Decision Procedures

Jochen Hoenicke

Software Engineering
- - 峌- Albert-Ludwigs-University Freiburg

Summer 2012

Organisation

Organisation

Dates

- Lecture is Tuesday 14-16 (c.t) and Thursday 14-15 (c.t).
- Tutorials will be given on Thursday 15-16. Starting next week (this week is a two hour lecture).
- Exercise sheets are uploaded on Tuesday. They are due on Tuesday the week after.
To successfully participate, you must
- prepare the exercises (at least 50%)
- actively participate in the tutorial
- pass an oral examination

Literature

The Calculus of Computation:
 Decision Procedures with
 Applications to Verification

by

Aaron Bradley
Zohar Manna

Springer 2007

Motivation

Motivation

Decision Procedures are algorithms to decide formulae. These formulae can arise

- in Hoare-style software verification.
- in hardware verification

Motivation (2)

Consider the following program:

```
for
            @ \(\ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e)\)
            (int \(i:=\ell ; i \leq u ; i:=i+1)\{\)
            if \(((a[i]=e))\) \{
            rv:= true;
        \}
    \}
```

How can we prove that the formula is a loop invariant?

Motivation (3)

Prove the Hoare triples (one for if case, one for else case)

$$
\begin{aligned}
& \text { assume } \ell \leq i \leq u \wedge(r v \leftrightarrow \exists j \cdot \ell \leq j<i \wedge a[j]=e) \\
& \text { assume } i \leq u \\
& \text { assume } a[i]=e \\
& r v:=\text { true; } \\
& i:=i+1 \\
& @ \ell \leq i \leq u \wedge(r v \leftrightarrow \exists j \cdot \ell \leq j<i \wedge a[j]=e)
\end{aligned}
$$

assume $\ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e)$
assume $i \leq u$
assume $a[i] \neq e$
$i:=i+1$
@ $\ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e)$

Motivation (4)

A Hoare triple $\{P\} S\{Q\}$ holds, iff

$$
P \rightarrow w p(S, Q)
$$

(wp denotes is weakest precondition)
For assignments wp is computed by substitution:

```
assume \(\ell \leq i \leq u \wedge(r v \leftrightarrow \exists j \cdot \ell \leq j<i \wedge a[j]=e)\)
assume \(i \leq u\)
assume \(a[i]=e\)
\(r v:=\) true;
    \(i:=i+1\)
    \(@ \ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e)\)
```

holds if and only if:

$$
\begin{aligned}
\ell & \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e) \wedge i \leq u \wedge a[i]=e \\
\rightarrow \ell & \leq i+1 \leq u \wedge(\text { true } \leftrightarrow \exists j . \ell \leq j<i+1 \wedge a[j]=e)
\end{aligned}
$$

Motivation (5)

We need an algorithm that decides whether a formula holds.

$$
\begin{aligned}
\ell & \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e) \wedge i \leq u \wedge a[i]=e \\
\rightarrow \ell & \leq i+1 \leq u \wedge(\text { true } \leftrightarrow \exists j . \ell \leq j<i+1 \wedge a[j]=e)
\end{aligned}
$$

If the formula does not hold it should give a counterexample, e.g.:

$$
\ell=0, i=1, u=1, r v=\text { false }, a[0]=0, a[1]=1, e=1,
$$

This counterexample shows that $i+1 \leq u$ can be violated.
This lecture is about algorithms checking for validity and producing these counterexamples.

Contents of Lecture

Topics

- Propositional Logic
- First-Order Logic
- First-Order Theories
- Quantifier Elimination
- Decision Procedures for Linear Arithmetic
- Decision Procedures for Uninterpreted Functions
- Decision Procedures for Arrays
- Combination of Decision Procedures
- DPLL(T)
- Craig Interpolants

Foundations: Propositional Logic

Syntax of Propositional Logic

Atom truth symbols T ("true") and \perp ("false") propositional variables $P, Q, R, P_{1}, Q_{1}, R_{1}, \cdots$
Literal atom α or its negation $\neg \alpha$
Formula literal or application of a
logical connective to formulae F, F_{1}, F_{2}

$\neg F$	"not"	(negation)
$\left(F_{1} \wedge F_{2}\right)$	"and"	(conjunction)
$\left(F_{1} \vee F_{2}\right)$	"or"	(disjunction)
$\left(F_{1} \rightarrow F_{2}\right)$	"implies"	(implication)
$\left(F_{1} \leftrightarrow F_{2}\right)$	"if and only if"	(iff)

Example: Syntax

formula $F:((P \wedge Q) \rightarrow(T \vee \neg Q))$ atoms: P, Q, T
literal: $\neg Q$
subformulas: $(P \wedge Q), \quad(T \vee \neg Q)$
abbreviation

$$
F: P \wedge Q \rightarrow T \vee \neg Q
$$

Semantics (meaning) of PL

Formula F and Interpretation I is evaluated to a truth value $0 / 1$ where 0 corresponds to value false 1 true

Interpretation I: $\{P \mapsto 1, Q \mapsto 0, \cdots\}$
Evaluation of logical operators:

F_{1}	F_{2}	$\neg F_{1}$	$F_{1} \wedge F_{2}$	$F_{1} \vee F_{2}$	$F_{1} \rightarrow F_{2}$	$F_{1} \leftrightarrow F_{2}$
0	0		0	0	1	1
0	1		0	1	1	0
1	0		0	1	0	0
1	1		1	1	1	1

Example: Semantics

$$
\begin{aligned}
& F: P \wedge Q \rightarrow P \vee \neg Q \\
& I:\{P \mapsto 1, Q \mapsto 0\} \\
& \qquad
\end{aligned}
$$

F evaluates to true under I

Inductive Definition of PL's Semantics

$$
\begin{array}{llll}
I \models F & \text { if } F \text { evaluates to } & 1 / \text { true } & \text { under } I \\
I \not \models F & 0 / \text { false } &
\end{array}
$$

Base Case:

$$
\begin{aligned}
& I \not \models T \\
& I \not \models \perp \\
& I \models P \quad \text { iff } \quad I[P]=1 \\
& I \not \models P \quad \text { iff } \quad I[P]=0
\end{aligned}
$$

