∃I : I 6|= F iff ¬F is unsatisfiable.

Decision Procedure: An algorithm for deciding validity or satisfiability.
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Examples: Satisfiability and Validity

Now assume, you are a decision procedure.

Which of the following formulae is satisfiable, which is valid?

F1 : P ∧ Q
satisfiable, not valid

F2 : ¬(P ∧ Q)
satisfiable, not valid

F3 : P ∨ ¬P
satisfiable, valid

F4 : ¬(P ∨ ¬P)
unsatisfiable, not valid

F5 : (P → Q) ∧ (P ∨ Q) ∧ ¬Q
unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?
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Method 1: Truth Tables

F : P ∧ Q → P ∨ ¬Q
P Q P ∧ Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1
0 1 0 0 0 1

1 0 0 1 1 1
1 1 1 0 1 1

Thus F is valid.

F : P ∨ Q → P ∧ Q

P Q P ∨ Q P ∧ Q F
0 0 0 0 1 ← satisfying I
0 1 1 0 0 ← falsifying I
1 0 1 0 0
1 1 1 1 1

Thus F is satisfiable, but invalid.
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Method 2: Semantic Argument (Semantic Tableaux)

Assume F is not valid and I a falsifying interpretation: I 6|= F

Apply proof rules.

If no contradiction reached and no more rules applicable, F is invalid.

If in every branch of proof a contradiction reached, F is valid.
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Semantic Argument: Proof rules

I |= ¬F
I 6|= F

I 6|= ¬F
I |= F

I |= F ∧ G

I |= F
I |= G

←and

I 6|= F ∧ G

I 6|= F | I 6|= G
↖or

I |= F ∨ G

I |= F | I |= G

I 6|= F ∨ G

I 6|= F
I 6|= G

I |= F → G

I 6|= F | I |= G

I 6|= F → G

I |= F
I 6|= G

I |= F ↔ G

I |= F ∧ G | I 6|= F ∨ G

I 6|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧ G

I |= F
I 6|= F

I |= ⊥
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Example

Prove F : P ∧ Q → P ∨ ¬Q is valid.

Let’s assume that F is not valid and that I is a falsifying interpretation.

1. I 6|= P ∧ Q → P ∨ ¬Q assumption
2. I |= P ∧ Q 1, Rule →
3. I 6|= P ∨ ¬Q 1, Rule →
4. I |= P 2, Rule ∧
5. I 6|= P 3, Rule ∨
6. I |= ⊥ 4 and 5 are contradictory

Thus F is valid.
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Example 2

Prove F : (P → Q) ∧ (Q → R) → (P → R) is valid.

Let’s assume that F is not valid.

1. I 6|= F assumption
2. I |= (P → Q) ∧ (Q → R) 1, Rule →
3. I 6|= P → R 1, Rule →
4. I |= P 3, Rule →
5. I 6|= R 3, Rule →
6. I |= P → Q 2, Rule ∧
7. I |= Q → R 2, Rule ∧

8a. I 6|= P
9a. I |= ⊥

∣∣∣∣∣∣
8b. I |= Q 6 →

9ba. I 6|= Q
10ba. I |= ⊥

∣∣∣∣ 9bb. I |= R
10bb. I |= ⊥

Our assumption is incorrect in all cases — F is valid.
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Example 3

Is F : P ∨ Q → P ∧ Q valid?

Let’s assume that F is not valid.

1. I 6|= P ∨ Q → P ∧ Q assumption
2. I |= P ∨ Q 1 and →
3. I 6|= P ∧ Q 1 and →

4a. I |= P 2 and ∨
5aa. I 6|= P
6aa. I |= ⊥

∣∣∣∣ 5ab. I 6|= Q

∣∣∣∣∣∣
4b. I |= Q 2 and ∨

5ba. I 6|= P
∣∣∣∣ 5bb. I 6|= Q

6bb. I |= ⊥

We cannot always derive a contradiction. F is not valid.

Falsifying interpretation:
I1 : {P 7→ true, Q 7→ false} I2 : {Q 7→ true, P 7→ false}
We have to derive a contradiction in all cases for F to be valid.
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Normal Forms

Idea: Simplify decision procedure, by simplifying the formula first.
Convert it into a simpler normal form, e.g.:

Negation Normal Form: No→ and no↔; negation only before atoms.

