
Decision Procedures

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Summer 2012

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 1 / 73

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 73

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 73

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 73

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 73

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)

QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 73

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality

Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 73

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic

(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 73

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic

Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 73

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic

(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 73

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic

QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 73

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures

QFF of Arrays
Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 73

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays

Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 73

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 73

First-Order Logic

Syntax of First-Order Logic

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables x , y , z , · · ·
constants a, b, c , · · ·
functions f , g , h, · · · with arity n > 0

terms variables, constants or
n-ary function applied to n terms as arguments
a, x , f (a), g(x , b), f (g(x , f (b)))

predicates p, q, r , · · · with arity n ≥ 0

atom >, ⊥, or an n-ary predicate applied to n terms
literal atom or its negation

p(f (x), g(x , f (x))), ¬p(f (x), g(x , f (x)))

Note: 0-ary functions: constant
0-ary predicates: P,Q,R, . . .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 4 / 73

Syntax of First-Order Logic

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables x , y , z , · · ·
constants a, b, c , · · ·
functions f , g , h, · · · with arity n > 0
terms variables, constants or

n-ary function applied to n terms as arguments
a, x , f (a), g(x , b), f (g(x , f (b)))

predicates p, q, r , · · · with arity n ≥ 0

atom >, ⊥, or an n-ary predicate applied to n terms
literal atom or its negation

p(f (x), g(x , f (x))), ¬p(f (x), g(x , f (x)))

Note: 0-ary functions: constant
0-ary predicates: P,Q,R, . . .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 4 / 73

Syntax of First-Order Logic

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables x , y , z , · · ·
constants a, b, c , · · ·
functions f , g , h, · · · with arity n > 0
terms variables, constants or

n-ary function applied to n terms as arguments
a, x , f (a), g(x , b), f (g(x , f (b)))

predicates p, q, r , · · · with arity n ≥ 0

atom >, ⊥, or an n-ary predicate applied to n terms
literal atom or its negation

p(f (x), g(x , f (x))), ¬p(f (x), g(x , f (x)))

Note: 0-ary functions: constant
0-ary predicates: P,Q,R, . . .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 4 / 73

Syntax of First-Order Logic

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables x , y , z , · · ·
constants a, b, c , · · ·
functions f , g , h, · · · with arity n > 0
terms variables, constants or

n-ary function applied to n terms as arguments
a, x , f (a), g(x , b), f (g(x , f (b)))

predicates p, q, r , · · · with arity n ≥ 0

atom >, ⊥, or an n-ary predicate applied to n terms
literal atom or its negation

p(f (x), g(x , f (x))), ¬p(f (x), g(x , f (x)))

Note: 0-ary functions: constant
0-ary predicates: P,Q,R, . . .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 4 / 73

Syntax of First-Order Logic (2)

quantifiers

existential quantifier ∃x .F [x]
“there exists an x such that F [x]”

universal quantifier ∀x .F [x]
“for all x , F [x]”

FOL formula literal, application of logical connectives
(¬,∨,∧,→,↔) to formulae,
or application of a quantifier to a formula

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 5 / 73

Example

FOL formula

∀x . (p(f (x), x) → (∃y . (p(f (g(x , y)), g(x , y))︸ ︷︷ ︸
G

)) ∧ q(x , f (x))

︸ ︷︷ ︸
F

)

The scope of ∀x is F .
The scope of ∃y is G .

The formula reads:
“for all x,
if p(f (x), x)
then there exists a y such that
p(f (g(x , y)), g(x , y)) and q(x , f (x))”

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 6 / 73

Example

FOL formula

∀x . (p(f (x), x) → (∃y . (p(f (g(x , y)), g(x , y))︸ ︷︷ ︸
G

)) ∧ q(x , f (x))

︸ ︷︷ ︸
F

)

The scope of ∀x is F .
The scope of ∃y is G .
The formula reads:

“for all x,
if p(f (x), x)
then there exists a y such that
p(f (g(x , y)), g(x , y)) and q(x , f (x))”

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 6 / 73

Famous theorems in FOL

The length of one side of a triangle is less than the sum of the lengths
of the other two sides

∀x , y , z . triangle(x , y , z) → length(x) < length(y) + length(z)

Fermat’s Last Theorem.

∀n. integer(n) ∧ n > 2
→∀x , y , z .

integer(x) ∧ integer(y) ∧ integer(z)
∧x > 0 ∧ y > 0 ∧ z > 0
→xn + yn 6= zn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 7 / 73

Famous theorems in FOL

The length of one side of a triangle is less than the sum of the lengths
of the other two sides

∀x , y , z . triangle(x , y , z) → length(x) < length(y) + length(z)

Fermat’s Last Theorem.

∀n. integer(n) ∧ n > 2
→∀x , y , z .

integer(x) ∧ integer(y) ∧ integer(z)
∧x > 0 ∧ y > 0 ∧ z > 0
→xn + yn 6= zn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 7 / 73

Famous theorems in FOL

The length of one side of a triangle is less than the sum of the lengths
of the other two sides

∀x , y , z . triangle(x , y , z) → length(x) < length(y) + length(z)

Fermat’s Last Theorem.

∀n. integer(n) ∧ n > 2
→∀x , y , z .

integer(x) ∧ integer(y) ∧ integer(z)
∧x > 0 ∧ y > 0 ∧ z > 0
→xn + yn 6= zn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 7 / 73

Famous theorems in FOL

The length of one side of a triangle is less than the sum of the lengths
of the other two sides

∀x , y , z . triangle(x , y , z) → length(x) < length(y) + length(z)

Fermat’s Last Theorem.