Inductive Case:

$$
\begin{array}{ll}
I \models \neg F & \text { iff } I \not \models F \\
I \models F_{1} \wedge F_{2} & \text { iff } I \models F_{1} \text { and } I \models F_{2} \\
I \models F_{1} \vee F_{2} & \text { iff } I \models F_{1} \text { or } I \models F_{2} \\
I \models F_{1} \rightarrow F_{2} & \text { iff, if } I \models F_{1} \text { then } I \models F_{2} \\
I \models F_{1} \leftrightarrow F_{2} & \text { iff, } I \models F_{1} \text { and } I \models F_{2}, \\
& \quad \text { or } I \not \models F_{1} \text { and } I \not \models F_{2}
\end{array}
$$

Example: Inductive Reasoning

$$
\begin{gathered}
F: P \wedge Q \rightarrow P \vee \neg Q \\
I:\{P \mapsto 1, Q \mapsto 0\}
\end{gathered}
$$

1. $I \models P$
2. $I \not \vDash Q$
3. $\quad I \models \neg Q$
4. $I \not \vDash P \wedge Q$
5. $\quad I \models P \vee \neg Q$
6. $\quad I \models F$
since $I[P]=1$
since $I[Q]=0$
by 2 , \neg
by $2, \wedge$
by $1, \vee$
by $4, \rightarrow \quad$ Why?

Thus, F is true under I.

Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that $I \vDash F$.

Definition (Validity)

F is valid iff for all interpretations $I, I \models F$.

Note

F is valid iff $\neg F$ is unsatisfiable

Proof.

F is valid iff $\forall I: I \vDash F$ iff $\neg \exists I: I \not \models F$ iff $\neg F$ is unsatisfiable.
Decision Procedure: An algorithm for deciding validity or satisfiability.

Examples: Satisfiability and Validity

Now assume, you are a decision procedure.
Which of the following formulae is satisfiable, which is valid?

- $F_{1}: P \wedge Q$ satisfiable, not valid
- $F_{2}: \neg(P \wedge Q)$ satisfiable, not valid
- $F_{3}: P \vee \neg P$ satisfiable, valid
- $F_{4}: \neg(P \vee \neg P)$ unsatisfiable, not valid
- $F_{5}:(P \rightarrow Q) \wedge(P \vee Q) \wedge \neg Q$ unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?

Method 1: Truth Tables

$F: P \wedge Q \rightarrow P \vee \neg Q$

P	P	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

Thus F is valid.
$F: P \vee Q \rightarrow P \wedge Q$

P	Q	$P \vee Q$	$P \wedge Q$	F
0	0	0	0	1
0	1	1	0	0
1	0	1	0	0
1	1	1	1	1
\leftarrow	\leftarrow satisfying I			
\leftarrow falsifying I				

Thus F is satisfiable, but invalid.

Method 2: Semantic Argument (Semantic Tableaux)

- Assume F is not valid and I a falsifying interpretation: $I \not \models F$
- Apply proof rules.
- If no contradiction reached and no more rules applicable, F is invalid.
- If in every branch of proof a contradiction reached, F is valid.

Semantic Argument: Proof rules

$$
\begin{aligned}
& \frac{l \models \neg F}{l \not \models F} \\
& \begin{array}{l}
l \models F \wedge G \\
l \models F \\
l \models G
\end{array} \\
& \begin{array}{c}
l \models F \vee G \\
\hline \models F \mid \quad l \models G
\end{array} \\
& \begin{array}{c}
I \models F \rightarrow G \\
\hline l \nLeftarrow F \mid \quad l \models G
\end{array} \\
& \begin{array}{c}
I \not F \leftrightarrow G \\
I \vDash F \wedge G \quad \mid \not \models F \vee G
\end{array} \\
& I \vDash F \\
& l \not \models F
\end{aligned}
$$

Example

Prove $\quad F: P \wedge Q \rightarrow P \vee \neg Q \quad$ is valid.
Let's assume that F is not valid and that I is a falsifying interpretation.

1. $\quad \mid \nmid P \wedge Q \rightarrow P \vee \neg Q$	assumption
2. $\quad I \vDash P \wedge Q$	1, Rule \rightarrow
3. $I \not \vDash P \vee \neg Q$	1, Rule \rightarrow
4. $\quad I \models P$	2, Rule \wedge
5. $I \not \vDash P$	3, Rule \vee
6. $\quad I \neq \perp$	4 and 5 are contradictory

Thus F is valid.

Example 2

Prove $\quad F:(P \rightarrow Q) \wedge(Q \rightarrow R) \rightarrow(P \rightarrow R) \quad$ is valid.
Let's assume that F is not valid.

Our assumption is incorrect in all cases $-F$ is valid.

Example 3

Is $\quad F: P \vee Q \rightarrow P \wedge Q \quad$ valid?
Let's assume that F is not valid.

$$
\begin{aligned}
& \text { 1. } \quad I \not \vDash P \vee Q \rightarrow P \wedge Q \quad \text { assumption } \\
& \text { 2. } \quad I \vDash P \vee Q \quad 1 \text { and } \rightarrow \\
& \text { 3. } I \not \vDash P \wedge Q \\
& 1 \text { and } \rightarrow
\end{aligned}
$$

We cannot always derive a contradiction. F is not valid.
Falsifying interpretation:
 We have to derive a contradiction in all cases for F to be valid.

Normal Forms

Idea: Simplify decision procedure, by simplifying the formula first. Convert it into a simpler normal form, e.g.:

- Negation Normal Form: No \rightarrow and no \leftrightarrow; negation only before atoms.
- Conjunctive Normal Form: Negation normal form, where conjunction is outside, disjunction is inside.
- Disjunctive Normal Form: Negation normal form, where disjunction is outside, conjunction is inside.
The formula in normal form should be equivalent to the original input.

Equivalence

F_{1} and F_{2} are equivalent ($F_{1} \Leftrightarrow F_{2}$) iff for all interpretations $I, I \models F_{1} \leftrightarrow F_{2}$

To prove $F_{1} \Leftrightarrow F_{2}$ show $F_{1} \leftrightarrow F_{2}$ is valid.
$F_{1} \underline{\text { implies }} F_{2}\left(F_{1} \Rightarrow F_{2}\right)$
iff for all interpretations $I, I \models F_{1} \rightarrow F_{2}$
$F_{1} \Leftrightarrow F_{2}$ and $F_{1} \Rightarrow F_{2}$ are not formulae!