Conjunctive Normal Form: Negation normal form, where conjunction
is outside, disjunction is inside.

Disjunctive Normal Form: Negation normal form, where disjunction is
outside, conjunction is inside.

The formula in normal form should be equivalent to the original input.
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Equivalence

F1 and F2 are equivalent (F1 ⇔ F2)

iff for all interpretations I , I |= F1 ↔ F2

To prove F1 ⇔ F2 show F1 ↔ F2 is valid.

F1 implies F2 (F1 ⇒ F2)

iff for all interpretations I , I |= F1 → F2

F1 ⇔ F2 and F1 ⇒ F2 are not formulae!
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Equivalence is a Congruence relation

If F1 ⇔ F ′1 and F2 ⇔ F ′2, then

¬F1 ⇔ ¬F ′1
F1 ∨ F2 ⇔ F ′1 ∨ F ′2
F1 ∧ F2 ⇔ F ′1 ∧ F ′2
F1 → F2 ⇔ F ′1 → F ′2
F1 ↔ F2 ⇔ F ′1 ↔ F ′2

if we replace in a formula F a subformula F1 by F ′1 and obtain F ′,
then F ⇔ F ′.
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Negation Normal Form (NNF)

Negations appear only in literals. (only ¬,∧,∨)

To transform F to equivalent F ′ in NNF use recursively
the following template equivalences (left-to-right):

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2
¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)
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Example: Negation Normal Form

Convert F : (Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2) into NNF

(Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (¬¬Q2 ∨ R2)
⇔ (Q1 ∨ R1) ∧ (Q2 ∨ R2)

The last formula is equivalent to F and is in NNF.
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Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals∨
i

∧
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in DNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)

F1 ∧ (F2 ∨ F3) ⇔ (F1 ∧ F2) ∨ (F1 ∧ F3)

}
dist
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Example

Convert F : (Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2) into DNF

(Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (Q2 ∨ R2) in NNF
⇔ (Q1 ∧ (Q2 ∨ R2)) ∨ (R1 ∧ (Q2 ∨ R2)) dist
⇔ (Q1 ∧ Q2) ∨ (Q1 ∧ R2) ∨ (R1 ∧ Q2) ∨ (R1 ∧ R2) dist

The last formula is equivalent to F and is in DNF. Note that formulas can
grow exponentially.
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Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals∧
i

∨
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in CNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)
F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)

A disjunction of literals P1 ∨ P2 ∨ ¬P3 is called a clause.
For brevity we write it as set: {P1,P2,P3}.
A formula in CNF is a set of clauses (a set of sets of literals).
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Equisatisfiability

Definition (Equisatisfiability)

F and F ′ are equisatisfiable, iff

F is satisfiable if and only if F ′ is satisfiable

Every formula is equisatifiable to either > or ⊥.
There is a efficient conversion of F to F ′ where

F ′ is in CNF and

F and F ′ are equisatisfiable

Note: efficient means polynomial in the size of F .
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Conversion to CNF

Basic Idea:

Introduce a new variable PG for every subformula G ;
unless G is already an atom.

For each subformula G : G1 ◦ G2 produce a small formula
PG ↔ PG1 ◦ PG2 .

encode each of these (small) formulae separately to CNF.

The formula
PF ∧

∧
G

CNF (PG ↔ PG1 ◦ PG2)

is equisatisfiable to F .
The number of subformulae is linear in the size of F .
The time to convert one small formula is constant!
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Example: CNF

Convert F : P ∨ Q → P ∧ ¬R to CNF.
Introduce new variables: PF , PP∨Q , PP∧¬R , P¬R . Create new formulae
and convert them to CNF separately:

PF ↔ (PP∨Q → PP∧¬R) in CNF:

F1 : {{PF ,PP∨Q ,PP∧¬R}, {PF ,PP∨Q}, {PF ,PP∧¬R}}

PP∨Q ↔ P ∨ Q in CNF:

F2 : {{PP∨Q ,P ∨ Q}, {PP∨Q ,P}, {PP∨Q ,Q}}

PP∧¬R ↔ P ∧ P¬R in CNF:

F3 : {{PP∧¬R ∨ P}, {PP∧¬R ,P¬R}, {PP∧¬R ,P,P¬R}}

P¬R ↔ ¬R in CNF: F4 : {{P¬R ,R}, {P¬R ,R}}
{{PF}} ∪ F1 ∪ F2 ∪ F3 ∪ F4 is in CNF and equisatisfiable to F .
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Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Algorithm to decide PL formulae in CNF.