∀n. integer(n) ∧ n > 2
→∀x , y , z .

integer(x) ∧ integer(y) ∧ integer(z)
∧x > 0 ∧ y > 0 ∧ z > 0
→xn + yn 6= zn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 7 / 73

Pumping Lemma

For every regular Language L there is some n ≥ 0, such that for all words
z ∈ L with |z | ≥ n there is a decomposition z = uvw with |v | ≥ 1 and
|uv | ≤ n, such that for all i ≥ 0: uv iw ∈ L.

∀L. regularlanguage(L)→
∃n. integer(n) ∧ n ≥ 0∧
∀z . z ∈ L ∧ |z | ≥ n→
∃u, v ,w . word(u) ∧ word(v) ∧ word(w)∧

z = uvw ∧ |v | ≥ 1 ∧ |uv | ≤ n∧
∀i . integer(i) ∧ i ≥ 0 → uv iw ∈ L

Predicates: regularlanguage, integer , word , · ∈ ·, · ≤ ·, · ≥ ·, · = ·
Constants: 0, 1
Functions: | · | (word length), concatenation, iteration

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 8 / 73

Pumping Lemma

For every regular Language L there is some n ≥ 0, such that for all words
z ∈ L with |z | ≥ n there is a decomposition z = uvw with |v | ≥ 1 and
|uv | ≤ n, such that for all i ≥ 0: uv iw ∈ L.

∀L. regularlanguage(L)→
∃n. integer(n) ∧ n ≥ 0∧
∀z . z ∈ L ∧ |z | ≥ n→
∃u, v ,w . word(u) ∧ word(v) ∧ word(w)∧

z = uvw ∧ |v | ≥ 1 ∧ |uv | ≤ n∧
∀i . integer(i) ∧ i ≥ 0 → uv iw ∈ L

Predicates: regularlanguage, integer , word , · ∈ ·, · ≤ ·, · ≥ ·, · = ·
Constants: 0, 1
Functions: | · | (word length), concatenation, iteration

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 8 / 73

Pumping Lemma

For every regular Language L there is some n ≥ 0, such that for all words
z ∈ L with |z | ≥ n there is a decomposition z = uvw with |v | ≥ 1 and
|uv | ≤ n, such that for all i ≥ 0: uv iw ∈ L.

∀L. regularlanguage(L)→
∃n. integer(n) ∧ n ≥ 0∧
∀z . z ∈ L ∧ |z | ≥ n→
∃u, v ,w . word(u) ∧ word(v) ∧ word(w)∧

z = uvw ∧ |v | ≥ 1 ∧ |uv | ≤ n∧
∀i . integer(i) ∧ i ≥ 0 → uv iw ∈ L

Predicates: regularlanguage, integer , word , · ∈ ·, · ≤ ·, · ≥ ·, · = ·
Constants: 0, 1
Functions: | · | (word length), concatenation, iteration

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 8 / 73

Pumping Lemma

For every regular Language L there is some n ≥ 0, such that for all words
z ∈ L with |z | ≥ n there is a decomposition z = uvw with |v | ≥ 1 and
|uv | ≤ n, such that for all i ≥ 0: uv iw ∈ L.

∀L. regularlanguage(L)→
∃n. integer(n) ∧ n ≥ 0∧
∀z . z ∈ L ∧ |z | ≥ n→
∃u, v ,w . word(u) ∧ word(v) ∧ word(w)∧

z = uvw ∧ |v | ≥ 1 ∧ |uv | ≤ n∧
∀i . integer(i) ∧ i ≥ 0 → uv iw ∈ L

Predicates: regularlanguage, integer , word , · ∈ ·, · ≤ ·, · ≥ ·, · = ·

Constants: 0, 1
Functions: | · | (word length), concatenation, iteration

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 8 / 73

Pumping Lemma

For every regular Language L there is some n ≥ 0, such that for all words
z ∈ L with |z | ≥ n there is a decomposition z = uvw with |v | ≥ 1 and
|uv | ≤ n, such that for all i ≥ 0: uv iw ∈ L.

∀L. regularlanguage(L)→
∃n. integer(n) ∧ n ≥ 0∧
∀z . z ∈ L ∧ |z | ≥ n→
∃u, v ,w . word(u) ∧ word(v) ∧ word(w)∧

z = uvw ∧ |v | ≥ 1 ∧ |uv | ≤ n∧
∀i . integer(i) ∧ i ≥ 0 → uv iw ∈ L

Predicates: regularlanguage, integer , word , · ∈ ·, · ≤ ·, · ≥ ·, · = ·
Constants: 0, 1
Functions: | · | (word length), concatenation, iteration

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 8 / 73

FOL Semantics

An interpretation I : (DI , αI) consists of:

Domain DI

non-empty set of values or objects

for example DI = playing cards (finite),
integers (countable infinite), or
reals (uncountable infinite)

Assignment αI

each variable x assigned value αI [x] ∈ DI

each n-ary function f assigned

αI [f] : Dn
I → DI

In particular, each constant a (0-ary function) assigned value
αI [a] ∈ DI

each n-ary predicate p assigned

αI [p] : Dn
I → {>,⊥}

In particular, each propositional variable P (0-ary predicate) assigned
truth value (>, ⊥)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9 / 73

FOL Semantics

An interpretation I : (DI , αI) consists of:

Domain DI

non-empty set of values or objects
for example DI = playing cards (finite),

integers (countable infinite), or
reals (uncountable infinite)

Assignment αI

each variable x assigned value αI [x] ∈ DI

each n-ary function f assigned

αI [f] : Dn
I → DI

In particular, each constant a (0-ary function) assigned value
αI [a] ∈ DI

each n-ary predicate p assigned

αI [p] : Dn
I → {>,⊥}

In particular, each propositional variable P (0-ary predicate) assigned
truth value (>, ⊥)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9 / 73

FOL Semantics

An interpretation I : (DI , αI) consists of:

Domain DI

non-empty set of values or objects
for example DI = playing cards (finite),

integers (countable infinite), or

reals (uncountable infinite)
Assignment αI

each variable x assigned value αI [x] ∈ DI

each n-ary function f assigned

αI [f] : Dn
I → DI

In particular, each constant a (0-ary function) assigned value
αI [a] ∈ DI

each n-ary predicate p assigned

αI [p] : Dn
I → {>,⊥}

In particular, each propositional variable P (0-ary predicate) assigned
truth value (>, ⊥)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9 / 73

FOL Semantics

An interpretation I : (DI , αI) consists of:

Domain DI

non-empty set of values or objects
for example DI = playing cards (finite),

integers (countable infinite), or
reals (uncountable infinite)

Assignment αI

each variable x assigned value αI [x] ∈ DI

each n-ary function f assigned

αI [f] : Dn
I → DI

In particular, each constant a (0-ary function) assigned value
αI [a] ∈ DI

each n-ary predicate p assigned

αI [p] : Dn
I → {>,⊥}

In particular, each propositional variable P (0-ary predicate) assigned
truth value (>, ⊥)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9 / 73

FOL Semantics

An interpretation I : (DI , αI) consists of:

Domain DI

non-empty set of values or objects
for example DI = playing cards (finite),

integers (countable infinite), or
reals (uncountable infinite)

Assignment αI

each variable x assigned value αI [x] ∈ DI

each n-ary function f assigned

αI [f] : Dn
I → DI

In particular, each constant a (0-ary function) assigned value
αI [a] ∈ DI

each n-ary predicate p assigned

αI [p] : Dn
I → {>,⊥}

In particular, each propositional variable P (0-ary predicate) assigned
truth value (>, ⊥)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9 / 73

FOL Semantics

An interpretation I : (DI , αI) consists of:

Domain DI

non-empty set of values or objects
for example DI = playing cards (finite),

integers (countable infinite), or
reals (uncountable infinite)

Assignment αI

each variable x assigned value αI [x] ∈ DI

each n-ary function f assigned

αI [f] : Dn
I → DI

In particular, each constant a (0-ary function) assigned value
αI [a] ∈ DI

each n-ary predicate p assigned

αI [p] : Dn
I → {>,⊥}

In particular, each propositional variable P (0-ary predicate) assigned
truth value (>, ⊥)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9 / 73

FOL Semantics

An interpretation I : (DI , αI) consists of:

Domain DI

non-empty set of values or objects
for example DI = playing cards (finite),

integers (countable infinite), or
reals (uncountable infinite)

Assignment αI

each variable x assigned value αI [x] ∈ DI

each n-ary function f assigned

αI [f] : Dn
I → DI

In particular, each constant a (0-ary function) assigned value
αI [a] ∈ DI

each n-ary predicate p assigned

αI [p] : Dn
I → {>,⊥}

In particular, each propositional variable P (0-ary predicate) assigned
truth value (>, ⊥)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9 / 73

Example

F : p(f (x , y), z) → p(y , g(z , x))

Interpretation I : (DI , αI)
DI = Z = {· · · ,−2,−1, 0, 1, 2, · · · } integers
αI [f] : D2

I → DI

(x , y) 7→ x + y
αI [g] : D2

I → DI

(x , y) 7→ x − y

αI [p] : D2
I → {>,⊥}

(x , y) 7→

{
> if x < y

⊥ otherwise

Also αI [x] = 13, αI [y] = 42, αI [z] = 1
Compute the truth value of F under I

1. I 6|= p(f (x , y), z) since 13 + 42 ≥ 1
2. I 6|= p(y , g(z , x)) since 42 ≥ 1 − 13
3. I |= F by 1, 2, and →

F is true under I

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 73

Example

F : p(f (x , y), z) → p(y , g(z , x))

Interpretation I : (DI , αI)
DI = Z = {· · · ,−2,−1, 0, 1, 2, · · · } integers
αI [f] : D2

I → DI

(x , y) 7→ x + y
αI [g] : D2

I → DI

(x , y) 7→ x − y

αI [p] : D2
I → {>,⊥}

(x , y) 7→

{
> if x < y

⊥ otherwise

Also αI [x] = 13, αI [y] = 42, αI [z] = 1
Compute the truth value of F under I

1. I 6|= p(f (x , y), z) since 13 + 42 ≥ 1
2. I 6|= p(y , g(z , x)) since 42 ≥ 1 − 13
3. I |= F by 1, 2, and →

F is true under I

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 73

Example

F : p(f (x , y), z) → p(y , g(z , x))

Interpretation I : (DI , αI)
DI = Z = {· · · ,−2,−1, 0, 1, 2, · · · } integers
αI [f] : D2

I → DI

(x , y) 7→ x + y
αI [g] : D2

I → DI

(x , y) 7→ x − y

αI [p] : D2
I → {>,⊥}

(x , y) 7→

{
> if x < y

⊥ otherwise

Also αI [x] = 13, αI [y] = 42, αI [z] = 1
Compute the truth value of F under I

1. I 6|= p(f (x , y), z) since 13 + 42 ≥ 1
2. I 6|= p(y , g(z , x)) since 42 ≥ 1 − 13
3. I |= F by 1, 2, and →

F is true under I
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 73

Semantics: Quantifiers

For a variable x :

Definition (x-variant)

An x-variant of interpretation I is an interpretation J : (DJ , αJ) such that

DI = DJ

αI [y] = αJ [y] for all symbols y , except possibly x

That is, I and J agree on everything except possibly the value of x

Denote J : I / {x 7→ v} the x-variant of I in which αJ [x] = v for some
v ∈ DI . Then

I |= ∀x . F iff for all v ∈ DI , I / {x 7→ v} |= F

I |= ∃x . F iff there exists v ∈ DI s.t. I / {x 7→ v} |= F

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 11 / 73

Semantics: Quantifiers

For a variable x :

Definition (x-variant)

An x-variant of interpretation I is an interpretation J : (DJ , αJ) such that

DI = DJ

αI [y] = αJ [y] for all symbols y , except possibly x

That is, I and J agree on everything except possibly the value of x

Denote J : I / {x 7→ v} the x-variant of I in which αJ [x] = v for some
v ∈ DI .

