Decision Procedures

Jochen Hoenicke

Software Engineering Albert-Ludwigs-University Freiburg

Summer 2012

• Syntax and Semantics of First Order Logic (FOL)

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable
- \Rightarrow Restrictions to decidable fragments of FOL

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable
- \implies Restrictions to decidable fragments of FOL
 - Quantifier Free Fragment (QFF)

JNI REIBURG

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable
- \implies Restrictions to decidable fragments of FOL
 - Quantifier Free Fragment (QFF)
 - QFF of Equality

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable
- \implies Restrictions to decidable fragments of FOL
 - Quantifier Free Fragment (QFF)
 - QFF of Equality
 - Presburger arithmetic

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable
- \implies Restrictions to decidable fragments of FOL
 - Quantifier Free Fragment (QFF)
 - QFF of Equality
 - Presburger arithmetic
 - (QFF of) Linear integer arithmetic

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable
- \Rightarrow Restrictions to decidable fragments of FOL
 - Quantifier Free Fragment (QFF)
 - QFF of Equality
 - Presburger arithmetic
 - (QFF of) Linear integer arithmetic
 - Real arithmetic

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable
- ⇒ Restrictions to decidable fragments of FOL
 - Quantifier Free Fragment (QFF)
 - QFF of Equality
 - Presburger arithmetic
 - (QFF of) Linear integer arithmetic
 - Real arithmetic
 - (QFF of) Linear real/rational arithmetic

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable
- ⇒ Restrictions to decidable fragments of FOL
 - Quantifier Free Fragment (QFF)
 - QFF of Equality
 - Presburger arithmetic
 - (QFF of) Linear integer arithmetic
 - Real arithmetic
 - (QFF of) Linear real/rational arithmetic
 - QFF of Recursive Data Structures

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable
- \implies Restrictions to decidable fragments of FOL
 - Quantifier Free Fragment (QFF)
 - QFF of Equality
 - Presburger arithmetic
 - (QFF of) Linear integer arithmetic
 - Real arithmetic
 - (QFF of) Linear real/rational arithmetic
 - QFF of Recursive Data Structures
 - QFF of Arrays

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable
- ⇒ Restrictions to decidable fragments of FOL
 - Quantifier Free Fragment (QFF)
 - QFF of Equality
 - Presburger arithmetic
 - (QFF of) Linear integer arithmetic
 - Real arithmetic
 - (QFF of) Linear real/rational arithmetic
 - QFF of Recursive Data Structures
 - QFF of Arrays
 - Putting it all together (Nelson-Oppen).

First-Order Logic

Also called Predicate Logic or Predicate Calculus

FOL Syntax	
<u>variables</u>	x, y, z, \cdots
<u>constants</u>	a, b, c, \cdots
<u>functions</u>	f, g, h, \cdots with arity $n > 0$

UNI FREIBURG

Also called Predicate Logic or Predicate Calculus

FOL Syntax variables

<u>variables</u>	x, y, z, \cdots
<u>constants</u>	a, b, c, \cdots
<u>functions</u>	f, g, h, \cdots with arity $n > 0$
<u>terms</u>	variables, constants or
	n-ary function applied to n terms as arguments
	a, x, f(a), g(x, b), f(g(x, f(b)))

Also called Predicate Logic or Predicate Calculus

FOL Syntax	
variables	x, y, z, \cdots
<u>constants</u>	a, b, c, \cdots
<u>functions</u>	f, g, h, \cdots with arity $n > 0$
<u>terms</u>	variables, constants or
	n-ary function applied to n terms as arguments
	a, x, f(a), g(x, b), f(g(x, f(b)))
predicates	p, q, r, \cdots with arity $n \ge 0$

Also called Predicate Logic or Predicate Calculus

FOL Syntax	
variables	x, y, z, \cdots
<u>constants</u>	a, b, c, \cdots
<u>functions</u>	f, g, h, \cdots with arity $n > 0$
<u>terms</u>	variables, constants or
	n-ary function applied to n terms as arguments
	a, x, f(a), g(x, b), f(g(x, f(b)))
predicates	p, q, r, \cdots with arity $n \ge 0$
atom	op, $ op$, or an n-ary predicate applied to n terms
literal	atom or its negation
	$p(f(x),g(x,f(x))), \neg p(f(x),g(x,f(x)))$

Note: 0-ary functions: constant 0-ary predicates: P, Q, R, \dots

quantifiers

existential quantifier $\exists x.F[x]$ "there exists an x such that F[x]" universal quantifier $\forall x.F[x]$ "for all x, F[x]"

 $\begin{array}{ll} \underline{\text{FOL formula}} & \text{literal, application of logical connectives} \\ (\neg, \lor, \land, \rightarrow, \leftrightarrow) \text{ to formulae,} \\ \text{ or application of a quantifier to a formula} \end{array}$

Example

FOL formula

The scope of $\forall x \text{ is } F$. The scope of $\exists y \text{ is } G$. Example

FOL formula

The scope of $\forall x$ is F. The scope of $\exists y$ is G. The formula reads: "for all x, if p(f(x), x)then there exists a y such that p(f(g(x, y)), g(x, y)) and q(x, f(x))"

• The length of one side of a triangle is less than the sum of the lengths of the other two sides

FREIBURG

• The length of one side of a triangle is less than the sum of the lengths of the other two sides

 $\forall x, y, z. triangle(x, y, z) \rightarrow length(x) < length(y) + length(z)$

• The length of one side of a triangle is less than the sum of the lengths of the other two sides

 $\forall x, y, z. triangle(x, y, z) \rightarrow length(x) < length(y) + length(z)$

• Fermat's Last Theorem.

- UNI FREIBURG
- The length of one side of a triangle is less than the sum of the lengths of the other two sides

 $\forall x, y, z. triangle(x, y, z) \rightarrow length(x) < length(y) + length(z)$

• Fermat's Last Theorem.

$$\forall n. integer(n) \land n > 2 \rightarrow \forall x, y, z. integer(x) \land integer(y) \land integer(z) \land x > 0 \land y > 0 \land z > 0 \rightarrow x^{n} + y^{n} \neq z^{n}$$

Pumping Lemma

Pumping Lemma

For every regular Language *L* there is some $n \ge 0$, such that for all words $z \in L$ with $|z| \ge n$ there is a decomposition z = uvw with $|v| \ge 1$ and $|uv| \le n$, such that for all $i \ge 0$: $uv^i w \in L$.

FREIBURG

For every regular Language *L* there is some $n \ge 0$, such that for all words $z \in L$ with $|z| \ge n$ there is a decomposition z = uvw with $|v| \ge 1$ and $|uv| \le n$, such that for all $i \ge 0$: $uv^i w \in L$.

$$\begin{array}{l} \forall L. \ regular language(L) \rightarrow \\ \exists n. \ integer(n) \land n \geq 0 \land \\ \forall z. \ z \in L \land |z| \geq n \rightarrow \\ \exists u, v, w. \ word(u) \land word(v) \land word(w) \land \\ z = uvw \land |v| \geq 1 \land |uv| \leq n \land \\ \forall i. \ integer(i) \land i \geq 0 \rightarrow uv^{i}w \in L \end{array}$$

FREIBURG

For every regular Language *L* there is some $n \ge 0$, such that for all words $z \in L$ with $|z| \ge n$ there is a decomposition z = uvw with $|v| \ge 1$ and $|uv| \le n$, such that for all $i \ge 0$: $uv^i w \in L$.

$$\begin{array}{l} \forall L. \ regular language(L) \rightarrow \\ \exists n. \ integer(n) \land n \geq 0 \land \\ \forall z. \ z \in L \land |z| \geq n \rightarrow \\ \exists u, v, w. \ word(u) \land word(v) \land word(w) \land \\ z = uvw \land |v| \geq 1 \land |uv| \leq n \land \\ \forall i. \ integer(i) \land i \geq 0 \rightarrow uv^{i}w \in L \end{array}$$

Predicates: regularlanguage, integer, word, $\cdot \in \cdot, \cdot \leq \cdot, \cdot \geq \cdot, \cdot = \cdot$

FREIBURG

For every regular Language *L* there is some $n \ge 0$, such that for all words $z \in L$ with $|z| \ge n$ there is a decomposition z = uvw with $|v| \ge 1$ and $|uv| \le n$, such that for all $i \ge 0$: $uv^i w \in L$.

$$\begin{array}{l} \forall L. \ regular language(L) \rightarrow \\ \exists n. \ integer(n) \land n \geq 0 \land \\ \forall z. \ z \in L \land |z| \geq n \rightarrow \\ \exists u, v, w. \ word(u) \land word(v) \land word(w) \land \\ z = uvw \land |v| \geq 1 \land |uv| \leq n \land \\ \forall i. \ integer(i) \land i \geq 0 \rightarrow uv^{i}w \in L \end{array}$$

Predicates: regularlanguage, integer, word, $\cdot \in \cdot, \cdot \leq \cdot, \cdot \geq \cdot, \cdot = \cdot$ Constants: 0, 1 Functions: $|\cdot|$ (word length), concatenation, iteration

An interpretation I : (D_I, α_I) consists of:

• Domain D_I

non-empty set of values or objects

An interpretation I : (D_I, α_I) consists of:

• Domain D_I

non-empty set of values or objects for example D_I = playing cards (finite),

An interpretation $I : (D_I, \alpha_I)$ consists of:

```
    Domain D<sub>I</sub>
non-empty set of values or objects
for example D<sub>I</sub> = playing cards (finite),
integers (countable infinite), or
```


An interpretation I : (D_I, α_I) consists of:

```
    Domain D<sub>I</sub>
non-empty set of values or objects
for example D<sub>I</sub> = playing cards (finite),
integers (countable infinite), or
reals (uncountable infinite)
```


An interpretation $I : (D_I, \alpha_I)$ consists of:

• Domain D_I non-empty set of values or objects for example D_I = playing cards (finite), integers (countable infinite), or reals (uncountable infinite)

• Assignment α_I

• each variable x assigned value $\alpha_I[x] \in D_I$

FOL Semantics

An interpretation $I : (D_I, \alpha_I)$ consists of:

• Domain D_I non-empty set of values or objects for example D_I = playing cards (finite), integers (countable infinite), or reals (uncountable infinite)

• Assignment α_I

- each variable x assigned value $\alpha_I[x] \in D_I$
- each n-ary function f assigned

$$\alpha_I[f]: D_I^n \to D_I$$

In particular, each constant a (0-ary function) assigned value $\alpha_I[a] \in D_I$

FOL Semantics

An interpretation $I : (D_I, \alpha_I)$ consists of:

Domain D_I non-empty set of values or objects for example D_I = playing cards (finite), integers (countable infinite), or reals (uncountable infinite)

• Assignment α_I

- each variable x assigned value $\alpha_I[x] \in D_I$
- each n-ary function f assigned

$$\alpha_I[f] : D_I^n \to D_I$$

In particular, each constant a (0-ary function) assigned value $\alpha_I[a] \in D_I$