Published by Davis, Logemann, Loveland (1962).

Often miscited as Davis, Putnam (1960), which describes a different
algorithm.
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Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

let rec dpll F =
let F ′ = prop F in

let F ′′ = plp F ′ in

if F ′′ = > then true

else if F ′′ = ⊥ then false

else

let P = choose vars(F ′′) in

(dpll F ′′{P 7→ >}) ∨ (dpll F ′′{P 7→ ⊥})
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Unit Propagagion

Unit Propagation (prop)

If a clause contains one literal `,

Set ` to >.

Remove all clauses containing `.

Remove ¬` in all clauses.

Based on resolution

` ¬` ∨ C ← clause
C
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Pure Literal Propagagion

Pure Literal Propagation (PLP)

If P occurs only positive (without negation), set it to >.
If P occurs only negative set it to ⊥.
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Example

F : (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R)

Branching on Q

F{Q 7→ >} : (R) ∧ (¬R) ∧ (P ∨ ¬R)

By unit resolution
R (¬R)

⊥
F{Q 7→ >} = ⊥ ⇒ false

On the other branch
F{Q 7→ ⊥} : (¬P ∨ R)
F{Q 7→ ⊥, R 7→ >, P 7→ ⊥} = > ⇒ true

F is satisfiable with satisfying interpretation

I : {P 7→ false, Q 7→ false, R 7→ true}
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Example

F : (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R)

F

(R) ∧ (¬R) ∧ (P ∨ ¬R) (¬P ∨ R)

R (¬R)

⊥ ¬P

I : {P 7→ false, Q 7→ false, R 7→ true}

Q 7→ > Q 7→ ⊥

R 7→ >

P 7→ ⊥
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Knight and Knaves

A island is inhabited only by knights and knaves. Knights always tell the
truth, and knaves always lie. You meet four inhabitants: Alice, Bob,
Charles and Doris.

Alice says that Doris is a knave.

Bob tells you that Alice is a knave.

Charles claims that Alice is a knave.

Doris tells you, ‘Of Charles and Bob, exactly one is a knight.’
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Knight and Knaves

Let A denote that Alice is a Knight, etc. Then:

A ↔ ¬D
B ↔ ¬A
C ↔ ¬A
D ↔ ¬(C ↔ B)

In CNF:

{A,D}, {A,D}
{B,A}, {B,A}
{C ,A}, {C ,A}
{D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 46 / 88



Solving Knights and Knaves

F : {{A,D}, {A,D}, {B,A}, {B,A}, {C ,A}, {C ,A},
{D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

prop and plp are not applicable. Decide on A:

F{A 7→ ⊥} : {{D}, {B}, {C}, {D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

By prop we get:

F{A 7→ ⊥,D 7→ >,B 7→ >,C 7→ >} : ⊥

Unsatisfiable! Now set A to >:

F{A 7→ >} : {{D}, {B}, {C}, {D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

By prop we get:

F{A 7→ >,D 7→ ⊥,B 7→ ⊥,C 7→ ⊥} : >

Satisfying assignment!
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Learning is Useful

Consider the following problem:

{{A1,B1}, {P0,A1,P1}, {P0,B1,P1}, {A2,B2}, {P1,A2,P2}, {P1,B2,P2},
. . . , {An,Bn}, {Pn−1,An,Pn}, {Pn−1,Bn,Pn}, {P0}, {Pn}}

For some literal orderings, we need exponentially many steps.
Note, that

{{Ai ,Bi}, {Pi−1,Ai ,Pi}, {Pi−1,Bi ,Pi}} ⇒ {{Pi−1,Pi}}

If we learn the right clauses, unit propagation will immediately give
unsatisfiable.
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Partial Assignments and Unit/Conflict Clauses

Do not change the clause set, but only assign literals (as global variables).
When you assign true to a literal `,also assign false to `.
For a partial assignment

A clause is true if one of its literals is assigned true.