Then

I |= ∀x . F iff for all v ∈ DI , I / {x 7→ v} |= F

I |= ∃x . F iff there exists v ∈ DI s.t. I / {x 7→ v} |= F

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 11 / 73

Semantics: Quantifiers

For a variable x :

Definition (x-variant)

An x-variant of interpretation I is an interpretation J : (DJ , αJ) such that

DI = DJ

αI [y] = αJ [y] for all symbols y , except possibly x

That is, I and J agree on everything except possibly the value of x

Denote J : I / {x 7→ v} the x-variant of I in which αJ [x] = v for some
v ∈ DI . Then

I |= ∀x . F iff for all v ∈ DI , I / {x 7→ v} |= F

I |= ∃x . F iff there exists v ∈ DI s.t. I / {x 7→ v} |= F

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 11 / 73

Example

Consider
F : ∀x . ∃y . 2 · y = x

Here 2 · y is the infix notatation of the term ·(2, y),
and 2 · y = x is the infix notatation of the atom = (·(2, y), x).

2 is a 0-ary function symbol (a constant).

· is a 2-ary function symbol.

= is a 2-ary predicate symbol.

x , y are variables.

What is the truth-value of F ?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 12 / 73

Example

Consider
F : ∀x . ∃y . 2 · y = x

Here 2 · y is the infix notatation of the term ·(2, y),
and 2 · y = x is the infix notatation of the atom = (·(2, y), x).

2 is a 0-ary function symbol (a constant).

· is a 2-ary function symbol.

= is a 2-ary predicate symbol.

x , y are variables.

What is the truth-value of F ?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 12 / 73

Example (Z)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpration for integers, DI = Z.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff
for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI , there exists v1 ∈ DI , I /{x 7→ v}/{y 7→ v1} |= 2 ·y = x

The latter is false since for 1 ∈ DI there is no number v1 with 2 · v1 = 1.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 13 / 73

Example (Z)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpration for integers, DI = Z.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff
for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI , there exists v1 ∈ DI , I /{x 7→ v}/{y 7→ v1} |= 2 ·y = x

The latter is false since for 1 ∈ DI there is no number v1 with 2 · v1 = 1.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 13 / 73

Example (Q)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpration for rational numbers, DI = Q.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff
for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI , there exists v1 ∈ DI , I /{x 7→ v}/{y 7→ v1} |= 2 ·y = x

The latter is true since for v ∈ DI we can choose v1 = v
2 .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 14 / 73

Example (Q)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpration for rational numbers, DI = Q.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff
for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI , there exists v1 ∈ DI , I /{x 7→ v}/{y 7→ v1} |= 2 ·y = x

The latter is true since for v ∈ DI we can choose v1 = v
2 .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 14 / 73

Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that I |= F .

Definition (Validity)

F is valid iff for all interpretations I , I |= F .

Note

F is valid iff ¬F is unsatisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 15 / 73

Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that I |= F .

Definition (Validity)

F is valid iff for all interpretations I , I |= F .

Note

F is valid iff ¬F is unsatisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 15 / 73

Substitution

Suppose, we want to replace terms with other terms in formulas, e.g.

F : ∀y . (p(x , y) → p(y , x))

should be transformed to

G : ∀y . (p(a, y) → p(y , a))

We call the mapping from x to a a substituion denoted as σ : {x 7→ a}.
We write Fσ for the formula G .
Another convenient notation is F [x] for a formula containing the variable
x and F [a] for Fσ.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 16 / 73

Substitution

Suppose, we want to replace terms with other terms in formulas, e.g.

F : ∀y . (p(x , y) → p(y , x))

should be transformed to

G : ∀y . (p(a, y) → p(y , a))

We call the mapping from x to a a substituion denoted as σ : {x 7→ a}.

We write Fσ for the formula G .
Another convenient notation is F [x] for a formula containing the variable
x and F [a] for Fσ.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 16 / 73

Substitution

Suppose, we want to replace terms with other terms in formulas, e.g.

F : ∀y . (p(x , y) → p(y , x))

should be transformed to

G : ∀y . (p(a, y) → p(y , a))

We call the mapping from x to a a substituion denoted as σ : {x 7→ a}.
We write Fσ for the formula G .

Another convenient notation is F [x] for a formula containing the variable
x and F [a] for Fσ.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 16 / 73

Substitution

Suppose, we want to replace terms with other terms in formulas, e.g.

F : ∀y . (p(x , y) → p(y , x))

should be transformed to

G : ∀y . (p(a, y) → p(y , a))

We call the mapping from x to a a substituion denoted as σ : {x 7→ a}.
We write Fσ for the formula G .
Another convenient notation is F [x] for a formula containing the variable
x and F [a] for Fσ.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 16 / 73

Substitution

Definition (Substitution)

A substitution is a mapping from terms to terms, e.g.

σ : {t1 7→ s1, . . . , tn 7→ sn}

By Fσ we denote the application of σ to formula F , i.e., the formula F
where all occurences of t1, . . . , tn are replaced by s1, . . . , sn.

For a formula named F [x] we write F [t] as shorthand for F [x]{x 7→ t}.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 17 / 73

Safe Substitution

Care has to be taken in the presence of quantifiers:

F [x] : ∃y . y = Succ(x)

What is F [y]?