• each n-ary predicate p assigned

$$\alpha_I[p]: D_I^n \to \{\top, \bot\}$$

In particular, each propositional variable P (0-ary predicate) assigned truth value $(\top,\,\perp)$

$$F : p(f(x,y),z) \rightarrow p(y,g(z,x))$$

Interpretation
$$I : (D_I, \alpha_I)$$

 $D_I = \mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ integers
 $\alpha_I[f] : D_I^2 \rightarrow D_I \qquad \alpha_I[g] : D_I^2 \rightarrow D_I$
 $(x, y) \mapsto x + y \qquad (x, y) \mapsto x - y$
 $\alpha_I[p] : D_I^2 \rightarrow \{\top, \bot\}$
 $(x, y) \mapsto \begin{cases} \top & \text{if } x < y \\ \bot & \text{otherwise} \end{cases}$

$$F : p(f(x,y),z) \rightarrow p(y,g(z,x))$$

Interpretation
$$I : (D_I, \alpha_I)$$

 $D_I = \mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ integers
 $\alpha_I[f] : D_I^2 \rightarrow D_I \qquad \alpha_I[g] : D_I^2 \rightarrow D_I$
 $(x, y) \mapsto x + y \qquad (x, y) \mapsto x - y$
 $\alpha_I[p] : D_I^2 \rightarrow \{\top, \bot\}$
 $(x, y) \mapsto \begin{cases} \top \text{ if } x < y \\ \bot \text{ otherwise} \end{cases}$
Also $\alpha_I[x] = 13, \alpha_I[y] = 42, \alpha_I[z] = 1$
Compute the truth value of F under I

FREIBURG

$$F : p(f(x,y),z) \rightarrow p(y,g(z,x))$$

Interpretation
$$I : (D_I, \alpha_I)$$

 $D_I = \mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ integers
 $\alpha_I[f] : D_I^2 \rightarrow D_I \qquad \alpha_I[g] : D_I^2 \rightarrow D_I$
 $(x, y) \mapsto x + y \qquad (x, y) \mapsto x - y$
 $\alpha_I[p] : D_I^2 \rightarrow \{\top, \bot\}$
 $(x, y) \mapsto \begin{cases} \top \text{ if } x < y \\ \bot \text{ otherwise} \end{cases}$
Also $\alpha_I[x] = 13, \alpha_I[y] = 42, \alpha_I[z] = 1$
Compute the truth value of F under I

1.
$$I \not\models p(f(x,y),z)$$
since $13 + 42 \ge 1$ 2. $I \not\models p(y,g(z,x))$ since $42 \ge 1 - 13$ 3. $I \models F$ by 1, 2, and \rightarrow

F is true under I

FREIBURG

For a variable x:

Definition (x-variant)

An x-variant of interpretation I is an interpretation J : (D_J, α_J) such that

- $D_I = D_J$
- $\alpha_I[y] = \alpha_J[y]$ for all symbols y, except possibly x

That is, I and J agree on everything except possibly the value of x

FREIBURG

For a variable x:

Definition (x-variant)

An x-variant of interpretation I is an interpretation J : (D_J, α_J) such that

- $D_I = D_J$
- $\alpha_I[y] = \alpha_J[y]$ for all symbols y, except possibly x

That is, I and J agree on everything except possibly the value of x

Denote $J : I \triangleleft \{x \mapsto v\}$ the x-variant of I in which $\alpha_J[x] = v$ for some $v \in D_I$.

For a variable x:

Definition (x-variant)

An x-variant of interpretation I is an interpretation J : (D_J, α_J) such that

•
$$D_I = D_J$$

• $\alpha_I[y] = \alpha_J[y]$ for all symbols y, except possibly x

That is, I and J agree on everything except possibly the value of x

Denote $J : I \triangleleft \{x \mapsto v\}$ the x-variant of I in which $\alpha_J[x] = v$ for some $v \in D_I$. Then

•
$$I \models \forall x. F$$
 iff for all $v \in D_I$, $I \triangleleft \{x \mapsto v\} \models F$

• $I \models \exists x. F$ iff there exists $v \in D_I$ s.t. $I \triangleleft \{x \mapsto v\} \models F$

REIBURG

UNI FREIBURG

Consider

$$F: \forall x. \exists y. 2 \cdot y = x$$

Here $2 \cdot y$ is the infix notatation of the term (2, y), and $2 \cdot y = x$ is the infix notatation of the atom = ((2, y), x).

- 2 is a 0-ary function symbol (a constant).
- · is a 2-ary function symbol.
- = is a 2-ary predicate symbol.
- x, y are variables.

FREIBURG

Consider

$$F: \forall x. \exists y. 2 \cdot y = x$$

Here $2 \cdot y$ is the infix notatation of the term (2, y), and $2 \cdot y = x$ is the infix notatation of the atom = ((2, y), x).

- 2 is a 0-ary function symbol (a constant).
- · is a 2-ary function symbol.
- = is a 2-ary predicate symbol.
- x, y are variables.

What is the truth-value of *F*?

$F: \forall x. \exists y. 2 \cdot y = x$

Let *I* be the standard interpration for integers, $D_I = \mathbb{Z}$. Compute the value of *F* under *I*:

$$F: \forall x. \exists y. 2 \cdot y = x$$

Let *I* be the standard interpration for integers, $D_I = \mathbb{Z}$. Compute the value of *F* under *I*:

$$I \models \forall x. \exists y. 2 \cdot y = x$$

iff

for all
$$\mathsf{v} \in D_I$$
, $I \triangleleft \{x \mapsto \mathsf{v}\} \models \exists y. \ 2 \cdot y = x$

iff

for all $v \in D_I$, there exists $v_1 \in D_I$, $I \triangleleft \{x \mapsto v\} \triangleleft \{y \mapsto v_1\} \models 2 \cdot y = x$

The latter is false since for $1 \in D_I$ there is no number v_1 with $2 \cdot v_1 = 1$.

$F: \forall x. \exists y. 2 \cdot y = x$

Let *I* be the standard interpration for rational numbers, $D_I = \mathbb{Q}$. Compute the value of *F* under *I*:

Example (\mathbb{Q})

$$F: \forall x. \exists y. 2 \cdot y = x$$

Let *I* be the standard interpration for rational numbers, $D_I = \mathbb{Q}$. Compute the value of *F* under *I*:

$$I \models \forall x. \exists y. 2 \cdot y = x$$

iff

for all
$$\mathsf{v} \in D_I$$
, $I \triangleleft \{x \mapsto \mathsf{v}\} \models \exists y. \ 2 \cdot y = x$

iff

for all $v \in D_I$, there exists $v_1 \in D_I$, $I \triangleleft \{x \mapsto v\} \triangleleft \{y \mapsto v_1\} \models 2 \cdot y = x$

The latter is true since for $v \in D_I$ we can choose $v_1 = \frac{v}{2}$.

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that $I \models F$.

Definition (Validity)

F is valid iff for all interpretations I, $I \models F$.

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that $I \models F$.

Definition (Validity)

F is valid iff for all interpretations I, $I \models F$.

Note

F is valid iff $\neg F$ is unsatisfiable

$$F : \forall y. (p(x, y) \rightarrow p(y, x))$$

should be transformed to

$$G : \forall y. (p(a, y) \rightarrow p(y, a))$$

$$F: \forall y. (p(x,y) \rightarrow p(y,x))$$

should be transformed to

$$G : \forall y. (p(a, y) \rightarrow p(y, a))$$

We call the mapping from x to a a substituion denoted as $\sigma : \{x \mapsto a\}$.

$$F : \forall y. (p(x, y) \rightarrow p(y, x))$$

should be transformed to

$$G: \forall y. (p(a, y) \rightarrow p(y, a))$$

We call the mapping from x to a a substituion denoted as $\sigma : \{x \mapsto a\}$. We write $F\sigma$ for the formula G.

REIBURG

$$F : \forall y. (p(x, y) \rightarrow p(y, x))$$

should be transformed to

$$G: \forall y. (p(a, y) \rightarrow p(y, a))$$

We call the mapping from x to a a substituion denoted as $\sigma : \{x \mapsto a\}$. We write $F\sigma$ for the formula G.

Another convenient notation is F[x] for a formula containing the variable x and F[a] for $F\sigma$.

Definition (Substitution)

A substitution is a mapping from terms to terms, e.g.

$$\sigma : \{t_1 \mapsto s_1, \ldots, t_n \mapsto s_n\}$$

By $F\sigma$ we denote the application of σ to formula F, i.e., the formula F where all occurences of t_1, \ldots, t_n are replaced by s_1, \ldots, s_n .

For a formula named F[x] we write F[t] as shorthand for $F[x]{x \mapsto t}$.

Safe Substitution

Care has to be taken in the presence of quantifiers:

$$F[x] : \exists y. \ y = Succ(x)$$

What is F[y]?

Safe Substitution

FREIBURG

Care has to be taken in the presence of quantifiers:

$$F[x] : \exists y. y = Succ(x)$$

What is F[y]? We need to rename bounded variables occuring in the substitution:

$$F[y]$$
 : $\exists y'. y' = Succ(y)$

FREIBURG

Care has to be taken in the presence of quantifiers:

$$F[x] : \exists y. y = Succ(x)$$

What is F[y]? We need to rename bounded variables occuring in the substitution:

$$F[y]$$
 : $\exists y'. y' = Succ(y)$

Bounded renaming does not change the models of a formula:

$$(\exists y. y = Succ(x)) \Leftrightarrow (\exists y'. y' = Succ(x))$$

Recursive Definition of Substitution

$$t\sigma = \begin{cases} \sigma(t) & t \in \operatorname{dom}(\sigma) \\ f(t_1\sigma,\ldots,t_n\sigma) & t \notin \operatorname{dom}(\sigma) \wedge t = f(t_1,\ldots,t_n) \\ x & t \notin \operatorname{dom}(\sigma) \wedge t = x \end{cases}$$
$$p(t_1,\ldots,t_n)\sigma = p(t_1\sigma,\ldots,t_n\sigma) \\ (\neg F)\sigma = \neg(F\sigma) \\ (F \wedge G)\sigma = (F\sigma) \wedge (G\sigma) \end{cases}$$

$$(\forall x. F)\sigma = \begin{cases} \forall x. F\sigma & x \notin Vars(\sigma) \\ \forall x'. ((F\{x \mapsto x'\})\sigma) & \text{otherwise and } x' \text{ is fresh} \end{cases}$$
$$(\exists x. F)\sigma = \begin{cases} \exists x. F\sigma & x \notin Vars(\sigma) \\ \exists x'. ((F\{x \mapsto x'\})\sigma) & \text{otherwise and } x' \text{ is fresh} \end{cases}$$

Example: Safe Substitution $F\sigma$

Example: Safe Substitution $F\sigma$

$$F: (\forall x. \ p(x, y)) \rightarrow q(f(y), x)$$

bound by $\forall x \nearrow free free \nearrow free$
$$\sigma : \{x \mapsto g(x), \ y \mapsto f(x), \ f(y) \mapsto h(x, y)\}$$

$$F\sigma?$$

Rename

$$F': \forall x'. \ p(x', y) \rightarrow q(f(y), x)$$

$$\uparrow \qquad \uparrow$$

where x' is a fresh variable

Semantic Tableaux

Recall rules from propositional logic:

The following additional rules are used for quantifiers:

$$\frac{I \models \forall x.F[x]}{I \models F[t]} \text{ for any term } t \qquad \frac{I \not\models \forall x.F[x]}{I \not\models F[a]} \text{ for a fresh constant } a$$
$$\frac{I \not\models \forall x.F[x]}{I \not\models F[a]} \text{ for a fresh constant } a$$
$$\frac{I \not\models \exists x.F[x]}{I \not\models F[t]} \text{ for any term } t$$

(We assume that there are infinitely many constant symbols.)

The formula F[t] is created from the formula F[x] by the substitution $\{x \mapsto t\}$ (roughly, replace every x by t).

Show that $(\exists x. \forall y. p(x, y)) \rightarrow (\forall x. \exists y. p(y, x))$ is valid.