A clause is a conflict clause if all its literals are assigned false.

A clause is a unit clause if all but one literals are assigned false and
the last literal is unassigned.

If the assignment of a literal from a conflict clause is removed we get a
unit clause.
Explain unsatisfiability of partial assignment by conflict clause and learn it!
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Conflict Driven Clause Learning (CDCL)

Idea: Explain unsatisfiability of partial assignment by conflict clause and
learn it!

If a conflict is found we return the conflict clause.

If variable in conflict were derived by unit propagation
use resolution rule to generate a new conflict clause.

If variable in conflict was derived by decision,
use learned conflict as unit clause
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DPLL with CDCL

The functions dpll and prop return a conflict clause or satisfiable.

let rec dpll =
let prop U =

. . .
if conflictclauses 6= ∅

choose conflictclauses
else if unitclauses 6= ∅

prop (choose unitclauses)
else if coreclauses 6= ∅

let ` = choose (
⋃

coreclauses) ∩ unassigned in

val[`] := >
let C = dpll in

if (C = satisfiable) satisfiable
else

val[`] := undef

if (` /∈ C) C
else learn C ; prop C

else satisfiable
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Unit propagation

The function prop takes a unit clause and does unit propagation. It calls
dpll recursively and returns a conflict clause or satisfiable. recursively:

let prop U =
let ` = choose U ∩ unassigned in

val[`] := >
let C = dpll in

if (C = satisfiable)
satisfiable

else

val[`] := undef

if (` /∈ C ) C

else U \ {`} ∪ C \ {`}

The last line does resolution:

` ∨ C1 ¬` ∨ C2

C1 ∨ C2
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Example

{{A1,B1}, {P0,A1,P1}, {P0,B1,P1}, {A2,B2}, {P1,A2,P2}, {P1,B2,P2},
. . . , {An,Bn}, {Pn−1,An,Pn}, {Pn−1,Bn,Pn}, {P0}, {Pn}}

Unit propagation (prop) sets P0 and Pn to true.

Decide, e.g. A1, prop sets P1

Continue until An−1, prop sets Pn−1,An and Bn

Conflict clause computed: {An−1,Pn−2,Pn}.
Conflict clause does not depend on A1, . . . ,An−2 and can be used
again.
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DPLL (without Learning)
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DPLL with CDCL
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Some Notes about DPLL with Learning

Pure Literal Propagation is unnecessary:
A pure literal is always chosen right and never causes a conflict.

Modern SAT-solvers use this procedure but differ in

heuristics to choose literals/clauses.
efficient data structures to find unit clauses.
better conflict resolution to minimize learned clauses.
restarts (without forgetting learned clauses).

Even with the optimal heuristics DPLL is still exponential:
The Pidgeon-Hole problem requires exponential resolution proofs.
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Summary

Syntax and Semantics of Propositional Logic

Methods to decide satisfiability/validity of formulae:

Truth table
Semantic Tableaux
DPLL

Run-time of all algorithm is worst-case exponential in length of
formula.

Deciding satisfiability is NP-complete.
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Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).
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First-Order Logic



Syntax of First-Order Logic

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables x , y , z , · · ·
constants a, b, c , · · ·
functions f , g , h, · · · with arity n > 0
terms variables, constants or

n-ary function applied to n terms as arguments
a, x , f (a), g(x , b), f (g(x , f (b)))

predicates p, q, r , · · · with arity n ≥ 0

atom >, ⊥, or an n-ary predicate applied to n terms
literal atom or its negation

p(f (x), g(x , f (x))), ¬p(f (x), g(x , f (x)))

Note: 0-ary functions: constant
0-ary predicates: P,Q,R, . . .
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Syntax of First-Order Logic (2)

quantifiers

existential quantifier ∃x .F [x ]
“there exists an x such that F [x ]”

universal quantifier ∀x .F [x ]
“for all x , F [x ]”

FOL formula literal, application of logical connectives
(¬,∨,∧,→,↔) to formulae,
or application of a quantifier to a formula
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Example

FOL formula

∀x . (p(f (x), x) → (∃y . (p(f (g(x , y)), g(x , y))︸ ︷︷ ︸
G

)) ∧ q(x , f (x))

︸ ︷︷ ︸
F

)

The scope of ∀x is F .
The scope of ∃y is G .
The formula reads:

“for all x,
if p(f (x), x)
then there exists a y such that
p(f (g(x , y)), g(x , y)) and q(x , f (x))”
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Famous theorems in FOL

The length of one side of a triangle is less than the sum of the lengths
of the other two sides

∀x , y , z . triangle(x , y , z) → length(x) < length(y) + length(z)

Fermat’s Last Theorem.