We need to rename bounded variables occuring in the substitution:

F [y] : ∃y ′. y ′ = Succ(y)

Bounded renaming does not change the models of a formula:

(∃y . y = Succ(x)) ⇔ (∃y ′. y ′ = Succ(x))

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 18 / 73

Safe Substitution

Care has to be taken in the presence of quantifiers:

F [x] : ∃y . y = Succ(x)

What is F [y]?
We need to rename bounded variables occuring in the substitution:

F [y] : ∃y ′. y ′ = Succ(y)

Bounded renaming does not change the models of a formula:

(∃y . y = Succ(x)) ⇔ (∃y ′. y ′ = Succ(x))

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 18 / 73

Safe Substitution

Care has to be taken in the presence of quantifiers:

F [x] : ∃y . y = Succ(x)

What is F [y]?
We need to rename bounded variables occuring in the substitution:

F [y] : ∃y ′. y ′ = Succ(y)

Bounded renaming does not change the models of a formula:

(∃y . y = Succ(x)) ⇔ (∃y ′. y ′ = Succ(x))

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 18 / 73

Recursive Definition of Substitution

tσ =


σ(t) t ∈ dom(σ)

f (t1σ, . . . , tnσ) t /∈ dom(σ) ∧ t = f (t1, . . . , tn)

x t /∈ dom(σ) ∧ t = x

p(t1, . . . , tn)σ = p(t1σ, . . . , tnσ)

(¬F)σ = ¬(Fσ)

(F ∧ G)σ = (Fσ) ∧ (Gσ)

. . .

(∀x . F)σ =

{
∀x . Fσ x /∈ Vars(σ)

∀x ′. ((F{x 7→ x ′})σ) otherwise and x ′ is fresh

(∃x . F)σ =

{
∃x . Fσ x /∈ Vars(σ)

∃x ′. ((F{x 7→ x ′})σ) otherwise and x ′ is fresh

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 19 / 73

Example: Safe Substitution Fσ

F : (∀x . p(x , y))→ q(f (y), x)
bound by ∀x ↗ ↖ free free ↗ ↖ free

σ : {x 7→ g(x), y 7→ f (x), f (y) 7→ h(x , y)}

Fσ?

1 Rename
F ′ : ∀x ′. p(x ′, y) → q(f (y), x)

↑ ↑

where x ′ is a fresh variable

2 Fσ : ∀x ′. p(x ′, f (x)) → q(h(x , y), g(x))

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 20 / 73

Example: Safe Substitution Fσ

F : (∀x . p(x , y))→ q(f (y), x)
bound by ∀x ↗ ↖ free free ↗ ↖ free

σ : {x 7→ g(x), y 7→ f (x), f (y) 7→ h(x , y)}

Fσ?

1 Rename
F ′ : ∀x ′. p(x ′, y) → q(f (y), x)

↑ ↑

where x ′ is a fresh variable

2 Fσ : ∀x ′. p(x ′, f (x)) → q(h(x , y), g(x))

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 20 / 73

Semantic Tableaux

Recall rules from propositional logic:

I |= ¬F
I 6|= F

I 6|= ¬F
I |= F

I |= F ∧ G

I |= F
I |= G

←and

I 6|= F ∧ G

I 6|= F | I 6|= G
↖or

I |= F ∨ G

I |= F | I |= G

I 6|= F ∨ G

I 6|= F
I 6|= G

I |= F → G

I 6|= F | I |= G

I 6|= F → G

I |= F
I 6|= G

I |= F ↔ G

I |= F ∧ G | I 6|= F ∨ G

I 6|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧ G

I |= F
I 6|= F

I |= ⊥

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 21 / 73

Semantic Tableaux for FOL

The following additional rules are used for quantifiers:

I |= ∀x .F [x]
I |= F [t]

for any term t I 6|= ∀x .F [x]
I 6|= F [a]

for a fresh constant a

I |= ∃x .F [x]
I |= F [a]

for a fresh constant a I 6|= ∃x .F [x]
I 6|= F [t]

for any term t

(We assume that there are infinitely many constant symbols.)

The formula F [t] is created from the formula F [x] by the substitution
{x 7→ t} (roughly, replace every x by t).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 22 / 73

Example

Show that (∃x . ∀y . p(x , y)) → (∀x . ∃y . p(y , x)) is valid.

Assume otherwise.

1. I 6|= (∃x . ∀y . p(x , y)) → (∀x . ∃y . p(y , x)) assumption
2. I |= ∃x . ∀y . p(x , y) 1 and →
3. I 6|= ∀x . ∃y . p(y , x) 1 and →
4. I |= ∀y . p(a, y) 2, ∃ (x 7→ a fresh)
5. I 6|= ∃y . p(y , b) 3, ∀ (x 7→ b fresh)
6. I |= p(a, b) 4, ∀ (y 7→ b)
7. I 6|= p(a, b) 5, ∃ (y 7→ a)
8. I |= ⊥ 6,7 contradictory

Thus, the formula is valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 23 / 73

Example

Show that (∃x . ∀y . p(x , y)) → (∀x . ∃y . p(y , x)) is valid.

Assume otherwise.

1. I 6|= (∃x . ∀y . p(x , y)) → (∀x . ∃y . p(y , x)) assumption
2. I |= ∃x . ∀y . p(x , y) 1 and →
3. I 6|= ∀x . ∃y . p(y , x) 1 and →
4. I |= ∀y . p(a, y) 2, ∃ (x 7→ a fresh)
5. I 6|= ∃y . p(y , b) 3, ∀ (x 7→ b fresh)
6. I |= p(a, b) 4, ∀ (y 7→ b)
7. I 6|= p(a, b) 5, ∃ (y 7→ a)
8. I |= ⊥ 6,7 contradictory

Thus, the formula is valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 23 / 73

Example

Is F : (∀x . p(x , x)) → (∃x . ∀y . p(x , y)) valid?.

Assume I is a falsifying interpretation for F and apply semantic argument:

1. I 6|= (∀x . p(x , x)) → (∃x . ∀y . p(x , y))
2. I |= ∀x . p(x , x) 1 and →
3. I 6|= ∃x . ∀y . p(x , y) 1 and →
4. I |= p(a1, a1) 2, ∀
5. I 6|= ∀y .p(a1, y) 3, ∃
6. I 6|= p(a1, a2) 5, ∀
7. I |= p(a2, a2) 2, ∀
8. I 6|= ∀y .p(a2, y) 3, ∃
9. I 6|= p(a2, a3) 8, ∀
...