Equivalence is a Congruence relation

If $F_{1} \Leftrightarrow F_{1}^{\prime}$ and $F_{2} \Leftrightarrow F_{2}^{\prime}$, then

- $\neg F_{1} \Leftrightarrow \neg F_{1}^{\prime}$
- $F_{1} \vee F_{2} \Leftrightarrow F_{1}^{\prime} \vee F_{2}^{\prime}$
- $F_{1} \wedge F_{2} \Leftrightarrow F_{1}^{\prime} \wedge F_{2}^{\prime}$
- $F_{1} \rightarrow F_{2} \Leftrightarrow F_{1}^{\prime} \rightarrow F_{2}^{\prime}$
- $F_{1} \leftrightarrow F_{2} \Leftrightarrow F_{1}^{\prime} \leftrightarrow F_{2}^{\prime}$
- if we replace in a formula F a subformula F_{1} by F_{1}^{\prime} and obtain F^{\prime}, then $F \Leftrightarrow F^{\prime}$.

Negation Normal Form (NNF)

Negations appear only in literals. (only \neg, \wedge, \vee)
To transform F to equivalent F^{\prime} in NNF use recursively the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\neg \neg F_{1} \Leftrightarrow F_{1} \quad \neg \top \Leftrightarrow \perp \\
\neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2} \\
\neg\left(F_{1} \vee F_{2}\right) \Leftrightarrow \neg F_{1} \wedge \neg F_{2}
\end{array}\right\} \text { De Morgan's Law } \begin{aligned}
& \text { F } \\
& F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2} \\
& F_{1} \leftrightarrow F_{2} \Leftrightarrow\left(F_{1} \rightarrow F_{2}\right) \wedge\left(F_{2} \rightarrow F_{1}\right)
\end{aligned}
$$

Example: Negation Normal Form

Convert $F:\left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right)$ into NNF

$$
\begin{aligned}
& \left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right) \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right) \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(\neg \neg Q_{2} \vee R_{2}\right) \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(Q_{2} \vee R_{2}\right)
\end{aligned}
$$

The last formula is equivalent to F and is in NNF.

Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals

$$
\bigvee_{i} \bigwedge_{j} \ell_{i, j} \text { for literals } \ell_{i, j}
$$

To convert F into equivalent F^{\prime} in DNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\left(F_{1} \vee F_{2}\right) \wedge F_{3} \Leftrightarrow\left(F_{1} \wedge F_{3}\right) \vee\left(F_{2} \wedge F_{3}\right) \\
F_{1} \wedge\left(F_{2} \vee F_{3}\right) \Leftrightarrow\left(F_{1} \wedge F_{2}\right) \vee\left(F_{1} \wedge F_{3}\right)
\end{array}\right\} \text { dist }
$$

Example

Convert $F:\left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right)$ into DNF

$$
\begin{array}{rlr}
& \left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right) & \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(Q_{2} \vee R_{2}\right) & \text { in NNF } \\
\Leftrightarrow & \left(Q_{1} \wedge\left(Q_{2} \vee R_{2}\right)\right) \vee\left(R_{1} \wedge\left(Q_{2} \vee R_{2}\right)\right) & \text { dist } \\
\Leftrightarrow & \left(Q_{1} \wedge Q_{2}\right) \vee\left(Q_{1} \wedge R_{2}\right) \vee\left(R_{1} \wedge Q_{2}\right) \vee\left(R_{1} \wedge R_{2}\right) & \text { dist }
\end{array}
$$

The last formula is equivalent to F and is in DNF. Note that formulas can grow exponentially.

Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals

$$
\bigwedge_{i} \bigvee_{j} \ell_{i, j} \text { for literals } \ell_{i, j}
$$

To convert F into equivalent F^{\prime} in CNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
\begin{aligned}
& \left(F_{1} \wedge F_{2}\right) \vee F_{3} \Leftrightarrow\left(F_{1} \vee F_{3}\right) \wedge\left(F_{2} \vee F_{3}\right) \\
& F_{1} \vee\left(F_{2} \wedge F_{3}\right) \Leftrightarrow\left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right)
\end{aligned}
$$

A disjunction of literals $P_{1} \vee P_{2} \vee \neg P_{3}$ is called a clause. For brevity we write it as set: $\left\{P_{1}, P_{2}, \overline{P_{3}}\right\}$.
A formula in CNF is a set of clauses (a set of sets of literals).

Equisatisfiability

Definition (Equisatisfiability)

F and F^{\prime} are equisatisfiable, iff

$$
F \text { is satisfiable if and only if } F^{\prime} \text { is satisfiable }
$$

Every formula is equisatifiable to either \top or \perp. There is a efficient conversion of F to F^{\prime} where

- F^{\prime} is in CNF and
- F and F^{\prime} are equisatisfiable

Note: efficient means polynomial in the size of F.

Conversion to CNF

Basic Idea:

- Introduce a new variable P_{G} for every subformula G; unless G is already an atom.
- For each subformula $G: G_{1} \circ G_{2}$ produce a small formula $P_{G} \leftrightarrow P_{G_{1}} \circ P_{G_{2}}$.
- encode each of these (small) formulae separately to CNF.

The formula

$$
P_{F} \wedge \bigwedge_{G} C N F\left(P_{G} \leftrightarrow P_{G_{1}} \circ P_{G_{2}}\right)
$$

is equisatisfiable to F.
The number of subformulae is linear in the size of F.
The time to convert one small formula is constant!

Example: CNF

Convert $F: P \vee Q \rightarrow P \wedge \neg R$ to CNF.
Introduce new variables: $P_{F}, P_{P \vee Q}, P_{P \wedge \neg R}, P_{\neg R}$. Create new formulae and convert them to CNF separately:

- $P_{F} \leftrightarrow\left(P_{P \vee Q} \rightarrow P_{P \wedge \neg R}\right)$ in CNF:

$$
F_{1}:\left\{\left\{\overline{P_{F}}, \overline{P_{P \vee Q}}, P_{P \wedge \neg R}\right\},\left\{P_{F}, P_{P \vee Q}\right\},\left\{P_{F}, \overline{P_{P \wedge \neg R}}\right\}\right\}
$$

- $P_{P \vee Q} \leftrightarrow P \vee Q$ in CNF:

$$
F_{2}:\left\{\left\{\overline{P_{P \vee Q}}, P \vee Q\right\},\left\{P_{P \vee Q}, \bar{P}\right\},\left\{P_{P \vee Q}, \bar{Q}\right\}\right\}
$$

- $P_{P \wedge \neg R} \leftrightarrow P \wedge P_{\neg R}$ in CNF:

$$
F_{3}:\left\{\left\{\overline{P_{P \wedge \neg R}} \vee P\right\},\left\{\overline{P_{P \wedge \neg R}}, P_{\neg R}\right\},\left\{P_{P \wedge \neg R}, \bar{P}, \overline{P_{\neg R}}\right\}\right\}
$$

- $P_{\neg R} \leftrightarrow \neg R$ in CNF: $F_{4}:\left\{\left\{\overline{P_{\neg R}}, \bar{R}\right\},\left\{P_{\neg R}, R\right\}\right\}$ $\left\{\left\{P_{F}\right\}\right\} \cup F_{1} \cup F_{2} \cup F_{3} \cup F_{4}$ is in CNF and equisatisfiable to F.