∀n. integer(n) ∧ n > 2
→∀x , y , z .

integer(x) ∧ integer(y) ∧ integer(z)
∧x > 0 ∧ y > 0 ∧ z > 0
→xn + yn 6= zn
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Pumping Lemma

For every regular Language L there is some n ≥ 0, such that for all words
z ∈ L with |z | ≥ n there is a decomposition z = uvw with |v | ≥ 1 and
|uv | ≤ n, such that for all i ≥ 0: uv iw ∈ L.

∀L. regularlanguage(L)→
∃n. integer(n) ∧ n ≥ 0∧
∀z . z ∈ L ∧ |z | ≥ n→
∃u, v ,w . word(u) ∧ word(v) ∧ word(w)∧
z = uvw ∧ |v | ≥ 1 ∧ |uv | ≤ n∧
∀i . integer(i) ∧ i ≥ 0 → uv iw ∈ L

Predicates: regularlanguage, integer , word , · ∈ ·, · ≤ ·, · ≥ ·, · = ·
Constants: 0, 1
Functions: | · | (word length), concatenation, iteration

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 64 / 88



FOL Semantics

An interpretation I : (DI , αI ) consists of:

Domain DI

non-empty set of values or objects
for example DI = playing cards (finite),

integers (countable infinite), or
reals (uncountable infinite)

Assignment αI

each variable x assigned value αI [x ] ∈ DI

each n-ary function f assigned

αI [f ] : Dn
I → DI

In particular, each constant a (0-ary function) assigned value
αI [a] ∈ DI

each n-ary predicate p assigned

αI [p] : Dn
I → {>,⊥}

In particular, each propositional variable P (0-ary predicate) assigned
truth value (>, ⊥)
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Example

F : p(f (x , y), z) → p(y , g(z , x))

Interpretation I : (DI , αI )
DI = Z = {· · · ,−2,−1, 0, 1, 2, · · · } integers
αI [f ] : D2

I → DI

(x , y) 7→ x + y
αI [g ] : D2

I → DI

(x , y) 7→ x − y

αI [p] : D2
I → {>,⊥}

(x , y) 7→

{
> if x < y

⊥ otherwise

Also αI [x ] = 13, αI [y ] = 42, αI [z ] = 1
Compute the truth value of F under I

1. I 6|= p(f (x , y), z) since 13 + 42 ≥ 1
2. I 6|= p(y , g(z , x)) since 42 ≥ 1 − 13
3. I |= F by 1, 2, and →

F is true under I
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Semantics: Quantifiers

For a variable x :

Definition (x-variant)

An x-variant of interpretation I is an interpretation J : (DJ , αJ) such that

DI = DJ

αI [y ] = αJ [y ] for all symbols y , except possibly x

That is, I and J agree on everything except possibly the value of x

Denote J : I / {x 7→ v} the x-variant of I in which αJ [x ] = v for some
v ∈ DI . Then

I |= ∀x . F iff for all v ∈ DI , I / {x 7→ v} |= F

I |= ∃x . F iff there exists v ∈ DI s.t. I / {x 7→ v} |= F
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Example

Consider
F : ∀x . ∃y . 2 · y = x

Here 2 · y is the infix notatation of the term ·(2, y),
and 2 · y = x is the infix notatation of the atom = (·(2, y), x).

2 is a 0-ary function symbol (a constant).

· is a 2-ary function symbol.

= is a 2-ary predicate symbol.

x , y are variables.

What is the truth-value of F?
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Example (Z)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpration for integers, DI = Z.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff
for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI , there exists v1 ∈ DI , I /{x 7→ v}/{y 7→ v1} |= 2 ·y = x

The latter is false since for 1 ∈ DI there is no number v1 with 2 · v1 = 1.
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Example (Q)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpration for rational numbers, DI = Q.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff
for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI , there exists v1 ∈ DI , I /{x 7→ v}/{y 7→ v1} |= 2 ·y = x

The latter is true since for v ∈ DI we can choose v1 = v
2 .
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Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that I |= F .