No contradiction. Falsifying interpretation I can be “read” from proof:

DI = N, pI (x , y) =


true y = x ,

false y = x + 1,

arbitrary otherwise.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 24 / 73

Example

Is F : (∀x . p(x , x)) → (∃x . ∀y . p(x , y)) valid?.

Assume I is a falsifying interpretation for F and apply semantic argument:

1. I 6|= (∀x . p(x , x)) → (∃x . ∀y . p(x , y))
2. I |= ∀x . p(x , x) 1 and →
3. I 6|= ∃x . ∀y . p(x , y) 1 and →
4. I |= p(a1, a1) 2, ∀
5. I 6|= ∀y .p(a1, y) 3, ∃
6. I 6|= p(a1, a2) 5, ∀
7. I |= p(a2, a2) 2, ∀
8. I 6|= ∀y .p(a2, y) 3, ∃
9. I 6|= p(a2, a3) 8, ∀
...

No contradiction.

Falsifying interpretation I can be “read” from proof:

DI = N, pI (x , y) =


true y = x ,

false y = x + 1,

arbitrary otherwise.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 24 / 73

Example

Is F : (∀x . p(x , x)) → (∃x . ∀y . p(x , y)) valid?.

Assume I is a falsifying interpretation for F and apply semantic argument:

1. I 6|= (∀x . p(x , x)) → (∃x . ∀y . p(x , y))
2. I |= ∀x . p(x , x) 1 and →
3. I 6|= ∃x . ∀y . p(x , y) 1 and →
4. I |= p(a1, a1) 2, ∀
5. I 6|= ∀y .p(a1, y) 3, ∃
6. I 6|= p(a1, a2) 5, ∀
7. I |= p(a2, a2) 2, ∀
8. I 6|= ∀y .p(a2, y) 3, ∃
9. I 6|= p(a2, a3) 8, ∀
...

No contradiction. Falsifying interpretation I can be “read” from proof:

DI = N, pI (x , y) =


true y = x ,

false y = x + 1,

arbitrary otherwise.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 24 / 73

Semantic Argument Proof

To show FOL formula F is valid, assume I 6|= F and derive a contradiction
I |= ⊥ in all branches

Soundness
If every branch of a semantic argument proof reach I |= ⊥, then F is
valid

Completeness
Each valid formula F has a semantic argument proof in which every
branch reach I |= ⊥
Non-termination
For an invalid formula F the method is not guaranteed to terminate.
Thus, the semantic argument is not a decision procedure for validity.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 25 / 73

Semantic Argument Proof

To show FOL formula F is valid, assume I 6|= F and derive a contradiction
I |= ⊥ in all branches

Soundness
If every branch of a semantic argument proof reach I |= ⊥, then F is
valid

Completeness
Each valid formula F has a semantic argument proof in which every
branch reach I |= ⊥
Non-termination
For an invalid formula F the method is not guaranteed to terminate.
Thus, the semantic argument is not a decision procedure for validity.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 25 / 73

Semantic Argument Proof

To show FOL formula F is valid, assume I 6|= F and derive a contradiction
I |= ⊥ in all branches

Soundness
If every branch of a semantic argument proof reach I |= ⊥, then F is
valid

Completeness
Each valid formula F has a semantic argument proof in which every
branch reach I |= ⊥

Non-termination
For an invalid formula F the method is not guaranteed to terminate.
Thus, the semantic argument is not a decision procedure for validity.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 25 / 73

Semantic Argument Proof

To show FOL formula F is valid, assume I 6|= F and derive a contradiction
I |= ⊥ in all branches

Soundness
If every branch of a semantic argument proof reach I |= ⊥, then F is
valid

Completeness
Each valid formula F has a semantic argument proof in which every
branch reach I |= ⊥
Non-termination
For an invalid formula F the method is not guaranteed to terminate.
Thus, the semantic argument is not a decision procedure for validity.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 25 / 73

Soundness (proof sketch)

If for interpretation I the assumption of the proof hold
then there is an interpretation I ′ and a branch
such that all statements on that branch hold.

I ′ differs from I in the values αI [ai] of fresh constants ai .

If all branches of the proof end with I |= ⊥, then the assumption was
wrong. Thus, if the assumption was I 6|= F , then F must be valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 26 / 73

Soundness (proof sketch)

If for interpretation I the assumption of the proof hold
then there is an interpretation I ′ and a branch
such that all statements on that branch hold.

I ′ differs from I in the values αI [ai] of fresh constants ai .

If all branches of the proof end with I |= ⊥, then the assumption was
wrong. Thus, if the assumption was I 6|= F , then F must be valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 26 / 73

Soundness (proof sketch)

If for interpretation I the assumption of the proof hold
then there is an interpretation I ′ and a branch
such that all statements on that branch hold.

I ′ differs from I in the values αI [ai] of fresh constants ai .

If all branches of the proof end with I |= ⊥, then the assumption was
wrong.

Thus, if the assumption was I 6|= F , then F must be valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 26 / 73

Soundness (proof sketch)

If for interpretation I the assumption of the proof hold
then there is an interpretation I ′ and a branch
such that all statements on that branch hold.

I ′ differs from I in the values αI [ai] of fresh constants ai .

If all branches of the proof end with I |= ⊥, then the assumption was
wrong. Thus, if the assumption was I 6|= F , then F must be valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 26 / 73

Completeness (proof sketch)

Consider (finite or infinite) proof trees starting with I 6|= F . We assume
that

all possible proof rules were applied in all non-closed branches.

the ∀ and ∃ rules were applied for all terms.
This is possible since the terms are countable.