Show that $(\exists x. \forall y. p(x, y)) \rightarrow (\forall x. \exists y. p(y, x))$ is valid. Assume otherwise.

1.
$$I \not\models (\exists x. \forall y. p(x, y)) \rightarrow (\forall x. \exists y. p(y, x))$$
assumption2. $I \models \exists x. \forall y. p(x, y)$ 1 and \rightarrow 3. $I \not\models \forall x. \exists y. p(y, x)$ 1 and \rightarrow 4. $I \models \forall y. p(a, y)$ 2, $\exists (x \mapsto a \text{ fresh})$ 5. $I \not\models \exists y. p(y, b)$ 3, $\forall (x \mapsto b \text{ fresh})$ 6. $I \models p(a, b)$ 4, $\forall (y \mapsto b)$ 7. $I \not\models p(a, b)$ 5, $\exists (y \mapsto a)$ 8. $I \models \bot$ 6,7 contradictory

Thus, the formula is valid.

Is F : $(\forall x. p(x, x)) \rightarrow (\exists x. \forall y. p(x, y))$ valid?.

Is F : $(\forall x. p(x, x)) \rightarrow (\exists x. \forall y. p(x, y))$ valid?.

Assume I is a falsifying interpretation for F and apply semantic argument:

1.
$$I \not\models (\forall x. p(x, x)) \rightarrow (\exists x. \forall y. p(x, y))$$

2. $I \models \forall x. p(x, x)$
3. $I \not\models \exists x. \forall y. p(x, y)$
4. $I \models p(a_1, a_1)$
5. $I \not\models \forall y.p(a_1, y)$
6. $I \not\models p(a_2, a_2)$
7. $I \models p(a_2, a_2)$
8. $I \not\models p(a_2, a_3)$
9. $I \not\models p(a_2, a_3)$
1 and \rightarrow
2, \forall
3, \exists
3, \exists
4, $I \models p(a_2, a_2)$
5, \forall
3, \exists
4, $I \models p(a_2, a_3)$
5, \forall
5,

No contradiction.

Is
$$F$$
 : $(\forall x. p(x,x)) \rightarrow (\exists x. \forall y. p(x,y))$ valid?.

Assume I is a falsifying interpretation for F and apply semantic argument:

1.
$$I \not\models (\forall x. p(x, x)) \rightarrow (\exists x. \forall y. p(x, y))$$

2. $I \models \forall x. p(x, x)$
3. $I \not\models \exists x. \forall y. p(x, y)$
4. $I \models p(a_1, a_1)$
5. $I \not\models \forall y.p(a_1, y)$
6. $I \not\models p(a_1, a_2)$
7. $I \models p(a_2, a_2)$
8. $I \not\models p(a_2, a_3)$
9. $I \not\models p(a_2, a_3)$
1 and \rightarrow
2, \forall
3, \exists
9, $I \not\models p(a_2, a_3)$
8, \forall

No contradiction. Falsifying interpretation I can be "read" from proof:

$$D_I = \mathbb{N}, \quad p_I(x, y) = \begin{cases} \text{true} & y = x, \\ \text{false} & y = x + 1, \\ \text{arbitrary} & \text{otherwise.} \end{cases}$$

To show FOL formula F is valid, assume $I \not\models F$ and derive a contradiction $I \models \bot$ in all branches

To show FOL formula F is valid, assume $I \not\models F$ and derive a contradiction $I \models \bot$ in all branches

Soundness

If every branch of a semantic argument proof reach $I \models \bot$, then F is valid

To show FOL formula F is valid, assume $I \not\models F$ and derive a contradiction $I \models \bot$ in all branches

Soundness

If every branch of a semantic argument proof reach $I \models \bot$, then F is valid

Completeness

Each valid formula F has a semantic argument proof in which every branch reach I $\models \bot$

To show FOL formula F is valid, assume $I \not\models F$ and derive a contradiction $I \models \bot$ in all branches

Soundness

If every branch of a semantic argument proof reach $I \models \bot$, then F is valid

Completeness

Each valid formula F has a semantic argument proof in which every branch reach I $\models \bot$

Non-termination

For an invalid formula F the method is not guaranteed to terminate. Thus, the semantic argument is not a decision procedure for validity.

If for interpretation I the assumption of the proof hold then there is an interpretation I' and a branch such that all statements on that branch hold.

If for interpretation I the assumption of the proof hold then there is an interpretation I' and a branch such that all statements on that branch hold.

I' differs from I in the values $\alpha_I[a_i]$ of fresh constants a_i .

If for interpretation I the assumption of the proof hold then there is an interpretation I' and a branch such that all statements on that branch hold.

I' differs from I in the values $\alpha_I[a_i]$ of fresh constants a_i .

If all branches of the proof end with $I \models \bot$, then the assumption was wrong.

If for interpretation I the assumption of the proof hold then there is an interpretation I' and a branch such that all statements on that branch hold.

I' differs from I in the values $\alpha_I[a_i]$ of fresh constants a_i .

If all branches of the proof end with $I \models \bot$, then the assumption was wrong. Thus, if the assumption was $I \not\models F$, then F must be valid.

Consider (finite or infinite) proof trees starting with $I \not\models F$. We assume that

- all possible proof rules were applied in all non-closed branches.
- the ∀ and ∃ rules were applied for all terms.
 This is possible since the terms are countable.

If every branch is closed, the tree is finite (Kőnig's Lemma) and we have a finite proof for F.

Otherwise, the proof tree has at least one open branch *P*. We show that *F* is not valid.

Otherwise, the proof tree has at least one open branch *P*. We show that *F* is not valid.

The statements on that branch *P* form a Hintikka set:

•
$$I \models F \land G \in P$$
 implies $I \models F \in P$ and $I \models G \in P$.

•
$$I \not\models F \land G \in P$$
 implies $I \not\models F \in P$ or $I \not\models G \in P$.

- $I \models \forall x. F[x] \in P$ implies for all terms $t, I \models F[t] \in P$.
- $I \not\models \forall x. F[x] \in P$ implies for some term $a, I \not\models F[a] \in P$.

• Similarly for
$$\lor, \rightarrow, \leftrightarrow, \exists$$
.

Otherwise, the proof tree has at least one open branch *P*. We show that *F* is not valid.

The statements on that branch *P* form a Hintikka set:

•
$$I \models F \land G \in P$$
 implies $I \models F \in P$ and $I \models G \in P$.

•
$$I \not\models F \land G \in P$$
 implies $I \not\models F \in P$ or $I \not\models G \in P$.

- $I \models \forall x. F[x] \in P$ implies for all terms $t, I \models F[t] \in P$.
- $I \not\models \forall x. F[x] \in P$ implies for some term $a, I \not\models F[a] \in P$. • Similarly for $\lor, \rightarrow, \leftrightarrow, \exists$.

2 Choose $D_I := \{t \mid t \text{ is term}\}, \alpha_I[f](t_1, \dots, t_n) = f(t_1, \dots, t_n),$

$$\alpha_{I}[x] = x, \quad \alpha_{I}[p](t_{1}, \dots, t_{n}) = \begin{cases} \text{true} & I \models p(t_{1}, \dots, t_{n}) \in P \\ \text{false} & \text{otherwise} \end{cases}$$

Otherwise, the proof tree has at least one open branch *P*. We show that *F* is not valid.

In the statements on that branch P form a Hintikka set:

•
$$I \models F \land G \in P$$
 implies $I \models F \in P$ and $I \models G \in P$.

- $I \not\models F \land G \in P$ implies $I \not\models F \in P$ or $I \not\models G \in P$.
- $I \models \forall x. F[x] \in P$ implies for all terms $t, I \models F[t] \in P$.
- $I \not\models \forall x. F[x] \in P$ implies for some term $a, I \not\models F[a] \in P$. • Similarly for $\lor, \rightarrow, \leftrightarrow, \exists$.

2 Choose $D_I := \{t \mid t \text{ is term}\}, \alpha_I[f](t_1, \ldots, t_n) = f(t_1, \ldots, t_n),$

$$\alpha_{I}[x] = x, \quad \alpha_{I}[p](t_{1}, \dots, t_{n}) = \begin{cases} \text{true} & I \models p(t_{1}, \dots, t_{n}) \in P\\ \text{false} & \text{otherwise} \end{cases}$$

I satisfies all statements on the branch. In particular, I is a falsifying interpretation of F, thus F is not valid.

Also in first-order logic normal forms can be used:

- Devise an algorithm to convert a formula to a normal form.
- Then devise an algorithm for satisfiability/validity that only works on the normal form.

Negation Normal Forms (NNF)

Negations appear only in literals. (only $\neg, \land, \lor, \exists, \forall$) To transform *F* to equivalent *F'* in NNF use recursively the following template equivalences (left-to-right):

$$\neg \neg F_1 \Leftrightarrow F_1 \quad \neg \top \Leftrightarrow \bot \quad \neg \bot \Leftrightarrow \top$$
$$\neg (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2 \\ \neg (F_1 \lor F_2) \Leftrightarrow \neg F_1 \land \neg F_2 \\ \end{bmatrix}$$
De Morgan's Law
$$F_1 \rightarrow F_2 \Leftrightarrow \neg F_1 \lor F_2 \\ F_1 \leftrightarrow F_2 \Leftrightarrow (F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1)$$

UNI FREIBURG

Negation Normal Forms (NNF)

Negations appear only in literals. (only $\neg, \land, \lor, \exists, \forall$) To transform *F* to equivalent *F'* in NNF use recursively the following template equivalences (left-to-right):

$$\neg \neg F_{1} \Leftrightarrow F_{1} \quad \neg \top \Leftrightarrow \bot \quad \neg \bot \Leftrightarrow \top$$
$$\neg (F_{1} \land F_{2}) \Leftrightarrow \neg F_{1} \lor \neg F_{2} \\ \neg (F_{1} \lor F_{2}) \Leftrightarrow \neg F_{1} \land \neg F_{2} \end{cases}$$
 De Morgan's Law
$$F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \lor F_{2}$$
$$F_{1} \leftrightarrow F_{2} \Leftrightarrow (F_{1} \rightarrow F_{2}) \land (F_{2} \rightarrow F_{1})$$
$$\neg \forall x. \ F[x] \Leftrightarrow \exists x. \ \neg F[x]$$
$$\neg \exists x. \ F[x] \Leftrightarrow \forall x. \ \neg F[x]$$

UNI FREIBURG

$G : \forall x. (\exists y. p(x, y) \land p(x, z)) \rightarrow \exists w. p(x, w) .$

$$G: \forall x. (\exists y. p(x, y) \land p(x, z)) \rightarrow \exists w. p(x, w) .$$

$$\forall x. (\exists y. p(x, y) \land p(x, z)) \rightarrow \exists w. p(x, w)$$

$$\forall x. \neg (\exists y. p(x, y) \land p(x, z)) \lor \exists w. p(x, w)$$

$$F_1 \rightarrow F_2 \Leftrightarrow \neg F_1 \lor F_2$$

$$\forall x. (\forall y. \neg (p(x, y) \land p(x, z))) \lor \exists w. p(x, w)$$

$$\neg \exists x. F[x] \Leftrightarrow \forall x. \neg F[x]$$

$$\forall x. (\forall y. \neg p(x, y) \lor \neg p(x, z)) \lor \exists w. p(x, w)$$

$$Q_1 x_1 \cdots Q_n x_n$$
. $F[x_1, \cdots, x_n]$

where $Q_i \in \{\forall, \exists\}$ and F is quantifier-free.