Definition (Validity)

F is valid iff for all interpretations I , I |= F .

Note

F is valid iff ¬F is unsatisfiable
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Substitution

Suppose, we want to replace terms with other terms in formulas, e.g.

F : ∀y . (p(x , y) → p(y , x))

should be transformed to

G : ∀y . (p(a, y) → p(y , a))

We call the mapping from x to a a substituion denoted as σ : {x 7→ a}.
We write Fσ for the formula G .
Another convenient notation is F [x ] for a formula containing the variable
x and F [a] for Fσ.
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Substitution

Definition (Substitution)

A substitution is a mapping from terms to terms, e.g.

σ : {t1 7→ s1, . . . , tn 7→ sn}

By Fσ we denote the application of σ to formula F , i.e., the formula F
where all occurences of t1, . . . , tn are replaced by s1, . . . , sn.

For a formula named F [x ] we write F [t] as shorthand for F [x ]{x 7→ t}.
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Safe Substitution

Care has to be taken in the presence of quantifiers:

F [x ] : ∃y . y = Succ(x)

What is F [y ]?
We need to rename bounded variables occuring in the substitution:

F [y ] : ∃y ′. y ′ = Succ(y)

Bounded renaming does not change the models of a formula:

(∃y . y = Succ(x)) ⇔ (∃y ′. y ′ = Succ(x))
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Recursive Definition of Substitution

tσ =


σ(t) t ∈ dom(σ)

f (t1σ, . . . , tnσ) t /∈ dom(σ) ∧ t = f (t1, . . . , tn)

x t /∈ dom(σ) ∧ t = x

p(t1, . . . , tn)σ = p(t1σ, . . . , tnσ)

(¬F )σ = ¬(Fσ)

(F ∧ G )σ = (Fσ) ∧ (Gσ)

. . .

(∀x . F )σ =

{
∀x . Fσ x /∈ Vars(σ)

∀x ′. ((F{x 7→ x ′})σ) otherwise and x ′ is fresh

(∃x . F )σ =

{
∃x . Fσ x /∈ Vars(σ)

∃x ′. ((F{x 7→ x ′})σ) otherwise and x ′ is fresh
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Example: Safe Substitution Fσ

F : (∀x . p(x , y))→ q(f (y), x)
bound by ∀x ↗ ↖ free free ↗ ↖ free

σ : {x 7→ g(x), y 7→ f (x), f (y) 7→ h(x , y)}

Fσ?

1 Rename
F ′ : ∀x ′. p(x ′, y) → q(f (y), x)

↑ ↑

where x ′ is a fresh variable

2 Fσ : ∀x ′. p(x ′, f (x)) → q(h(x , y), g(x))
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Recursive Definition of Substitution

tσ =


σ(t) t ∈ dom(σ)

f (t1σ, . . . , tnσ) t /∈ dom(σ) ∧ t = f (t1, . . . , tn)

x t /∈ dom(σ) ∧ t = x

p(t1, . . . , tn)σ = p(t1σ, . . . , tnσ)

(¬F )σ = ¬(Fσ)

(F ∧ G )σ = (Fσ) ∧ (Gσ)

. . .

(∀x . F )σ =

{
∀x . Fσ x /∈ Vars(σ)

∀x ′. ((F{x 7→ x ′})σ) otherwise and x ′ is fresh

(∃x . F )σ =

{
∃x . Fσ x /∈ Vars(σ)

∃x ′. ((F{x 7→ x ′})σ) otherwise and x ′ is fresh
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Semantic Argument Proof

To show FOL formula F is valid, assume I 6|= F and derive a contradiction
I |= ⊥ in all branches

Soundness
If every branch of a semantic argument proof reach I |= ⊥, then F is
valid

Completeness
Each valid formula F has a semantic argument proof in which every
branch reach I |= ⊥
Non-termination
For an invalid formula F the method is not guaranteed to terminate.
Thus, the semantic argument is not a decision procedure for validity.
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Soundness (proof sketch)

If for interpretation I the assumption of the proof hold
then there is an interpretation I ′ and a branch
such that all statements on that branch hold.