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

- Algorithm to decide PL formulae in CNF.
- Published by Davis, Logemann, Loveland (1962).
- Often miscited as Davis, Putnam (1960), which describes a different algorithm.

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

$$
\begin{aligned}
& \text { let rec DPLL } F= \\
& \text { let } F^{\prime}=\text { PROP } F \text { in } \\
& \text { let } F^{\prime \prime}=\text { PLP } F^{\prime} \text { in } \\
& \text { if } F^{\prime \prime}=\top \text { then true } \\
& \text { else if } F^{\prime \prime}=\perp \text { then false } \\
& \text { else } \\
& \quad \text { let } P=\text { CHOOSE vars }\left(F^{\prime \prime}\right) \text { in } \\
& \quad\left(\text { DPLL } F^{\prime \prime}\{P \mapsto \top\}\right) \vee\left(\text { DPLL } F^{\prime \prime}\{P \mapsto \perp\}\right)
\end{aligned}
$$

Unit Propagagion

Unit Propagation (PROP)
If a clause contains one literal ℓ,

- Set ℓ to T.
- Remove all clauses containing ℓ.
- Remove $\neg \ell$ in all clauses.

Based on resolution

$$
\frac{\ell \quad \neg \vee C}{C} \leftarrow \text { clause }
$$

Pure Literal Propagagion

Pure Literal Propagation (PLP)
If P occurs only positive (without negation), set it to T. If P occurs only negative set it to \perp.

Example

$$
F:(\neg P \vee Q \vee R) \wedge(\neg Q \vee R) \wedge(\neg Q \vee \neg R) \wedge(P \vee \neg Q \vee \neg R)
$$

Branching on Q

$$
F\{Q \mapsto \top\}:(R) \wedge(\neg R) \wedge(P \vee \neg R)
$$

By unit resolution

$$
\frac{R \quad(\neg R)}{\perp}
$$

$F\{Q \mapsto \top\}=\perp \Rightarrow$ false
On the other branch
$F\{Q \mapsto \perp\}:(\neg P \vee R)$
$F\{Q \mapsto \perp, R \mapsto \top, P \mapsto \perp\}=\top \Rightarrow$ true
F is satisfiable with satisfying interpretation

$$
I:\{P \mapsto \text { false, } Q \mapsto \text { false, } R \mapsto \text { true }\}
$$

Example

$F:(\neg P \vee Q \vee R) \wedge(\neg Q \vee R) \wedge(\neg Q \vee \neg R) \wedge(P \vee \neg Q \vee \neg R)$

$I:\{P \mapsto$ false, $Q \mapsto$ false, $R \mapsto$ true $\}$

Knight and Knaves

A island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You meet four inhabitants: Alice, Bob, Charles and Doris.

- Alice says that Doris is a knave.
- Bob tells you that Alice is a knave.
- Charles claims that Alice is a knave.
- Doris tells you, 'Of Charles and Bob, exactly one is a knight.'

Knight and Knaves

Let A denote that Alice is a Knight, etc. Then:

- $A \leftrightarrow \neg D$
- $B \leftrightarrow \neg A$
- $C \leftrightarrow \neg A$
- $D \leftrightarrow \neg(C \leftrightarrow B)$

In CNF:

- $\{\bar{A}, \bar{D}\},\{A, D\}$
- $\{\bar{B}, \bar{A}\},\{B, A\}$
- $\{\bar{C}, \bar{A}\},\{C, A\}$
- $\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}$

Solving Knights and Knaves

$$
\begin{array}{r}
F:\{\{\bar{A}, \bar{D}\},\{A, D\},\{\bar{B}, \bar{A}\},\{B, A\},\{\bar{C}, \bar{A}\},\{C, A\}, \\
\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}\}
\end{array}
$$

PROP and PLP are not applicable. Decide on A :
$F\{A \mapsto \perp\}:\{\{D\},\{B\},\{C\},\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}\}$
By PROP we get:

$$
F\{A \mapsto \perp, D \mapsto \top, B \mapsto \top, C \mapsto \top\}: \perp
$$

Unsatisfiable! Now set A to T :
$F\{A \mapsto \top\}:\{\{\bar{D}\},\{\bar{B}\},\{\bar{C}\},\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}\}$
By PROP we get:

$$
F\{A \mapsto \quad \top, D \mapsto \perp, B \mapsto \perp, C \mapsto \perp\}: \top
$$

Satisfying assignment!

Learning is Useful

Consider the following problem:

$$
\begin{array}{r}
\left\{\left\{A_{1}, B_{1}\right\},\left\{\overline{P_{0}}, \overline{A_{1}}, P_{1}\right\},\left\{\overline{P_{0}}, \overline{B_{1}}, P_{1}\right\},\left\{A_{2}, B_{2}\right\},\left\{\overline{P_{1}}, \overline{A_{2}}, P_{2}\right\},\left\{\overline{P_{1}}, \overline{B_{2}}, P_{2}\right\}\right. \\
\left.\ldots,\left\{A_{n}, B_{n}\right\},\left\{\overline{P_{n-1}}, \overline{A_{n}}, P_{n}\right\},\left\{\overline{P_{n-1}}, \overline{B_{n}}, P_{n}\right\},\left\{P_{0}\right\},\left\{\overline{P_{n}}\right\}\right\}
\end{array}
$$

For some literal orderings, we need exponentially many steps. Note, that

$$
\left\{\left\{A_{i}, B_{i}\right\},\left\{\overline{P_{i-1}}, \overline{A_{i}}, P_{i}\right\},\left\{\overline{P_{i-1}}, \overline{B_{i}}, P_{i}\right\}\right\} \Rightarrow\left\{\left\{\overline{P_{i-1}}, P_{i}\right\}\right\}
$$

If we learn the right clauses, unit propagation will immediately give unsatisfiable.