Every FOL formula F can be transformed to formula F' in PNF s.t. $F' \Leftrightarrow F$:

INI

$$Q_1 x_1 \cdots Q_n x_n$$
. $F[x_1, \cdots, x_n]$

where $Q_i \in \{\forall, \exists\}$ and F is quantifier-free.

Every FOL formula F can be transformed to formula F' in PNF s.t. $F' \Leftrightarrow F$:

Write F in NNF

INI REIBURG

$$Q_1 x_1 \cdots Q_n x_n$$
. $F[x_1, \cdots, x_n]$

where $Q_i \in \{\forall, \exists\}$ and F is quantifier-free.

Every FOL formula F can be transformed to formula F' in PNF s.t. $F' \Leftrightarrow F$:

- Write F in NNF
- Rename quantified variables to fresh names

$$Q_1 x_1 \cdots Q_n x_n$$
. $F[x_1, \cdots, x_n]$

where $Q_i \in \{\forall, \exists\}$ and F is quantifier-free.

Every FOL formula F can be transformed to formula F' in PNF s.t. $F' \Leftrightarrow F$:

- Write F in NNF
- Rename quantified variables to fresh names
- Move all quantifiers to the front

Example: PNF

Find equivalent PNF of

 $F : \forall x. ((\exists y. p(x, y) \land p(x, z)) \rightarrow \exists y. p(x, y))$

Find equivalent PNF of

 $F : \forall x. ((\exists y. p(x, y) \land p(x, z)) \rightarrow \exists y. p(x, y))$

• Write F in NNF

$$F_1$$
: $\forall x. (\forall y. \neg p(x, y) \lor \neg p(x, z)) \lor \exists y. p(x, y)$

• Rename quantified variables to fresh names

$$F_2 : \forall x. (\forall y. \neg p(x, y) \lor \neg p(x, z)) \lor \exists w. p(x, w)$$

 ^ in the scope of $\forall x$

Jochen Hoenicke (Software Engineering)

Example: PNF

• Move all quantifiers to the front

$$F_3$$
: $\forall x. \forall y. \exists w. \neg p(x, y) \lor \neg p(x, z) \lor p(x, w)$

Alternately,

$$F'_3$$
: $\forall x. \exists w. \forall y. \neg p(x, y) \lor \neg p(x, z) \lor p(x, w)$

Note: In F_2 , $\forall y$ is in the scope of $\forall x$, therefore the order of quantifiers must be $\cdots \forall x \cdots \forall y \cdots$

$$F_4 \Leftrightarrow F \text{ and } F'_4 \Leftrightarrow F$$

Note: However $G \Leftrightarrow F$

$$G$$
 : $\forall y. \exists w. \forall x. \neg p(x, y) \lor \neg p(x, z) \lor p(x, w)$

Jochen Hoenicke (Software Engineering)

JNI REIBURG

• FOL is undecidable (Turing & Church)

There does not exist an algorithm for deciding if a FOL formula F is valid, i.e. always halt and says "yes" if F is valid or say "no" if F is invalid.

• FOL is undecidable (Turing & Church)

There does not exist an algorithm for deciding if a FOL formula F is valid, i.e. always halt and says "yes" if F is valid or say "no" if F is invalid.

• FOL is semi-decidable

There is a procedure that always halts and says "yes" if F is valid, but may not halt if F is invalid.

• FOL is undecidable (Turing & Church)

There does not exist an algorithm for deciding if a FOL formula F is valid, i.e. always halt and says "yes" if F is valid or say "no" if F is invalid.

• FOL is semi-decidable

There is a procedure that always halts and says "yes" if F is valid, but may not halt if F is invalid.

On the other hand,

• PL is decidable

There exists an algorithm for deciding if a PL formula F is valid, e.g., the truth-table procedure.

Similarly for satisfiability

Jochen Hoenicke (Software Engineering)

Decision Procedures

Theories

The formula 1 + 1 = 3 is

FREIBURG

In first-order logic function symbols have no predefined meaning:

```
The formula 1 + 1 = 3 is satisfiable.
```

We want to fix the meaning for some function symbols. Examples:

- Equality theory
- Theory of natural numbers
- Theory of rational numbers
- Theory of arrays or lists

First-Order Theories

FREIBURG

Definition (First-order theory)

A First-order theory T consists of

- A Signature Σ set of constant, function, and predicate symbols
- A set of axioms A_T set of closed (no free variables) Σ -formulae

UNI FREIBURG

Definition (First-order theory)

A First-order theory T consists of

- A Signature Σ set of constant, function, and predicate symbols
- A set of axioms A_T set of closed (no free variables) Σ -formulae

A Σ -formula is a formula constructed of constants, functions, and predicate symbols from Σ , and variables, logical connectives, and quantifiers

UNI FREIBURG

Definition (First-order theory)

A First-order theory T consists of

- A Signature Σ set of constant, function, and predicate symbols
- A set of axioms A_T set of closed (no free variables) Σ -formulae

A Σ -formula is a formula constructed of constants, functions, and predicate symbols from Σ , and variables, logical connectives, and quantifiers

• The symbols of Σ are just symbols without prior meaning

UNI

Definition (First-order theory)

A First-order theory T consists of

- A Signature Σ set of constant, function, and predicate symbols
- A set of axioms A_T set of closed (no free variables) Σ -formulae

A Σ -formula is a formula constructed of constants, functions, and predicate symbols from Σ , and variables, logical connectives, and quantifiers

- The symbols of Σ are just symbols without prior meaning
- The axioms of T provide their meaning

Theory of Equality T_E

Signature $\Sigma_{=}$: {=, a, b, c, ..., f, g, h, ..., p, q, r, ...}

- =, a binary predicate, interpreted by axioms.
- all constant, function, and predicate symbols.

Theory of Equality T_E

Signature $\Sigma_{=}$: {=, a, b, c, ..., f, g, h, ..., p, q, r, ...}

- =, a binary predicate, interpreted by axioms.
- all constant, function, and predicate symbols.

Axioms of T_E :

(reflexivity) (symmetry) (transitivity)

Theory of Equality T_E

Signature $\Sigma_{=}$: {=, a, b, c, ..., f, g, h, ..., p, q, r, ...}

- =, a binary predicate, interpreted by axioms.
- all constant, function, and predicate symbols.

Axioms of T_E :

Theory of Equality T_E

Signature $\Sigma_{=}$: {=, a, b, c, ..., f, g, h, ..., p, q, r, ...}

- =, a binary predicate, interpreted by axioms.
- all constant, function, and predicate symbols.

Axioms of T_E :

- $\forall x. \ x = x$ (reflexivity) • $\forall x, y. \ x = y \rightarrow y = x$ (symmetry) • $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$ (transitivity) • for each positive integer *n* and *n*-ary function symbol *f*, $\forall x_1, \dots, x_n, y_1, \dots, y_n$. $\bigwedge_i x_i = y_i \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$ (congruence)
- for each positive integer *n* and *n*-ary predicate symbol *p*, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i \rightarrow (p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n))$ (equivalence)

Axiom Schemata

Congruence and Equivalence are axiom schemata.

• for each positive integer *n* and *n*-ary function symbol *f*, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$ (congruence)

● for each positive integer *n* and *n*-ary predicate symbol *p*, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i \rightarrow (p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n))$ (equivalence)

Axiom Schemata

Congruence and Equivalence are axiom schemata.

• for each positive integer *n* and *n*-ary function symbol *f*, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$ (congruence)

• for each positive integer *n* and *n*-ary predicate symbol *p*, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i \rightarrow (p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n))$ (equivalence)

For every function symbol there is an instance of the congruence axiom schemata.

Example: Congruence axiom for binary function f_2 : $\forall x_1, x_2, y_1, y_2$. $x_1 = y_1 \land x_2 = y_2 \rightarrow f_2(x_1, x_2) = f_2(y_1, y_2)$

Axiom Schemata

Congruence and Equivalence are axiom schemata.

• for each positive integer *n* and *n*-ary function symbol *f*, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$ (congruence)

• for each positive integer *n* and *n*-ary predicate symbol *p*, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i \rightarrow (p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n))$ (equivalence)

For every function symbol there is an instance of the congruence axiom schemata.

Example: Congruence axiom for binary function f_2 : $\forall x_1, x_2, y_1, y_2$. $x_1 = y_1 \land x_2 = y_2 \rightarrow f_2(x_1, x_2) = f_2(y_1, y_2)$

 $A_{T_{E}}$ contains an infinite number of these axioms.

An interpretation I is a T-interpretation, if it satisfies all the axioms of T.

An interpretation I is a T-interpretation, if it satisfies all the axioms of T.

Definition (*T*-valid)

A Σ -formula F is valid in theory T (T-valid, also $T \models F$), if every T-interpretation satisfies F.

An interpretation I is a T-interpretation, if it satisfies all the axioms of T.

Definition (*T*-valid)

A Σ -formula F is valid in theory T (T-valid, also $T \models F$), if every T-interpretation satisfies F.

Definition (T-satisfiable)

A Σ -formula F is satisfiable in T (T-satisfiable),

if there is a T-interpretation that satisfies F

An interpretation I is a T-interpretation, if it satisfies all the axioms of T.

Definition (*T*-valid)

A Σ -formula F is valid in theory T (T-valid, also $T \models F$), if every T-interpretation satisfies F.

Definition (*T*-satisfiable)

A Σ -formula F is satisfiable in T (T-satisfiable),

if there is a T-interpretation that satisfies F

Definition (*T*-equivalent)

Two Σ -formulae F_1 and F_2 are equivalent in T (*T*-equivalent), if $F_1 \leftrightarrow F_2$ is *T*-valid,

Jochen Hoenicke (Software Engineering)

Decision Procedures

Example: T_{E} -validity

Semantic argument method can be used for $\mathcal{T}_{\mathcal{E}}$ Prove

 $F: a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a)$ T_{E} -valid.

Example: $T_{\rm E}$ -validity

Semantic argument method can be used for T_E Prove

 $\begin{array}{ll} F: \ a = b \land b = c \to g(f(a),b) = g(f(c),a) & T_{\text{E}}\text{-valid}.\\ \\ \text{Suppose not; then there exists a } T_{\text{E}}\text{-interpretation } I \text{ such that } I \not\models F.\\ \\ \text{Then,} \end{array}$

1.	I ⊭ F	assumption
2.	$l \models a = b \land b = c$	1, $ ightarrow$
3.	$I \not\models g(f(a), b) = g(f(c), a)$	1, $ ightarrow$
4.	$I \models \forall x, y, z. \ x = y \land y = z \rightarrow x = z$	transitivity
5.	$I \models a = b \land b = c \to a = c$	4, 3 × $\forall \{x \mapsto a, y \mapsto b, z \mapsto c\}$
6 <i>a</i>	$I \not\models a = b \land b = c$	5, \rightarrow
7 <i>a</i>	$I \not\models \bot$	3 and 5 contradictory
6 <i>b</i> .	$l \models a = c$	4, 5, (5, $ ightarrow$)
7b.	$I \models a = c \rightarrow f(a) = f(c)$	(congruence), 2 \times \forall
8 <i>ba</i> .	$l \not\models a = c \cdots l \models \bot$	
8 <i>bb</i> .	$I \models f(a) = f(c)$	7b, $ ightarrow$
9 <i>bb</i> .	$l \models a = b$	2, ^
10 <i>bb</i> .	$I \models a = b \rightarrow b = a$	(symmetry), 2 $ imes$ \forall
11 <i>bba</i> .	$l \not\models a = b \cdots l \models \bot$	
11 <i>bbb</i> .	$l \models b = a$	10bb, $ ightarrow$
12 <i>bbb</i> .	$I \models f(a) = f(c) \land b = a \rightarrow g(f(a), b) = g(f(c), a)$	(congruence), 4 \times \forall
13	$I \models g(f(a), b) = g(f(c), a)$	8bb, 11bbb, 12bbb

3 and 13 are contradictory. Thus, F is T_{E} -valid.