I ′ differs from I in the values αI [ai ] of fresh constants ai .

If all branches of the proof end with I |= ⊥, then the assumption was
wrong. Thus, if the assumption was I 6|= F , then F must be valid.
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Completeness (proof sketch)

Consider (finite or infinite) proof trees starting with I 6|= F .

A (finite or infinite) branch is maximal, if

it is closed (I |= ⊥), or

no new formula can be derived.

A (finite or infinite) tree is maximal, if every branch is maximal.

There is a maximal (possibly infinite) proof tree.

If a branch is closed, it is finite.
If every branch is closed, the tree is finite (Kőnig’s Lemma).

In this case, there is a finite semantic argument proof.
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Completeness (proof sketch, continued)

Otherwise, there is a maximal (possibly infinite) proof tree with at least
one open branch P.

1 The statements on that branch P form a Hintikka set:

I |= F ∧ G ∈ P implies I |= F ∈ P and I |= G ∈ P.
I 6|= F ∧ G ∈ P implies I 6|= F ∈ P or I 6|= G ∈ P.
I |= ∀x . F [x ] ∈ P implies for all terms t, I |= F [t] ∈ P.
I 6|= ∀x . F [x ] ∈ P implies for some term a, I 6|= F [a] ∈ P.
Similarly for ∨,→,↔,∃.

2 Choose DI := {t | t is term}, αI [f ](t1, . . . , tn) = f (t1, . . . tn),

αI [x ] = x , αI [p](t1, . . . , tn) =

{
true I |= p(t1, . . . , tn) ∈ P

false otherwise

3 I satisfies all statements on the branch.
In particular, I is a falsifying interpretation of F , thus F is not valid.
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Normal Forms

Also in first-order logic normal forms can be used:

Devise an algorithm to convert a formula to a normal form.

Then devise an algorithm for satisfiability/validity that only works on
the normal form.
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Negation Normal Forms (NNF)

Negations appear only in literals. (only ¬,∧,∨, ∃, ∀)

To transform F to equivalent F ′ in NNF use recursively
the following template equivalences (left-to-right):

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2
¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2
F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

¬∀x . F [x ] ⇔ ∃x . ¬F [x ]
¬∃x . F [x ] ⇔ ∀x . ¬F [x ]
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Example: Conversion to NNF

G : ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w .p(x ,w) .

1 ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w . p(x ,w)

2 ∀x . ¬(∃y . p(x , y) ∧ p(x , z)) ∨ ∃w . p(x ,w)
F1 → F2 ⇔ ¬F1 ∨ F2

3 ∀x . (∀y . ¬(p(x , y) ∧ p(x , z))) ∨ ∃w . p(x ,w)
¬∃x . F [x ] ⇔ ∀x . ¬F [x ]

4 ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)
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Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

Q1x1 · · ·Qnxn. F [x1, · · · , xn]

where Qi ∈ {∀, ∃} and F is quantifier-free.

Every FOL formula F can be transformed to formula F ′ in PNF s.t.
F ′ ⇔ F :

1 Write F in NNF

2 Rename quantified variables to fresh names

3 Move all quantifiers to the front
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Example: PNF

Find equivalent PNF of

F : ∀x . ((∃y . p(x , y) ∧ p(x , z)) → ∃y . p(x , y))

Write F in NNF

F1 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃y . p(x , y)

Rename quantified variables to fresh names

F2 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)
↑ in the scope of ∀x
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Example: PNF

Move all quantifiers to the front

F3 : ∀x . ∀y . ∃w . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Alternately,

F ′3 : ∀x . ∃w . ∀y . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Note: In F2, ∀y is in the scope of ∀x , therefore the order of
quantifiers must be · · · ∀x · · · ∀y · · ·

F4 ⇔ F and F ′4 ⇔ F

Note: However G < F

G : ∀y . ∃w . ∀x . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)
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Decidability of FOL

FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is
valid, i.e. always halt and says “yes” if F is valid or say “no” if F is
invalid.

FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is valid,
but may not halt if F is invalid.

On the other hand,

PL is decidable
There exists an algorithm for deciding if a PL formula F is valid, e.g.,
the truth-table procedure.

Similarly for satisfiability
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