Partial Assignments and Unit/Conflict Clauses

Do not change the clause set, but only assign literals (as global variables). When you assign true to a literal ℓ, also assign false to $\bar{\ell}$.
For a partial assignment

- A clause is true if one of its literals is assigned true.
- A clause is a conflict clause if all its literals are assigned false.
- A clause is a unit clause if all but one literals are assigned false and the last literal is unassigned.
If the assignment of a literal from a conflict clause is removed we get a unit clause.
Explain unsatisfiability of partial assignment by conflict clause and learn it!

Conflict Driven Clause Learning (CDCL)

Idea: Explain unsatisfiability of partial assignment by conflict clause and learn it!

- If a conflict is found we return the conflict clause.
- If variable in conflict were derived by unit propagation use resolution rule to generate a new conflict clause.
- If variable in conflict was derived by decision, use learned conflict as unit clause

DPLL with CDCL

The functions DPLL and PROP return a conflict clause or satisfiable.

```
let rec DPLL \(=\)
    let PROP \(U=\)
    if conflictclauses \(\neq \emptyset\)
        choose conflictclauses
    else if unitclauses \(\neq \emptyset\)
    PROP (CHOOSE unitclauses)
    else if coreclauses \(\neq \emptyset\)
        let \(\ell=\) ChOOSE ( \(\bigcup\) coreclauses) \(\cap\) unassigned in
        \(\operatorname{val}[\ell]:=\top\)
        let \(C=\) DPLL in
        if ( \(C=\) satisfiable) satisfiable
        else
            \(\operatorname{val}[\ell]:=\) undef
            if \((\bar{\ell} \notin C) C\)
            else LEARN \(C\); prop \(C\)
    else satisfiable
```


Unit propagation

The function PROP takes a unit clause and does unit propagation. It calis DPLL recursively and returns a conflict clause or satisfiable. recursively:

$$
\begin{aligned}
& \text { let Prop } U= \\
& \text { let } \ell=\text { CHOOSE } U \cap \text { unassigned in } \\
& \text { val }[\ell]:=T \\
& \text { let } C=\text { DPLL in } \\
& \text { if }(C=\text { satisfiable }) \\
& \text { satisfiable } \\
& \text { else } \\
& \text { val }[\ell]:=\text { undef } \\
& \text { if }(\bar{\ell} \notin C) C \\
& \text { else } U \backslash\{\ell\} \cup C \backslash\{\bar{\ell}\}
\end{aligned}
$$

The last line does resolution:

$$
\frac{\ell \vee C_{1} \quad \neg \ell \vee C_{2}}{C_{1} \vee C_{2}}
$$

Example

$\left\{\left\{A_{1}, B_{1}\right\},\left\{\overline{P_{0}}, \overline{A_{1}}, P_{1}\right\},\left\{\overline{P_{0}}, \overline{B_{1}}, P_{1}\right\},\left\{A_{2}, B_{2}\right\},\left\{\overline{P_{1}}, \overline{A_{2}}, P_{2}\right\},\left\{\overline{P_{1}}, \overline{B_{2}}, P_{2}\right\}\right.$, $\left.\ldots,\left\{A_{n}, B_{n}\right\},\left\{\overline{P_{n-1}}, \overline{A_{n}}, P_{n}\right\},\left\{\overline{P_{n-1}}, \overline{B_{n}}, P_{n}\right\},\left\{P_{0}\right\},\left\{\overline{P_{n}}\right\}\right\}$

- Unit propagation (PROP) sets P_{0} and $\overline{P_{n}}$ to true.
- Decide, e.g. A_{1}, Prop sets $\overline{P_{1}}$
- Continue until A_{n-1}, Prop sets $\overline{P_{n-1}}, \overline{A_{n}}$ and $\overline{B_{n}}$
- Conflict clause computed: $\left\{\overline{A_{n-1}}, \overline{P_{n-2}}, P_{n}\right\}$.
- Conflict clause does not depend on A_{1}, \ldots, A_{n-2} and can be used again.

DPLL (without Learning)

DPLL with CDCL

Some Notes about DPLL with Learning

- Pure Literal Propagation is unnecessary:

A pure literal is always chosen right and never causes a conflict.

- Modern SAT-solvers use this procedure but differ in
- heuristics to choose literals/clauses.
- efficient data structures to find unit clauses.
- better conflict resolution to minimize learned clauses.
- restarts (without forgetting learned clauses).
- Even with the optimal heuristics DPLL is still exponential: The Pidgeon-Hole problem requires exponential resolution proofs.

Summary

- Syntax and Semantics of Propositional Logic
- Methods to decide satisfiability/validity of formulae:
- Truth table
- Semantic Tableaux
- DPLL
- Run-time of all algorithm is worst-case exponential in length of formula.
- Deciding satisfiability is NP-complete.

Further route of this lecture

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable
\Longrightarrow Restrictions to decidable fragments of FOL
- Quantifier Free Fragment (QFF)
- QFF of Equality
- Presburger arithmetic
- (QFF of) Linear integer arithmetic
- Real arithmetic
- (QFF of) Linear real/rational arithmetic
- QFF of Recursive Data Structures
- QFF of Arrays
- Putting it all together (Nelson-Oppen).

First-Order Logic

Syntax of First-Order Logic

Also called Predicate Logic or Predicate Calculus

FOL Syntax

variables
constants
functions
terms
x, y, z, \cdots
a, b, c, \cdots
f, g, h, \cdots with arity $n>0$
variables, constants or
n -ary function applied to n terms as arguments
$a, x, f(a), g(x, b), f(g(x, f(b)))$
predicates p, q, r, \cdots with arity $n \geq 0$
atom
literal atom or its negation $p(f(x), g(x, f(x))), \quad \neg p(f(x), g(x, f(x)))$

Note: 0 -ary functions: constant 0 -ary predicates: P, Q, R, \ldots

Syntax of First-Order Logic (2)

quantifiers

existential quantifier $\exists x . F[x]$
"there exists an x such that $F[x]$ "
universal quantifier $\forall x . F[x]$
"for all $x, F[x]$ "
FOL formula literal, application of logical connectives $(\neg, \vee, \wedge, \rightarrow, \leftrightarrow)$ to formulae, or application of a quantifier to a formula