Is it possible to decide T_E -validity?

Is it possible to decide T_E -validity?

 T_E -validity is undecidable.

Is it possible to decide T_E -validity?

 T_E -validity is undecidable.

If we restrict ourself to quantifier-free formulae we get decidability:

For a quantifier-free formula T_E -validity is decidable.

A fragment of theory T is a syntactically-restricted subset of formulae of the theory.

Example: quantifier-free fragment of theory T is the set of quantifier-free formulae in T.

A fragment of theory T is a syntactically-restricted subset of formulae of the theory.

Example: quantifier-free fragment of theory T is the set of quantifier-free formulae in T.

A theory T is decidable if $T \models F$ (T-validity) is decidable for every Σ -formula F,

i.e., there is an algorithm that always terminate with "yes",

if F is T-valid, and "no", if F is T-invalid.

A fragment of T is decidable if $T \models F$ is decidable for every Σ -formula F in the fragment.

 $\begin{array}{lll} \mbox{Natural numbers} & \mathbb{N} \ = \ \{0,1,2,\cdots\} \\ \mbox{Integers} & \mathbb{Z} \ = \ \{\cdots,-2,-1,0,1,2,\cdots\} \end{array}$

Three variations:

 $\begin{array}{lll} \mbox{Natural numbers} & \mathbb{N} \ = \ \{0,1,2,\cdots\} \\ \mbox{Integers} & \mathbb{Z} \ = \ \{\cdots,-2,-1,0,1,2,\cdots\} \end{array}$

Three variations:

• Peano arithmetic *T*_{PA}: natural numbers with addition and multiplication

$$\begin{array}{lll} \mathsf{Natural numbers} & \mathbb{N} \ = \ \{0,1,2,\cdots\} \\ \mathsf{Integers} & \mathbb{Z} \ = \ \{\cdots,-2,-1,0,1,2,\cdots\} \end{array}$$

Three variations:

- Peano arithmetic *T*_{PA}: natural numbers with addition and multiplication
- Presburger arithmetic $T_{\mathbb{N}}$: natural numbers with addition

 $\begin{array}{ll} \mbox{Natural numbers} & \mathbb{N} \ = \ \{0,1,2,\cdots\} \\ \mbox{Integers} & \mathbb{Z} \ = \ \{\cdots,-2,-1,0,1,2,\cdots\} \end{array}$

Three variations:

- Peano arithmetic *T*_{PA}: natural numbers with addition and multiplication
- Presburger arithmetic $T_{\mathbb{N}}$: natural numbers with addition
- Theory of integers $T_{\mathbb{Z}}$: integers with +, -, >

Signature: Σ_{PA} : {0, 1, +, ·, =}

Signature:
$$\Sigma_{PA}$$
 : $\{0, 1, +, \cdot, =\}$

Axioms of T_{PA} : axioms of T_E ,

$$\forall x. \neg (x + 1 = 0)$$
 (zero)
$$\forall x, y. x + 1 = y + 1 \rightarrow x = y$$
 (successor)

FREIBURG

Signature: Σ_{PA} : {0, 1, +, ·, =}

Axioms of T_{PA} : axioms of T_E ,

$$\forall x. \neg (x + 1 = 0)$$
 (zero)
$$\forall x, y. x + 1 = y + 1 \rightarrow x = y$$
 (successor)
$$F[0] \land (\forall x. F[x] \rightarrow F[x + 1]) \rightarrow \forall x. F[x]$$
 (induction)

FREIBURG

Signature:
$$\Sigma_{PA}$$
 : $\{0, 1, +, \cdot, =\}$

Axioms of T_{PA} : axioms of T_E ,

$$\begin{array}{l} \bullet \quad \forall x. \ \neg(x+1=0) & (\text{zero}) \\ \bullet \quad \forall x, y. \ x+1=y+1 \rightarrow x=y & (\text{successor}) \\ \bullet \quad F[0] \land (\forall x. \ F[x] \rightarrow F[x+1]) \rightarrow \forall x. \ F[x] & (\text{induction}) \\ \bullet \quad \forall x. \ x+0=x & (\text{plus zero}) \\ \bullet \quad \forall x, y. \ x+(y+1)=(x+y)+1 & (\text{plus successor}) \end{array}$$

Signature:
$$\Sigma_{PA}$$
: {0, 1, +, ·, =}

Axioms of T_{PA} : axioms of T_E ,

1 $\forall x. \neg (x + 1 = 0)$ (zero)2 $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ (successor)3 $F[0] \land (\forall x. F[x] \rightarrow F[x + 1]) \rightarrow \forall x. F[x]$ (induction)4 $\forall x. x + 0 = x$ (plus zero)5 $\forall x, y. x + (y + 1) = (x + y) + 1$ (plus successor)6 $\forall x. x \cdot 0 = 0$ (times zero)6 $\forall x, y. x \cdot (y + 1) = x \cdot y + x$ (times successor)

Signature:
$$\Sigma_{PA}$$
 : $\{0, 1, +, \cdot, =\}$

Axioms of T_{PA} : axioms of T_E ,

1 $\forall x. \neg (x+1=0)$ (zero)**2** $\forall x, y. x+1 = y+1 \rightarrow x = y$ (successor)**3** $F[0] \land (\forall x. F[x] \rightarrow F[x+1]) \rightarrow \forall x. F[x]$ (induction)**4** $\forall x. x+0 = x$ (plus zero)**5** $\forall x, y. x+(y+1) = (x+y)+1$ (plus successor)**6** $\forall x. x \cdot 0 = 0$ (times zero)**7** $\forall x, y. x \cdot (y+1) = x \cdot y + x$ (times successor)

Line 3 is an axiom schema.

Expressiveness of Peano Arithmetic

3x + 5 = 2y can be written using Σ_{PA}

Expressiveness of Peano Arithmetic

3x+5=2y can be written using Σ_{PA} as x+x+x+1+1+1+1+1=y+y

We can define > and \geq :

Expressiveness of Peano Arithmetic

$$3x + 5 = 2y$$
 can be written using Σ_{PA} as
 $x + x + x + 1 + 1 + 1 + 1 + 1 = y + y$
We can define > and \geq : $3x + 5 > 2y$ write as
 $\exists z. \ z \neq 0 \land 3x + 5 = 2y + z$
 $3x + 5 \geq 2y$ write as $\exists z. \ 3x + 5 = 2y + z$

3x+5=2y can be written using Σ_{PA} as x+x+x+1+1+1+1+1=y+y

We can define > and \geq : 3x + 5 > 2y write as $\exists z. \ z \neq 0 \land 3x + 5 = 2y + z$ $3x + 5 \ge 2y$ write as $\exists z. \ 3x + 5 = 2y + z$

Examples for valid formulae:

• Pythagorean Theorem is T_{PA} -valid $\exists x, y, z. \ x \neq 0 \land y \neq 0 \land z \neq 0 \land xx + yy = zz$ 3x+5=2y can be written using Σ_{PA} as x+x+x+1+1+1+1+1=y+y

We can define > and
$$\geq$$
: $3x + 5 > 2y$ write as
 $\exists z. z \neq 0 \land 3x + 5 = 2y + z$
 $3x + 5 \geq 2y$ write as $\exists z. 3x + 5 = 2y + z$

Examples for valid formulae:

- Pythagorean Theorem is T_{PA} -valid $\exists x, y, z. \ x \neq 0 \land y \neq 0 \land z \neq 0 \land xx + yy = zz$
- Fermat's Last Theorem is T_{PA} -valid (Andrew Wiles, 1994) $\forall n. n > 2 \rightarrow \neg \exists x, y, z. x \neq 0 \land y \neq 0 \land z \neq 0 \land x^{n} + y^{n} = z^{n}$

Expressiveness of Peano Arithmetic (2)

In Fermat's theorem we used x^n , which is not a valid term in Σ_{PA} . However, there is the Σ_{PA} -formula EXP[x, n, r] with

$$1 EXP[x,0,r] \leftrightarrow r = 1$$

 $Second EXP[x, i+1, r] \leftrightarrow \exists r_1. EXP[x, i, r_1] \land r = r_1 \cdot x$

$$\begin{aligned} \mathsf{EXP}[x, n, r] &: \exists d, m. \; (\exists z. \; d \; = \; (m+1)z \; + \; 1) \land \\ (\forall i, r_1. \; i \; < \; n \; \land \; r_1 \; < \; m \; \land \; (\exists z. \; d \; = \; ((i \; + \; 1)m \; + \; 1)z \; + \; r_1) \rightarrow \\ r_1 x \; < \; m \; \land \; (\exists z. \; d \; = \; ((i \; + \; 2)m \; + \; 1)z \; + \; r_1 \; \cdot \; x)) \land \\ r \; < \; m \; \land \; (\exists z. \; d \; = \; ((n \; + \; 1)m \; + \; 1)z \; + \; r_1) \end{aligned}$$

Expressiveness of Peano Arithmetic (2)

In Fermat's theorem we used x^n , which is not a valid term in Σ_{PA} . However, there is the Σ_{PA} -formula EXP[x, n, r] with

$$1 EXP[x,0,r] \leftrightarrow r = 1$$

 $SEXP[x, i+1, r] \leftrightarrow \exists r_1. EXP[x, i, r_1] \land r = r_1 \cdot x$

$$\begin{aligned} \mathsf{EXP}[x, n, r] &: \exists d, m. \; (\exists z. \; d = (m+1)z+1) \land \\ (\forall i, r_1. \; i < n \land r_1 < m \land (\exists z. \; d = ((i+1)m+1)z+r_1) \rightarrow \\ r_1x < m \land (\exists z. \; d = ((i+2)m+1)z+r_1 \cdot x)) \land \\ r < m \land (\exists z. \; d = ((n+1)m+1)z+r) \end{aligned}$$

Fermat's theorem can be stated as:

$$\begin{aligned} \forall n. n > 2 \rightarrow \neg \exists x, y, z, rx, ry. x \neq 0 \land y \neq 0 \land z \neq 0 \land \\ EXP[x, n, rx] \land EXP[y, n, ry] \land EXP[z, n, rx + ry] \end{aligned}$$

Jochen Hoenicke (Software Engineering)

Decidability of Peano Arithmetic

Gödel showed that for every recursive function $f : \mathbb{N}^n \to \mathbb{N}$ there is a Σ_{PA} -formula $F[x_1, \ldots, x_n, r]$ with

$$F[x_1,\ldots,x_n,r] \leftrightarrow r = f(x_1,\ldots,x_n)$$

Decidability of Peano Arithmetic

Gödel showed that for every recursive function $f : \mathbb{N}^n \to \mathbb{N}$ there is a Σ_{PA} -formula $F[x_1, \ldots, x_n, r]$ with

$$F[x_1,\ldots,x_n,r] \leftrightarrow r = f(x_1,\ldots,x_n)$$

*T*_{PA} is undecidable. (Gödel, Turing, Post, Church)