If every branch is closed, the tree is finite (Kőnig’s Lemma) and we have a
finite proof for F .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 27 / 73

Completeness (proof sketch, continued)

Otherwise, the proof tree has at least one open branch P. We show that F
is not valid.

1 The statements on that branch P form a Hintikka set:

I |= F ∧ G ∈ P implies I |= F ∈ P and I |= G ∈ P.
I 6|= F ∧ G ∈ P implies I 6|= F ∈ P or I 6|= G ∈ P.
I |= ∀x . F [x] ∈ P implies for all terms t, I |= F [t] ∈ P.
I 6|= ∀x . F [x] ∈ P implies for some term a, I 6|= F [a] ∈ P.
Similarly for ∨,→,↔,∃.

2 Choose DI := {t | t is term}, αI [f](t1, . . . , tn) = f (t1, . . . tn),

αI [x] = x , αI [p](t1, . . . , tn) =

{
true I |= p(t1, . . . , tn) ∈ P

false otherwise

3 I satisfies all statements on the branch.
In particular, I is a falsifying interpretation of F , thus F is not valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 28 / 73

Completeness (proof sketch, continued)

Otherwise, the proof tree has at least one open branch P. We show that F
is not valid.

1 The statements on that branch P form a Hintikka set:

I |= F ∧ G ∈ P implies I |= F ∈ P and I |= G ∈ P.
I 6|= F ∧ G ∈ P implies I 6|= F ∈ P or I 6|= G ∈ P.
I |= ∀x . F [x] ∈ P implies for all terms t, I |= F [t] ∈ P.
I 6|= ∀x . F [x] ∈ P implies for some term a, I 6|= F [a] ∈ P.
Similarly for ∨,→,↔,∃.

2 Choose DI := {t | t is term}, αI [f](t1, . . . , tn) = f (t1, . . . tn),

αI [x] = x , αI [p](t1, . . . , tn) =

{
true I |= p(t1, . . . , tn) ∈ P

false otherwise

3 I satisfies all statements on the branch.
In particular, I is a falsifying interpretation of F , thus F is not valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 28 / 73

Completeness (proof sketch, continued)

Otherwise, the proof tree has at least one open branch P. We show that F
is not valid.

1 The statements on that branch P form a Hintikka set:

I |= F ∧ G ∈ P implies I |= F ∈ P and I |= G ∈ P.
I 6|= F ∧ G ∈ P implies I 6|= F ∈ P or I 6|= G ∈ P.
I |= ∀x . F [x] ∈ P implies for all terms t, I |= F [t] ∈ P.
I 6|= ∀x . F [x] ∈ P implies for some term a, I 6|= F [a] ∈ P.
Similarly for ∨,→,↔,∃.

2 Choose DI := {t | t is term}, αI [f](t1, . . . , tn) = f (t1, . . . tn),

αI [x] = x , αI [p](t1, . . . , tn) =

{
true I |= p(t1, . . . , tn) ∈ P

false otherwise

3 I satisfies all statements on the branch.
In particular, I is a falsifying interpretation of F , thus F is not valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 28 / 73

Completeness (proof sketch, continued)

Otherwise, the proof tree has at least one open branch P. We show that F
is not valid.

1 The statements on that branch P form a Hintikka set:

I |= F ∧ G ∈ P implies I |= F ∈ P and I |= G ∈ P.
I 6|= F ∧ G ∈ P implies I 6|= F ∈ P or I 6|= G ∈ P.
I |= ∀x . F [x] ∈ P implies for all terms t, I |= F [t] ∈ P.
I 6|= ∀x . F [x] ∈ P implies for some term a, I 6|= F [a] ∈ P.
Similarly for ∨,→,↔,∃.

2 Choose DI := {t | t is term}, αI [f](t1, . . . , tn) = f (t1, . . . tn),

αI [x] = x , αI [p](t1, . . . , tn) =

{
true I |= p(t1, . . . , tn) ∈ P

false otherwise

3 I satisfies all statements on the branch.
In particular, I is a falsifying interpretation of F , thus F is not valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 28 / 73

Normal Forms

Also in first-order logic normal forms can be used:

Devise an algorithm to convert a formula to a normal form.

Then devise an algorithm for satisfiability/validity that only works on
the normal form.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 29 / 73

Negation Normal Forms (NNF)

Negations appear only in literals. (only ¬,∧,∨, ∃, ∀)

To transform F to equivalent F ′ in NNF use recursively
the following template equivalences (left-to-right):

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

¬∀x . F [x] ⇔ ∃x . ¬F [x]
¬∃x . F [x] ⇔ ∀x . ¬F [x]

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 30 / 73

Negation Normal Forms (NNF)

Negations appear only in literals. (only ¬,∧,∨, ∃, ∀)

To transform F to equivalent F ′ in NNF use recursively
the following template equivalences (left-to-right):

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

¬∀x . F [x] ⇔ ∃x . ¬F [x]
¬∃x . F [x] ⇔ ∀x . ¬F [x]

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 30 / 73

Example: Conversion to NNF

G : ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w .p(x ,w) .

1 ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w . p(x ,w)

2 ∀x . ¬(∃y . p(x , y) ∧ p(x , z)) ∨ ∃w . p(x ,w)
F1 → F2 ⇔ ¬F1 ∨ F2

3 ∀x . (∀y . ¬(p(x , y) ∧ p(x , z))) ∨ ∃w . p(x ,w)
¬∃x . F [x] ⇔ ∀x . ¬F [x]

4 ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 31 / 73

Example: Conversion to NNF

G : ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w .p(x ,w) .