Example

FOL formula

$$
\forall x \cdot(\underbrace{p(f(x), x) \rightarrow(\exists y \cdot(\underbrace{p(f(g(x, y))), g(x, y))}_{G})) \wedge q(x, f(x))}_{F})
$$

The scope of $\forall x$ is F.
The scope of $\exists y$ is G.
The formula reads:
"for all x ,
if $p(f(x), x)$
then there exists a y such that $p(f(g(x, y)), g(x, y))$ and $q(x, f(x)) "$

Famous theorems in FOL

- The length of one side of a triangle is less than the sum of the lengths of the other two sides

$$
\forall x, y, z . \operatorname{triangle}(x, y, z) \rightarrow \text { length }(x)<\text { length }(y)+\text { length }(z)
$$

- Fermat's Last Theorem.

$$
\begin{aligned}
& \forall n \text {. integer }(n) \wedge n>2 \\
& \rightarrow \forall x, y, z \text {. } \\
& \quad \text { integer }(x) \wedge \operatorname{integer}(y) \wedge \operatorname{integer}(z) \\
& \quad \wedge x>0 \wedge y>0 \wedge z>0 \\
& \quad \rightarrow x^{n}+y^{n} \neq z^{n}
\end{aligned}
$$

Pumping Lemma

For every regular Language L there is some $n \geq 0$, such that for all words $z \in L$ with $|z| \geq n$ there is a decomposition $z=u v w$ with $|v| \geq 1$ and $|u v| \leq n$, such that for all $i \geq 0: u v^{i} w \in L$.

```
\(\forall\) L. regularlanguage \((L) \rightarrow\)
    \(\exists n\). integer \((n) \wedge n \geq 0 \wedge\)
    \(\forall z . z \in L \wedge|z| \geq n \rightarrow\)
        \(\exists u, v, w . \operatorname{word}(u) \wedge \operatorname{word}(v) \wedge \operatorname{word}(w) \wedge\)
    \(z=u v w \wedge|v| \geq 1 \wedge|u v| \leq n \wedge\)
    \(\forall i\). integer \((i) \wedge i \geq 0 \rightarrow u v^{i} w \in L\)
```

Predicates: regularlanguage, integer, word, $\cdot \in \cdot, \cdot \leq \cdot, \cdot \geq \cdot, \cdot=\cdot$
Constants: 0, 1
Functions: | \mid (word length), concatenation, iteration

FOL Semantics

An interpretation I : $\left(D_{I}, \alpha_{I}\right)$ consists of:

- Domain D_{l}
non-empty set of values or objects for example $D_{l}=$ playing cards (finite), integers (countable infinite), or reals (uncountable infinite)
- Assignment $\alpha_{\text {I }}$
- each variable x assigned value $\alpha_{l}[x] \in D_{l}$
- each n-ary function f assigned

$$
\alpha_{l}[f]: \quad D_{l}^{n} \rightarrow D_{l}
$$

In particular, each constant a (0-ary function) assigned value $\alpha_{l}[a] \in D_{l}$

- each n-ary predicate p assigned

$$
\alpha_{l}[p]: D_{l}^{n} \rightarrow\{\top, \perp\}
$$

In particular, each propositional variable P (0-ary predicate) assigned truth value (\top, \perp)

Example

$$
F: p(f(x, y), z) \rightarrow p(y, g(z, x))
$$

Interpretation I: $\left(D_{I}, \alpha_{l}\right)$

$$
D_{l}=\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\} \quad \text { integers }
$$

$$
\alpha_{l}[f]: \quad D_{l}^{2} \rightarrow D_{l} \quad \alpha_{l}[g]: D_{l}^{2} \rightarrow D_{l}
$$

$$
(x, y) \mapsto x+y \quad(x, y) \mapsto x-y
$$

$$
\alpha_{I}[p]: \quad D_{I}^{2} \rightarrow\{\top, \perp\}
$$

$$
(x, y) \mapsto \begin{cases}\top & \text { if } x<y \\ \perp & \text { otherwise }\end{cases}
$$

Also $\alpha_{l}[x]=13, \alpha_{l}[y]=42, \alpha_{l}[z]=1$
Compute the truth value of F under I

$$
\begin{array}{lll}
\text { 1. } \quad I \not \models p(f(x, y), z) & \text { since } 13+42 \geq 1 \\
\text { 2. } \quad I \not \models p(y, g(z, x)) & \text { since } 42 \geq 1-13 \\
\text { 3. } \quad I \not \models F & \text { by } 1,2, \text { and } \rightarrow
\end{array}
$$

F is true under I

Semantics: Quantifiers

For a variable x :

Definition (x-variant)

An x-variant of interpretation I is an interpretation $J:\left(D_{J}, \alpha_{J}\right)$ such that

- $D_{l}=D_{J}$
- $\alpha_{l}[y]=\alpha_{J}[y]$ for all symbols y, except possibly x

That is, I and J agree on everything except possibly the value of x
Denote $J: I \triangleleft\{x \mapsto v\}$ the x-variant of I in which $\alpha_{J}[x]=v$ for some $v \in D_{l}$. Then

- $I \models \forall x$. $F \quad$ iff for all $v \in D_{l}, l \triangleleft\{x \mapsto \mathrm{v}\} \vDash F$
- $l \models \exists x . F \quad$ iff there exists $v \in D_{l}$ s.t. $I \triangleleft\{x \mapsto v\} \models F$

Example

Consider

$$
F: \forall x . \exists y .2 \cdot y=x
$$

Here $2 \cdot y$ is the infix notatation of the term $\cdot(2, y)$, and $2 \cdot y=x$ is the infix notatation of the atom $=(\cdot(2, y), x)$.

- 2 is a 0 -ary function symbol (a constant).
- . is a 2 -ary function symbol.
- = is a 2-ary predicate symbol.
- x, y are variables.

What is the truth-value of F ?

Example (\mathbb{Z})

$$
F: \forall x . \exists y .2 \cdot y=x
$$

Let l be the standard interpration for integers, $D_{l}=\mathbb{Z}$.
Compute the value of F under I :

$$
I \models \forall x . \exists y .2 \cdot y=x
$$

iff

$$
\text { for all } v \in D_{l}, l \triangleleft\{x \mapsto v\} \models \exists y .2 \cdot y=x
$$

iff
for all $\mathrm{v} \in D_{l}$, there exists $\mathrm{v}_{1} \in D_{I}, I \triangleleft\{x \mapsto \mathrm{v}\} \triangleleft\left\{y \mapsto \mathrm{v}_{1}\right\} \models 2 \cdot y=x$
The latter is false since for $1 \in D_{l}$ there is no number v_{1} with $2 \cdot v_{1}=1$.