Decidability of Peano Arithmetic

Gödel showed that for every recursive function $f : \mathbb{N}^n \to \mathbb{N}$ there is a Σ_{PA} -formula $F[x_1, \ldots, x_n, r]$ with

$$F[x_1,\ldots,x_n,r] \leftrightarrow r = f(x_1,\ldots,x_n)$$

 T_{PA} is undecidable. (Gödel, Turing, Post, Church) The quantifier-free fragment of T_{PA} is undecidable. (Matiyasevich, 1970)
Decidability of Peano Arithmetic

Gödel showed that for every recursive function $f : \mathbb{N}^n \to \mathbb{N}$ there is a Σ_{PA} -formula $F[x_1, \ldots, x_n, r]$ with

$$F[x_1,\ldots,x_n,r] \leftrightarrow r = f(x_1,\ldots,x_n)$$

 T_{PA} is undecidable. (Gödel, Turing, Post, Church) The quantifier-free fragment of T_{PA} is undecidable. (Matiyasevich, 1970)

Remark: Gödel's first incompleteness theorem

Peano arithmetic T_{PA} does not capture true arithmetic: There exist closed Σ_{PA} -formulae representing valid propositions of number theory that are not T_{PA} -valid. The reason: T_{PA} actually admits nonstandard interpretations

Decidability of Peano Arithmetic

Gödel showed that for every recursive function $f : \mathbb{N}^n \to \mathbb{N}$ there is a Σ_{PA} -formula $F[x_1, \ldots, x_n, r]$ with

$$F[x_1,\ldots,x_n,r] \leftrightarrow r = f(x_1,\ldots,x_n)$$

T_{PA} is undecidable. (Gödel, Turing, Post, Church)The quantifier-free fragment of T_{PA} is undecidable. (Matiyasevich, 1970)

Remark: Gödel's first incompleteness theorem

Peano arithmetic T_{PA} does not capture true arithmetic: There exist closed Σ_{PA} -formulae representing valid propositions of number theory that are not T_{PA} -valid. The reason: T_{PA} actually admits nonstandard interpretations

For decidability: no multiplication

Jochen Hoenicke (Software Engineering)

Decision Procedures

 $\label{eq:signature: signature: signature: signature: $\Sigma_{\mathbb{N}}$: $\{0, 1, +, =\}$ no multiplication!}$

Axioms of $T_{\mathbb{N}}$: axioms of T_E ,

 $\begin{array}{ll} \bullet \ \forall x. \ \neg(x+1=0) & (\text{zero}) \\ \bullet \ \forall x, y. \ x+1=y+1 \rightarrow x=y & (\text{successor}) \\ \bullet \ F[0] \land (\forall x. \ F[x] \rightarrow F[x+1]) \rightarrow \forall x. \ F[x] & (\text{induction}) \\ \bullet \ \forall x. \ x+0=x & (\text{plus zero}) \\ \bullet \ \forall x, y. \ x+(y+1)=(x+y)+1 & (\text{plus successor}) \\ \end{array}$

3 is an axiom schema.

 $\label{eq:signature: signature: signature: signature: $\Sigma_{\mathbb{N}}$: $\{0, 1, +, =\}$ no multiplication!$

Axioms of $T_{\mathbb{N}}$: axioms of T_E ,

3 is an axiom schema.

 $T_{\mathbb{N}}$ -satisfiability and $T_{\mathbb{N}}$ -validity are decidable. (Presburger 1929)

Signature:

$$\Sigma_{\mathbb{Z}} : \{\dots, -2, -1, 0, 1, 2, \dots, -3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, \dots, +, -, =, >\}$$
 where

•
$$\ldots$$
 , -2 , -1 , 0 , 1 , 2 , \ldots are constants

 $\bullet \ \ldots, -3\cdot, -2\cdot, 2\cdot, \ 3\cdot, \ \ldots$ are unary functions

(intended meaning: $2 \cdot x$ is x + x)

• +, -, =, > have the usual meanings.

Signature:

$$\Sigma_{\mathbb{Z}} : \{\dots, -2, -1, 0, 1, 2, \dots, -3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, \dots, +, -, =, >\}$$
 where

• ...,
$$-2, -1, 0, 1, 2, ...$$
 are constants

• $\ldots, -3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, \ldots$ are unary functions

(intended meaning: $2 \cdot x$ is x + x)

• +, -, =, > have the usual meanings.

Relation between $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$

 $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$ have the same expressiveness:

- For every $\Sigma_{\mathbb{Z}}$ -formula there is an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula.
- For every $\Sigma_{\mathbb{N}}\text{-formula}$ there is an equisatisfiable $\Sigma_{\mathbb{Z}}\text{-formula}.$

Signature:

$$\Sigma_{\mathbb{Z}} : \{\ldots, -2, -1, 0, 1, 2, \ldots, -3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, \ldots, +, -, =, >\}$$
 where

•
$$\ldots$$
, -2 , -1 , 0 , 1 , 2 , \ldots are constants
• \ldots , -3 , -2 , 2 , 3 , \ldots are unary functions

(intended meaning: $2 \cdot x$ is x + x)

• +, -, =, > have the usual meanings.

Relation between $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$

 $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$ have the same expressiveness:

- For every $\Sigma_{\mathbb{Z}}$ -formula there is an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula.
- For every $\Sigma_{\mathbb{N}}\text{-formula}$ there is an equisatisfiable $\Sigma_{\mathbb{Z}}\text{-formula}.$

 $\Sigma_{\mathbb{Z}}$ -formula F and $\Sigma_{\mathbb{N}}$ -formula G are equisatisfiable iff:

F is $T_{\mathbb{Z}}$ -satisfiable iff G is $T_{\mathbb{N}}$ -satisfiable

Decision Procedures

Example: $\Sigma_{\mathbb{Z}}$ -formula to $\Sigma_{\mathbb{N}}$ -formula

Consider the $\Sigma_{\mathbb{Z}}$ -formula F_0 : $\forall w, x. \exists y, z. x + 2y - z - 7 > -3w + 4$

Example: $\Sigma_{\mathbb{Z}}\text{-formula}$ to $\Sigma_{\mathbb{N}}\text{-formula}$

Consider the $\Sigma_{\mathbb{Z}}$ -formula F_0 : $\forall w, x. \exists y, z. x + 2y - z - 7 > -3w + 4$

Introduce two variables, v_p and v_n (range over the nonnegative integers) for each variable v (range over the integers) of F_0

$$F_1: \quad \begin{array}{l} \forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n. \\ (x_p - x_n) + 2(y_p - y_n) - (z_p - z_n) - 7 > -3(w_p - w_n) + 4 \end{array}$$

Example: $\Sigma_{\mathbb{Z}}\text{-formula}$ to $\Sigma_{\mathbb{N}}\text{-formula}$

Consider the $\Sigma_{\mathbb{Z}}$ -formula F_0 : $\forall w, x. \exists y, z. x + 2y - z - 7 > -3w + 4$

Introduce two variables, v_p and v_n (range over the nonnegative integers) for each variable v (range over the integers) of F_0

$$F_{1}: \quad \begin{array}{c} \forall w_{p}, w_{n}, x_{p}, x_{n}. \ \exists y_{p}, y_{n}, z_{p}, z_{n}. \\ (x_{p} - x_{n}) + 2(y_{p} - y_{n}) - (z_{p} - z_{n}) - 7 > -3(w_{p} - w_{n}) + 4 \end{array}$$

Eliminate - by moving to the other side of >

$$F_2: \quad \begin{array}{l} \forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n. \\ x_p + 2y_p + z_n + 3w_p > x_n + 2y_n + z_p + 7 + 3w_n + 4 \end{array}$$

Example: $\Sigma_{\mathbb{Z}}\text{-formula}$ to $\Sigma_{\mathbb{N}}\text{-formula}$

Consider the $\Sigma_{\mathbb{Z}}$ -formula F_0 : $\forall w, x. \exists y, z. x + 2y - z - 7 > -3w + 4$

Introduce two variables, v_p and v_n (range over the nonnegative integers) for each variable v (range over the integers) of F_0

$$F_{1}: \quad \begin{array}{c} \forall w_{p}, w_{n}, x_{p}, x_{n}. \ \exists y_{p}, y_{n}, z_{p}, z_{n}. \\ (x_{p} - x_{n}) + 2(y_{p} - y_{n}) - (z_{p} - z_{n}) - 7 > -3(w_{p} - w_{n}) + 4 \end{array}$$

Eliminate - by moving to the other side of >

$$F_2: \quad \begin{array}{l} \forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n. \\ x_p + 2y_p + z_n + 3w_p > x_n + 2y_n + z_p + 7 + 3w_n + 4 \end{array}$$

Eliminate > and numbers:

which is a $\Sigma_{\mathbb{N}}$ -formula equisatisfiable to F_0 .

Example: The $\Sigma_{\mathbb{N}}$ -formula

$$\forall x. \exists y. x = y + 1$$

is equisatisfiable to the $\Sigma_{\mathbb{Z}}$ -formula:

$$\forall x. \ x > -1 \rightarrow \exists y. \ y > -1 \land x = y + 1.$$

Example: The $\Sigma_{\mathbb{N}}$ -formula

$$\forall x. \exists y. x = y + 1$$

is equisatisfiable to the $\Sigma_{\mathbb{Z}}$ -formula:

$$\forall x. \ x > -1 \rightarrow \exists y. \ y > -1 \land x = y + 1.$$

To decide $T_{\mathbb{Z}}$ -validity for a $\Sigma_{\mathbb{Z}}$ -formula F:

Example: The $\Sigma_{\mathbb{N}}$ -formula

$$\forall x. \exists y. x = y + 1$$

is equisatisfiable to the $\Sigma_{\mathbb{Z}}$ -formula:

$$\forall x. \ x > -1 \rightarrow \exists y. \ y > -1 \land x = y + 1.$$

To decide $T_{\mathbb{Z}}$ -validity for a $\Sigma_{\mathbb{Z}}$ -formula F:

- transform $\neg F$ to an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula $\neg G$,
- decide $T_{\mathbb{N}}$ -validity of G.

Rationals and Reals

$$\Sigma \ = \ \{0, \ 1, \ +, \ -, \ \cdot, \ \ =, \ \geq \}$$

• Theory of Reals $T_{\mathbb{R}}$ (with multiplication)

$$x \cdot x = 2 \quad \Rightarrow \quad x = \pm \sqrt{2}$$

Rationals and Reals

$$\Sigma \,=\, \{0,\ 1,\ +,\ -,\ \cdot,\ =,\ \geq\}$$

• Theory of Reals $T_{\mathbb{R}}$ (with multiplication)

$$x \cdot x = 2 \quad \Rightarrow \quad x = \pm \sqrt{2}$$

• Theory of Rationals $T_{\mathbb{Q}}$ (no multiplication)

$$\underbrace{2x}_{x+x} = 7 \quad \Rightarrow \quad x = \frac{2}{7}$$

Rationals and Reals

$$\Sigma \,=\, \{0,\ 1,\ +,\ -,\ \cdot,\ =,\ \geq\}$$

• Theory of Reals $T_{\mathbb{R}}$ (with multiplication)

$$x \cdot x = 2 \quad \Rightarrow \quad x = \pm \sqrt{2}$$

• Theory of Rationals $T_{\mathbb{Q}}$ (no multiplication)

$$\underbrace{2x}_{x+x} = 7 \quad \Rightarrow \quad x = \frac{2}{7}$$

Note: Strict inequality

$$\forall x, y. \exists z. x + y > z$$

can be expressed as

$$\forall x, y. \exists z. \neg (x + y = z) \land x + y \geq z$$

Jochen Hoenicke (Software Engineering)

 $\mbox{Signature:} \ \ \Sigma_{\mathbb R} \ : \ \ \{0, \ 1, \ +, \ -, \ \cdot, \ =, \ \geq \} \ \mbox{with multiplication}.$

(+ associativity) (+ commutativity) (+ identity) (+ inverse)

Signature: $\Sigma_{\mathbb{R}}$: {0, 1, +, -, ·, =, >} with multiplication. Axioms of $T_{\mathbb{R}}$: axioms of T_{F} , **1** $\forall x, y, z. (x + y) + z = x + (y + z)$ (+ associativity)(+ commutativity) $\forall x, y, x + y = y + x$ (+ identity)**(a)** $\forall x. x + (-x) = 0$ (+ inverse)(· associativity) (· commutativity) $\bigcirc \forall x. x \cdot 1 = x$ (· identity) (· inverse)

Signature: $\Sigma_{\mathbb{R}}$: {0, 1, +, -, ·, =, ≥} with multiplication. Axioms of $T_{\mathbb{R}}$: axioms of T_{F} , **1** $\forall x, y, z. (x + y) + z = x + (y + z)$ (+ associativity) $\forall x, y, x + y = y + x$ (+ commutativity) (+ identity)**(a)** $\forall x. x + (-x) = 0$ (+ inverse)(· associativity) (· commutativity) $\bigcirc \forall x. x \cdot 1 = x$ (· identity) (distributivity)

(· inverse)

Signature: $\Sigma_{\mathbb{R}}$: {0, 1, +, -, ·, =, >} with multiplication. Axioms of $T_{\mathbb{R}}$: axioms of T_{F} , **1** $\forall x, y, z, (x + y) + z = x + (y + z)$ (+ commutativity) **(a)** $\forall x. x + (-x) = 0$ (· commutativity) $\bigcirc \forall x. x \cdot 1 = x$ $0 0 \neq 1$ (separate identies)

(+ associativity)

(+ identity)

(+ inverse)

(· identity)

(· inverse)

(distributivity)

(· associativity)

Signature: $\Sigma_{\mathbb{R}}$: {0, 1, +, -, ·, =, >} with multiplication. Axioms of $T_{\mathbb{R}}$: axioms of T_{F} , **1** $\forall x, y, z, (x + y) + z = x + (y + z)$ **(a)** $\forall x. x + (-x) = 0$ $\bigcirc \forall x. x \cdot 1 = x$ $0 0 \neq 1$

(+ associativity)

(+ identity)

(+ inverse)

(· identity)

(· inverse)

(distributivity) (separate identies)

(antisymmetry)

(transitivity)

(totality)

(· associativity) (· commutativity)

(+ commutativity)

Signature: $\Sigma_{\mathbb{R}}$: {0, 1, +, -, ·, =, >} with multiplication. Axioms of $T_{\mathbb{R}}$: axioms of T_{F} , **1** $\forall x, y, z, (x + y) + z = x + (y + z)$ $\forall x, y, x + y = y + x$ (+ commutativity) **(a)** $\forall x. x + (-x) = 0$ $\bigcirc \forall x. x \cdot 1 = x$ $0 0 \neq 1$ (separate identies) $\exists \forall x. y. x > y \lor y > x$

(+ associativity)

(+ identity)

(+ inverse)

(· identity)

(· inverse)

(distributivity)

(antisymmetry)

(transitivity)

(+ ordered)

(· ordered)

(totality)

(· associativity)

(· commutativity)

Signature: $\Sigma_{\mathbb{R}}$: {0, 1, +, -, ·, =, >} with multiplication. Axioms of $T_{\mathbb{R}}$: axioms of T_{F} , **1** $\forall x, y, z, (x + y) + z = x + (y + z)$ (+ associativity)(+ commutativity) (+ identity)**(a)** $\forall x. x + (-x) = 0$ (+ inverse)(· associativity) (· commutativity) $\bigcirc \forall x. x \cdot 1 = x$ (· identity) (· inverse) (distributivity) $0 0 \neq 1$ (separate identies) (antisymmetry) (transitivity) (totality) (+ ordered)(· ordered) (square root) for each odd integer n, $\forall x_0, \dots, x_{n-1}$. $\exists y. y^n + x_{n-1}y^{n-1} \dots + x_1y + x_0 = 0$ (at least one root)

Example

 $\begin{array}{l} F\colon \forall a,b,c. \ b^2-4ac \geq 0 \leftrightarrow \exists x. \ ax^2+bx+c=0 \ \text{is} \ T_{\mathbb{R}}\text{-valid.} \\ \text{As usual:} \ x^2 \ \text{abbreviates} \ x \cdot x, \ \text{we omit} \ \cdot, \ \text{e.g. in} \ 4ac, \\ 4 \ \text{abbreviate} \ 1+1+1+1 \ \text{and} \ a-b \ \text{abbreviates} \ a+(-b). \end{array}$

Example

 $F: \forall a, b, c. \ b^2 - 4ac \ge 0 \leftrightarrow \exists x. \ ax^2 + bx + c = 0 \text{ is } T_{\mathbb{R}}\text{-valid.}$ As usual: x^2 abbreviates $x \cdot x$, we omit \cdot , e.g. in 4ac,

4 abbreviate 1 + 1 + 1 + 1 and a - b abbreviates a + (-b).

1.
$$l \not\models F$$
assumption2. $l \not\models \exists y. bb - 4ac = y^2 \lor bb - 4ac = -y^2$ square root, \forall 3. $l \not\models d^2 = bb - 4ac \lor d^2 = -(bb - 4ac)$ 2, \exists 4. $l \not\models d^2 \ge 0$ 2, \exists 5. $l \not\models d^2 \ge 0$ 4, case distinction, \cdot ordered6. $l \not\models 2a \cdot e = 1$ \cdot inverse, \forall , \exists 7a. $l \not\models bb - 4ac \ge 0$ 1, \leftrightarrow 8a. $l \not\models \exists x.axx + bx + c = 0$ 1, \leftrightarrow 9a. $l \not\models ab^2e^2 - 2abde^2 + ad^2e^2$ $-b^2e + bde + c = 0$ 10a. $l \not\models ab^2e^2 - bde + a(b^2 - 4ac)e^2$ $-b^2e + bde + c = 0$ 11a. $l \not\models ab^2e^2 - bde + a(b^2 - 4ac)e^2$ $-b^2e + bde + c = 0$ 13a. $l \not\models 0 = 0$ 3, distributivity, inverse14a. $l \not\models \perp$ 13a, reflexivity

Example

4 abbreviate 1 + 1 + 1 + 1 and a - b abbreviates a + (-b).

1.
$$I \not\models F$$
assumption2. $I \models \exists y. bb - 4ac = y^2 \lor bb - 4ac = -y^2$ square root, \forall 3. $I \models d^2 = bb - 4ac \lor d^2 = -(bb - 4ac)$ 2, \exists 4. $I \models d \ge 0 \lor 0 \ge d$ $\ge total$ 5. $I \models d^2 \ge 0$ 4, case distinction, \cdot ordered6. $I \models 2a \cdot e = 1$ \cdot inverse, \forall, \exists 7b. $I \not\models bb - 4ac \ge 0$ $1, \leftrightarrow$ 8b. $I \models \exists x.axx + bx + c = 0$ $1, \leftrightarrow$ 9b. $I \models aff + bf + c = 0$ b, \exists 10b. $I \models (2af + b)^2 = bb - 4ac$ field axioms, T_E 11b. $I \models (2af + b)^2 \ge 0$ analogous to 512b. $I \models bb - 4ac \ge 0$ 10b, 11b, equivalence13b. $I \models \bot$ 12b, 7b

 $T_{\mathbb{R}}$ is decidable (Tarski, 1930) High time complexity

 $T_{\mathbb{R}}$ is decidable (Tarski, 1930) High time complexity: $O(2^{2^{kn}})$

Theory of Rationals T_{\odot}

Theory of Rationals T_{\odot}

Theory of Rationals $T_{\mathbb{Q}}$

Theory of Rationals $T_{\mathbb{Q}}$	BURG
Signature: $\Sigma_{\mathbb{Q}}$: $\{0, 1, +, -, =, \geq\}$ no multiplication Axioms of $T_{\mathbb{R}}$: axioms of T_E ,	on!
$ \forall x, y, z. (x + y) + z = x + (y + z) $	(+ associativity)
$ \forall x, y. \ x + y = y + x $	(+ commutativity)
	(+ identity)
$ \forall x. \ x + (-x) = 0 $	(+ inverse)
$ 1 \geq 0 \land 1 \neq 0 $	(one)
	(antisymmetry)
$\bigcirc \forall x, y, z. \ x \ge y \land y \ge z \to x \ge z$	(transitivity)
$ \forall x, y. \ x \ge y \lor y \ge x $	(totality)

Theory of Rationals $T_{\mathbb{Q}}$

Theory of Rationals $ T_{\mathbb Q} $	BURG
Signature: $\Sigma_{\mathbb{Q}}$: $\{0, 1, +, -, =, \geq\}$ no multiplicat Axioms of $T_{\mathbb{R}}$: axioms of T_E ,	ion!
$ \forall x, y, z. (x + y) + z = x + (y + z) $	(+ associativity)
$ \forall x, y. \ x + y = y + x $	(+ commutativity)
	(+ identity)
$ \forall x. \ x + (-x) = 0 $	(+ inverse)
$ 1 \ge 0 \land 1 \ne 0 $	(one)
	(antisymmetry)
$ \forall x, y, z. \ x \ge y \land y \ge z \to x \ge z $	(transitivity)
$ \forall x, y. \ x \ge y \lor y \ge x $	(totality)
$ \forall x, y, z. \ x \ge y \to x + z \ge y + z $	(+ ordered)

Theory of Rationals $T_{\mathbb{Q}}$

Theory of Rationals $ T_{\mathbb Q} $	BURG
Signature: $\Sigma_{\mathbb{Q}}$: $\{0, 1, +, -, =, \geq\}$ no multiplication Axioms of $T_{\mathbb{R}}$: axioms of T_E ,	ation!
• $\forall x, y, z. (x + y) + z = x + (y + z)$	(+ associativity)
$ \forall x, y. \ x + y = y + x $	(+ commutativity)
	(+ identity)
$ \forall x. \ x + (-x) = 0 $	(+ inverse)
$ 1 \ge 0 \land 1 \ne 0 $	(one)
	(antisymmetry)
$ \forall x, y, z. \ x \ge y \land y \ge z \to x \ge z $	(transitivity)
$ \forall x, y. \ x \ge y \lor y \ge x $	(totality)
	(+ ordered)
• For every positive integer <i>n</i> : $\forall x. \exists y. x = \underbrace{y + \dots + y}_{n}$	(divisible)

Expressiveness and Decidability of $T_{\mathbb{Q}}$

Rational coefficients are simple to express in $\mathcal{T}_{\mathbb{Q}}$

Example: Rewrite

$$\frac{1}{2}x+\frac{2}{3}y\geq 4$$

as the $\Sigma_{\mathbb{Q}}\text{-formula}$

$$x + x + x + y + y + y + y \ge 1 + 1 + \dots + 1$$

24
Expressiveness and Decidability of $\mathcal{T}_{\mathbb{Q}}$

Rational coefficients are simple to express in $\mathcal{T}_{\mathbb{Q}}$

Example: Rewrite

$$\frac{1}{2}x+\frac{2}{3}y\geq 4$$

as the $\Sigma_{\mathbb Q}\text{-formula}$

$$x + x + x + y + y + y + y \ge \underbrace{1 + 1 + \dots + 1}_{24}$$

 $T_{\mathbb{Q}}$ is decidable Efficient algorithm for quantifier free fragment

Jochen Hoenicke (Software Engineering)

Decision Procedures

- Data Structures are tuples of variables. Like struct in C, record in Pascal.
- Recursive Data Structures one of the tuple element can be the data structure again.
 Linked lists or trees.