Example (\mathbb{Q})

$$
F: \forall x . \exists y .2 \cdot y=x
$$

Let $/$ be the standard interpration for rational numbers, $D_{l}=\mathbb{Q}$. Compute the value of F under I :

$$
I \models \forall x . \exists y .2 \cdot y=x
$$

iff

$$
\text { for all } v \in D_{l}, I \triangleleft\{x \mapsto v\} \vDash \exists y .2 \cdot y=x
$$

iff
for all $\mathrm{v} \in D_{I}$, there exists $\mathrm{v}_{1} \in D_{I}, I \triangleleft\{x \mapsto \mathrm{v}\} \triangleleft\left\{y \mapsto \mathrm{v}_{1}\right\} \models 2 \cdot y=x$
The latter is true since for $v \in D_{\text {l }}$ we can choose $v_{1}=\frac{v}{2}$.

Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that $I \models F$.

Definition (Validity)

F is valid iff for all interpretations $I, I \models F$.

Note

F is valid iff $\neg F$ is unsatisfiable

Substitution

Suppose, we want to replace terms with other terms in formulas, e.g.

$$
F: \forall y .(p(x, y) \rightarrow p(y, x))
$$

should be transformed to

$$
G: \forall y .(p(a, y) \rightarrow p(y, a))
$$

We call the mapping from x to a a substituion denoted as $\sigma:\{x \mapsto a\}$. We write $F \sigma$ for the formula G.
Another convenient notation is $F[x]$ for a formula containing the variable x and $F[a]$ for $F \sigma$.

Substitution

Definition (Substitution)

A substitution is a mapping from terms to terms, e.g.

$$
\sigma:\left\{t_{1} \mapsto s_{1}, \ldots, t_{n} \mapsto s_{n}\right\}
$$

By $F \sigma$ we denote the application of σ to formula F, i.e., the formula F where all occurences of t_{1}, \ldots, t_{n} are replaced by s_{1}, \ldots, s_{n}.

For a formula named $F[x]$ we write $F[t]$ as shorthand for $F[x]\{x \mapsto t\}$.

Safe Substitution

Care has to be taken in the presence of quantifiers:

$$
F[x]: \exists y \cdot y=\operatorname{Succ}(x)
$$

What is $F[y]$?
We need to rename bounded variables occuring in the substitution:

$$
F[y]: \exists y^{\prime} \cdot y^{\prime}=\operatorname{Succ}(y)
$$

Bounded renaming does not change the models of a formula:

$$
(\exists y \cdot y=\operatorname{Succ}(x)) \Leftrightarrow\left(\exists y^{\prime} \cdot y^{\prime}=\operatorname{Succ}(x)\right)
$$

Recursive Definition of Substitution

$$
\begin{aligned}
& t \sigma= \begin{cases}\sigma(t) & t \in \operatorname{dom}(\sigma) \\
f\left(t_{1} \sigma, \ldots, t_{n} \sigma\right) & t \notin \operatorname{dom}(\sigma) \wedge t=f\left(t_{1}, \ldots, t_{n}\right) \\
x & t \notin \operatorname{dom}(\sigma) \wedge t=x\end{cases} \\
& p\left(t_{1}, \ldots, t_{n}\right) \sigma=p\left(t_{1} \sigma, \ldots, t_{n} \sigma\right) \\
& (\neg F) \sigma=\neg(F \sigma) \\
& (F \wedge G) \sigma=(F \sigma) \wedge(G \sigma) \\
& (\forall x . F) \sigma= \begin{cases}\forall x . F \sigma & x \notin \operatorname{Vars}(\sigma) \\
\forall x^{\prime} .\left(\left(F\left\{x \mapsto x^{\prime}\right\}\right) \sigma\right) & \text { otherwise and } x^{\prime} \text { is fresh }\end{cases} \\
& (\exists x . F) \sigma= \begin{cases}\exists x . F \sigma & x \notin \operatorname{Vars}(\sigma) \\
\exists x^{\prime} .\left(\left(F\left\{x \mapsto x^{\prime}\right\}\right) \sigma\right) & \text { otherwise and } x^{\prime} \text { is fresh }\end{cases}
\end{aligned}
$$

Example: Safe Substitution $F \sigma$

$$
\begin{gathered}
F:(\forall x \cdot p(x, y)) \rightarrow \underset{K}{ } q(f(y), x) \\
\text { bound by } \forall x \nearrow \text { free free } \\
\sigma:\{x \mapsto g(x), y \mapsto f(x), f(y) \mapsto h(x, y)\}
\end{gathered}
$$

$F \sigma$?
(1) Rename

$$
\underset{\uparrow}{F^{\prime}:} \underset{\uparrow}{\forall x^{\prime}} \cdot p\left(x^{\prime}, y\right) \rightarrow q(f(y), x)
$$

where x^{\prime} is a fresh variable
(2) $F \sigma: \forall x^{\prime} \cdot p\left(x^{\prime}, f(x)\right) \rightarrow q(h(x, y), g(x))$

Recursive Definition of Substitution

$$
\begin{aligned}
& t \sigma= \begin{cases}\sigma(t) & t \in \operatorname{dom}(\sigma) \\
f\left(t_{1} \sigma, \ldots, t_{n} \sigma\right) & t \notin \operatorname{dom}(\sigma) \wedge t=f\left(t_{1}, \ldots, t_{n}\right) \\
x & t \notin \operatorname{dom}(\sigma) \wedge t=x\end{cases} \\
& p\left(t_{1}, \ldots, t_{n}\right) \sigma=p\left(t_{1} \sigma, \ldots, t_{n} \sigma\right) \\
& (\neg F) \sigma=\neg(F \sigma) \\
& (F \wedge G) \sigma=(F \sigma) \wedge(G \sigma) \\
& (\forall x . F) \sigma= \begin{cases}\forall x . F \sigma & x \notin \operatorname{Vars}(\sigma) \\
\forall x^{\prime} .\left(\left(F\left\{x \mapsto x^{\prime}\right\}\right) \sigma\right) & \text { otherwise and } x^{\prime} \text { is fresh }\end{cases} \\
& (\exists x . F) \sigma= \begin{cases}\exists x . F \sigma & x \notin \operatorname{Vars}(\sigma) \\
\exists x^{\prime} .\left(\left(F\left\{x \mapsto x^{\prime}\right\}\right) \sigma\right) & \text { otherwise and } x^{\prime} \text { is fresh }\end{cases}
\end{aligned}
$$

Semantic Argument Proof

To show FOL formula F is valid, assume $I \not \vDash F$ and derive a contradiction $l \models \perp$ in all branches

- Soundness

If every branch of a semantic argument proof reach $/ \vDash \perp$, then F is valid

- Completeness

Each valid formula F has a semantic argument proof in which every branch reach $/ \models \perp$

- Non-termination

For an invalid formula F the method is not guaranteed to terminate. Thus, the semantic argument is not a decision procedure for validity.

Soundness (proof sketch)

If for interpretation $/$ the assumption of the proof hold then there is an interpretation I^{\prime} and a branch such that all statements on that branch hold.
I^{\prime} differs from I in the values $\alpha_{l}\left[a_{i}\right]$ of fresh constants a_{i}.
If all branches of the proof end with $I \models \perp$, then the assumption was wrong. Thus, if the assumption was $I \not \vDash F$, then F must be valid.

Completeness (proof sketch)

Consider (finite or infinite) proof trees starting with I $\not \vDash F$.
A (finite or infinite) branch is maximal, if

- it is closed $(I \models \perp)$, or
- no new formula can be derived.

A (finite or infinite) tree is maximal, if every branch is maximal.
There is a maximal (possibly infinite) proof tree.
If a branch is closed, it is finite.
If every branch is closed, the tree is finite (Kőnig's Lemma).
In this case, there is a finite semantic argument proof.

Completeness (proof sketch, continued)

Otherwise, there is a maximal (possibly infinite) proof tree with at least one open branch P.
(1) The statements on that branch P form a Hintikka set:

- $I \models F \wedge G \in P$ implies $I \models F \in P$ and $I \models G \in P$.
- $I \not \vDash F \wedge G \in P$ implies $I \not \vDash F \in P$ or $I \not \vDash G \in P$.
- $I \models \forall x$. $F[x] \in P$ implies for all terms $t, I \models F[t] \in P$.
- $I \not \vDash \forall x . F[x] \in P$ implies for some term $a, I \not \vDash F[a] \in P$.
- Similarly for $\vee, \rightarrow, \leftrightarrow, \exists$.
(2) Choose $D_{l}:=\{t \mid t$ is term $\}, \alpha_{l}[f]\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots t_{n}\right)$,

$$
\alpha_{l}[x]=x, \quad \alpha_{l}[p]\left(t_{1}, \ldots, t_{n}\right)= \begin{cases}\text { true } & I \models p\left(t_{1}, \ldots, t_{n}\right) \in P \\ \text { false } & \text { otherwise }\end{cases}
$$

(3) I satisfies all statements on the branch.

In particular, I is a falsifying interpretation of F, thus F is not valid.

Normal Forms

Also in first-order logic normal forms can be used:

- Devise an algorithm to convert a formula to a normal form.
- Then devise an algorithm for satisfiability/validity that only works on the normal form.

Negation Normal Forms (NNF)

Negations appear only in literals. (only $\neg, \wedge, \vee, \exists, \forall$)
To transform F to equivalent F^{\prime} in NNF use recursively the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\neg \neg F_{1} \Leftrightarrow F_{1} \quad \neg \top \Leftrightarrow \perp \quad \neg \perp \Leftrightarrow \top \\
\neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2} \\
\neg\left(F_{1} \vee F_{2}\right) \Leftrightarrow \neg F_{1} \wedge \neg F_{2}
\end{array}\right\} \text { De Morgan's Law }
$$

Example: Conversion to NNF

$G: \forall x \cdot(\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists w \cdot p(x, w)$.
(1) $\forall x \cdot(\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists w \cdot p(x, w)$
(2) $\forall x \cdot \neg(\exists y \cdot p(x, y) \wedge p(x, z)) \vee \exists w \cdot p(x, w)$

$$
F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2}
$$

(3) $\forall x \cdot(\forall y \cdot \neg(p(x, y) \wedge p(x, z))) \vee \exists w \cdot p(x, w)$

$$
\neg \exists x . F[x] \Leftrightarrow \forall x . \neg F[x]
$$

(9) $\forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists w \cdot p(x, w)$

Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

$$
Q_{1} x_{1} \cdots Q_{n} x_{n} . F\left[x_{1}, \cdots, x_{n}\right]
$$

where $Q_{i} \in\{\forall, \exists\}$ and F is quantifier-free.
Every FOL formula F can be transformed to formula F^{\prime} in PNF s.t. $F^{\prime} \Leftrightarrow F$:
(c) Write F in NNF
(3) Rename quantified variables to fresh names

- Move all quantifiers to the front

Example: PNF

Find equivalent PNF of

$$
F: \forall x \cdot((\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists y \cdot p(x, y))
$$

- Write F in NNF

$$
F_{1}: \forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists y . p(x, y)
$$

- Rename quantified variables to fresh names

$$
\begin{gathered}
F_{2}: \quad \forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists w . p(x, w) \\
\uparrow \text { in the scope of } \forall x
\end{gathered}
$$

Example: PNF

- Move all quantifiers to the front

$$
F_{3}: \forall x . \forall y . \exists w . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Alternately,

$$
F_{3}^{\prime}: \forall x . \exists w . \forall y . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Note: In $F_{2}, \forall y$ is in the scope of $\forall x$, therefore the order of quantifiers must be $\cdots \forall x \cdots \forall y \cdots$

$$
F_{4} \Leftrightarrow F \text { and } F_{4}^{\prime} \Leftrightarrow F
$$

Note: However $G \nLeftarrow F$

$$
G: \forall y . \exists w . \forall x . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Decidability of FOL

- FOL is undecidable (Turing \& Church)

There does not exist an algorithm for deciding if a FOL formula F is valid, i.e. always halt and says "yes" if F is valid or say "no" if F is invalid.

- FOL is semi-decidable

There is a procedure that always halts and says "yes" if F is valid, but may not halt if F is invalid.

On the other hand,

- PL is decidable

There exists an algorithm for deciding if a PL formula F is valid, e.g., the truth-table procedure.

Similarly for satisfiability