RDS theory of LISP-like lists, T_{cons}

$$\Sigma_{cons}$$
 : {cons, car, cdr, atom, =}

where

cons(a, b) – list constructed by adding *a* in front of list *b* car(x) – left projector of *x*: car(cons(a, b)) = a cdr(x) – right projector of *x*: cdr(cons(a, b)) = batom(x) – true iff *x* is a single-element list

Axioms: The axioms of A_{T_F} plus

• $\forall x, y. \operatorname{car}(\operatorname{cons}(x, y)) = x$ (left projection) • $\forall x, y. \operatorname{cdr}(\operatorname{cons}(x, y)) = y$ (right projection) • $\forall x. \neg \operatorname{atom}(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) = x$ (construction) • $\forall x, y. \neg \operatorname{atom}(\operatorname{cons}(x, y))$ (atom)

Axioms of Theory of Lists T_{cons}

- The axioms of reflexivity, symmetry, and transitivity of =
- Congruence axioms

$$\begin{aligned} \forall x_1, x_2, y_1, y_2. \ x_1 &= x_2 \land y_1 = y_2 \rightarrow \mathsf{cons}(x_1, y_1) = \mathsf{cons}(x_2, y_2) \\ \forall x, y. \ x &= y \rightarrow \mathsf{car}(x) = \mathsf{car}(y) \\ \forall x, y. \ x &= y \rightarrow \mathsf{cdr}(x) = \mathsf{cdr}(y) \end{aligned}$$

Equivalence axiom

$$\forall x, y. \ x = y \rightarrow (\operatorname{atom}(x) \leftrightarrow \operatorname{atom}(y))$$

Image: System state structureImage: System structureImage:

Decidability of T_{cons}

 T_{cons} is undecidable

 T_{cons} is undecidable Quantifier-free fragment of T_{cons} is efficiently decidable

Example: T_{cons} -Validity

We argue that the following Σ_{cons} -formula F is T_{cons} -valid:

$$F: \begin{array}{ll} \mathsf{car}(a) \,=\, \mathsf{car}(b) \,\wedge\, \mathsf{cdr}(a) \,=\, \mathsf{cdr}(b) \,\wedge\, \neg \mathsf{atom}(a) \,\wedge\, \neg \mathsf{atom}(b) \\ \rightarrow a \,=\, b \end{array}$$

Example: T_{cons} -Validity

We argue that the following Σ_{cons} -formula F is T_{cons} -valid:

$$F: \begin{array}{c} \mathsf{car}(a) = \mathsf{car}(b) \land \mathsf{cdr}(a) = \mathsf{cdr}(b) \land \neg \mathsf{atom}(a) \land \neg \mathsf{atom}(b) \\ \rightarrow a = b \end{array}$$

1.
$$I \not\models F$$
assumption2. $I \models car(a) = car(b)$ $1, \rightarrow, \land$ 3. $I \models cdr(a) = cdr(b)$ $1, \rightarrow, \land$ 4. $I \models \neg atom(a)$ $1, \rightarrow, \land$ 5. $I \models \neg atom(b)$ $1, \rightarrow, \land$ 6. $I \not\models a = b$ $1, \rightarrow$ 7. $I \models cons(car(a), cdr(a)) = cons(car(b), cdr(b))$ 2. $2, 3, (congruence)$ 8. $I \models cons(car(a), cdr(a)) = a$ $4, (construction)$ 9. $I \models cons(car(b), cdr(b)) = b$ $5, (construction)$ 10. $I \models a = b$ $7, 8, 9, (transitivity)$

Lines 6 and 10 are contradictory. Therefore, F is T_{cons} -valid.

UNI FREIBURG

Theory of Arrays T_A

- a[i] binary function –
 read array a at index i ("read(a,i)")
- a⟨i ⊲ v⟩ ternary function –
 write value v to index i of array a ("write(a,i,e)")

Axioms

() the axioms of (reflexivity), (symmetry), and (transitivity) of T_{E}

(a)
$$\forall a, i, j. i = j \rightarrow a[i] = a[j]$$
(array congruence)(a) $\forall a, v, i, j. i = j \rightarrow a \langle i \triangleleft v \rangle [j] = v$ (read-over-write 1)(a) $\forall a, v, i, j. i \neq j \rightarrow a \langle i \triangleleft v \rangle [j] = a[j]$ (read-over-write 2)

Equality in T_A

Note: = is only defined for array elements

$$a[i] = e
ightarrow a\langle i riangle e
angle = a$$

not T_A -valid, but

$$a[i] = e \rightarrow \forall j. \ a\langle i \triangleleft e \rangle[j] = a[j] ,$$

is T_A -valid.

Equality in T_A

Note: = is only defined for array elements

$$a[i] = e
ightarrow a\langle i \triangleleft e
angle = a$$

not T_A -valid, but

$$a[i] = e \rightarrow \forall j. \ a\langle i \triangleleft e \rangle [j] = a[j] ,$$

is T_A -valid.

Also

$$a = b
ightarrow a[i] = b[i]$$

is not T_A -valid: We only axiomatized a restricted congruence.

Equality in T_A

Note: = is only defined for array elements

$$a[i] = e
ightarrow a\langle i \triangleleft e
angle = a$$

not T_A -valid, but

$$a[i] = e \rightarrow orall j. \ a\langle i \triangleleft e
angle[j] = a[j] \; ,$$

is T_A -valid.

Also

$$a = b \rightarrow a[i] = b[i]$$

is not T_A -valid: We only axiomatized a restricted congruence.

```
T_A is undecidable
Quantifier-free fragment of T_A is decidable
```

Jochen Hoenicke (Software Engineering)

Decision Procedures

FREIBURG

Signature and axioms of $\mathcal{T}^{=}_{A}$ are the same as $\mathcal{T}_{A},$ with one additional axiom

$$\forall a, b. \ (\forall i. \ a[i] = b[i]) \leftrightarrow a = b \quad (extensionality)$$

Example:

$$F: a[i] = e \rightarrow a \langle i \triangleleft e \rangle = a$$

is $T_A^=$ -valid.

FREIBURG

Signature and axioms of $\mathcal{T}_A^=$ are the same as $\mathcal{T}_A,$ with one additional axiom

$$\forall a, b. \ (\forall i. \ a[i] = b[i]) \leftrightarrow a = b \quad (\text{extensionality})$$

Example:

$$F: a[i] = e \rightarrow a \langle i \triangleleft e \rangle = a$$

is $T_A^=$ -valid.

 $T_A^{=}$ is undecidable Quantifier-free fragment of $T_A^{=}$ is decidable

Combination of Theories

How do we show that

$$1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$$

is $(T_{\mathsf{E}} \cup T_{\mathbb{Z}})$ -unsatisfiable?

FREIBURG

Combination of Theories

How do we show that

 $1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$

is $(T_{\mathsf{E}} \cup T_{\mathbb{Z}})$ -unsatisfiable? Or how do we prove properties about an array of integers, or a list of reals ...? UNI FREIBURG

Combination of Theories

How do we show that

 $1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$

is $(T_E \cup T_Z)$ -unsatisfiable? Or how do we prove properties about an array of integers, or a list of reals ...?

Given theories T_1 and T_2 such that

$$\Sigma_1 \ \cap \ \Sigma_2 \quad = \quad \{=\}$$

The combined theory $T_1 \cup T_2$ has

- signature $\Sigma_1 \cup \Sigma_2$
- axioms $A_1 \cup A_2$

 $\mathsf{qff} = \mathsf{quantifier}\text{-}\mathsf{free}\ \mathsf{fragment}$

Nelson & Oppen showed that

if satisfiability of qff of T_1 is decidable, satisfiability of qff of T_2 is decidable, and certain technical requirements are met then satisfiability of qff of $T_1 \cup T_2$ is decidable.

(this includes uninterpreted constants, functions, and predicates)

 $T_{\rm cons}^{=}$: $T_{\rm E} \cup T_{\rm cons}$

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of T_E and T_{cons}

 $Signature: \qquad \Sigma_E \ \cup \ \Sigma_{cons}$

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of T_E and T_{cons}

 $T_{cons}^{=}$ is undecidable

 $T_{\rm cons}^{=}$: $T_{\rm E} \cup T_{\rm cons}$

 $Signature: \qquad \Sigma_E \ \cup \ \Sigma_{cons}$

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of T_E and T_{cons}

 $T_{cons}^{=}$ is undecidable Quantifier-free fragment of $T_{cons}^{=}$ is efficiently decidable

Example: $T_{cons}^{=}$ -Validity

UNI FREIBURG

We argue that the following $\Sigma_{cons}^{=}$ -formula F is $T_{cons}^{=}$ -valid:

$$F: \begin{array}{l} \mathsf{car}(a) = \mathsf{car}(b) \land \mathsf{cdr}(a) = \mathsf{cdr}(b) \land \neg \mathsf{atom}(a) \land \neg \mathsf{atom}(b) \\ \rightarrow f(a) = f(b) \end{array}$$

Example: $T_{cons}^{=}$ -Validity

We argue that the following $\Sigma_{cons}^{=}$ -formula F is $T_{cons}^{=}$ -valid:

$$F: \begin{array}{l} \mathsf{car}(a) = \mathsf{car}(b) \land \mathsf{cdr}(a) = \mathsf{cdr}(b) \land \neg \mathsf{atom}(a) \land \neg \mathsf{atom}(b) \\ \rightarrow f(a) = f(b) \end{array}$$

1.
$$I \not\models F$$
assumption2. $I \models car(a) = car(b)$ $1, \rightarrow, \land$ 3. $I \models cdr(a) = cdr(b)$ $1, \rightarrow, \land$ 4. $I \models \neg atom(a)$ $1, \rightarrow, \land$ 5. $I \models \neg atom(b)$ $1, \rightarrow, \land$ 6. $I \not\models f(a) = f(b)$ $1, \rightarrow$ 7. $I \models cons(car(a), cdr(a)) = cons(car(b), cdr(b))$
2, 3, (congruence)8. $I \models cons(car(b), cdr(a)) = a$ 4, (construction)9. $I \models cons(car(b), cdr(b)) = b$ 5, (construction)10. $I \models a = b$ 7, 8, 9, (transitivity)11. $I \models f(a) = f(b)$ 10, (congruence)

Lines 6 and 11 are contradictory. Therefore, F is $T_{cons}^{=}$ -valid.

UNI FREIBURG

		URG	
-	=	E	-
	5	£	

	Theory	Decidable	QFF Dec.
T_E	Equality	—	1
T_{PA}	Peano Arithmetic	—	—
$T_{\mathbb{N}}$	Presburger Arithmetic	1	1
$T_{\mathbb{Z}}$	Linear Integer Arithmetic	1	\checkmark
$\mathcal{T}_{\mathbb{R}}$	Real Arithmetic	1	✓
$T_{\mathbb{Q}}$	Linear Rationals	1	1
T_{cons}	Lists	—	✓
$T_{\rm cons}^{=}$	Lists with Equality	—	1
T_{A}	Arrays	—	1
$T_{\rm A}^{=}$	Arrays with Extensionality	—	\checkmark