1 ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w . p(x ,w)

2 ∀x . ¬(∃y . p(x , y) ∧ p(x , z)) ∨ ∃w . p(x ,w)
F1 → F2 ⇔ ¬F1 ∨ F2

3 ∀x . (∀y . ¬(p(x , y) ∧ p(x , z))) ∨ ∃w . p(x ,w)
¬∃x . F [x] ⇔ ∀x . ¬F [x]

4 ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 31 / 73

Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

Q1x1 · · ·Qnxn. F [x1, · · · , xn]

where Qi ∈ {∀, ∃} and F is quantifier-free.

Every FOL formula F can be transformed to formula F ′ in PNF s.t.
F ′ ⇔ F :

1 Write F in NNF

2 Rename quantified variables to fresh names

3 Move all quantifiers to the front

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 32 / 73

Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

Q1x1 · · ·Qnxn. F [x1, · · · , xn]

where Qi ∈ {∀, ∃} and F is quantifier-free.

Every FOL formula F can be transformed to formula F ′ in PNF s.t.
F ′ ⇔ F :

1 Write F in NNF

2 Rename quantified variables to fresh names

3 Move all quantifiers to the front

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 32 / 73

Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

Q1x1 · · ·Qnxn. F [x1, · · · , xn]

where Qi ∈ {∀, ∃} and F is quantifier-free.

Every FOL formula F can be transformed to formula F ′ in PNF s.t.
F ′ ⇔ F :

1 Write F in NNF

2 Rename quantified variables to fresh names

3 Move all quantifiers to the front

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 32 / 73

Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

Q1x1 · · ·Qnxn. F [x1, · · · , xn]

where Qi ∈ {∀, ∃} and F is quantifier-free.

Every FOL formula F can be transformed to formula F ′ in PNF s.t.
F ′ ⇔ F :

1 Write F in NNF

2 Rename quantified variables to fresh names

3 Move all quantifiers to the front

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 32 / 73

Example: PNF

Find equivalent PNF of

F : ∀x . ((∃y . p(x , y) ∧ p(x , z)) → ∃y . p(x , y))

Write F in NNF

F1 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃y . p(x , y)

Rename quantified variables to fresh names

F2 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)
↑ in the scope of ∀x

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 33 / 73

Example: PNF

Find equivalent PNF of

F : ∀x . ((∃y . p(x , y) ∧ p(x , z)) → ∃y . p(x , y))

Write F in NNF

F1 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃y . p(x , y)

Rename quantified variables to fresh names

F2 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)
↑ in the scope of ∀x

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 33 / 73

Example: PNF

Move all quantifiers to the front

F3 : ∀x . ∀y . ∃w . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Alternately,

F ′3 : ∀x . ∃w . ∀y . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Note: In F2, ∀y is in the scope of ∀x , therefore the order of
quantifiers must be · · · ∀x · · · ∀y · · ·

F4 ⇔ F and F ′4 ⇔ F

Note: However G < F

G : ∀y . ∃w . ∀x . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 34 / 73

Decidability of FOL

FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is
valid, i.e. always halt and says “yes” if F is valid or say “no” if F is
invalid.

FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is valid,
but may not halt if F is invalid.

On the other hand,

PL is decidable
There exists an algorithm for deciding if a PL formula F is valid, e.g.,
the truth-table procedure.

Similarly for satisfiability

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 / 73

Decidability of FOL

FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is
valid, i.e. always halt and says “yes” if F is valid or say “no” if F is
invalid.

FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is valid,
but may not halt if F is invalid.

On the other hand,

PL is decidable
There exists an algorithm for deciding if a PL formula F is valid, e.g.,
the truth-table procedure.

Similarly for satisfiability

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 / 73

Decidability of FOL

FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is
valid, i.e. always halt and says “yes” if F is valid or say “no” if F is
invalid.

FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is valid,
but may not halt if F is invalid.

On the other hand,

PL is decidable
There exists an algorithm for deciding if a PL formula F is valid, e.g.,
the truth-table procedure.

Similarly for satisfiability

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 / 73

Decidability of FOL

FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is
valid, i.e. always halt and says “yes” if F is valid or say “no” if F is
invalid.

FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is valid,
but may not halt if F is invalid.

On the other hand,

PL is decidable
There exists an algorithm for deciding if a PL formula F is valid, e.g.,
the truth-table procedure.

Similarly for satisfiability

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 / 73

Theories

Theories

In first-order logic function symbols have no predefined meaning:

The formula 1 + 1 = 3 is

satisfiable.

We want to fix the meaning for some function symbols.
Examples:

Equality theory

Theory of natural numbers

Theory of rational numbers

Theory of arrays or lists

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 / 73

Theories

In first-order logic function symbols have no predefined meaning:

The formula 1 + 1 = 3 is satisfiable.

We want to fix the meaning for some function symbols.
Examples:

Equality theory

Theory of natural numbers

Theory of rational numbers

Theory of arrays or lists

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 / 73

First-Order Theories

Definition (First-order theory)

A First-order theory T consists of

A Signature Σ - set of constant, function, and predicate symbols

A set of axioms AT - set of closed (no free variables) Σ-formulae

A Σ-formula is a formula constructed of constants, functions, and
predicate symbols from Σ, and variables, logical connectives, and
quantifiers

The symbols of Σ are just symbols without prior meaning

The axioms of T provide their meaning

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 38 / 73

First-Order Theories

Definition (First-order theory)

A First-order theory T consists of

A Signature Σ - set of constant, function, and predicate symbols

A set of axioms AT - set of closed (no free variables) Σ-formulae

A Σ-formula is a formula constructed of constants, functions, and
predicate symbols from Σ, and variables, logical connectives, and
quantifiers

The symbols of Σ are just symbols without prior meaning

The axioms of T provide their meaning

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 38 / 73

First-Order Theories

Definition (First-order theory)

A First-order theory T consists of

A Signature Σ - set of constant, function, and predicate symbols

A set of axioms AT - set of closed (no free variables) Σ-formulae

A Σ-formula is a formula constructed of constants, functions, and
predicate symbols from Σ, and variables, logical connectives, and
quantifiers

The symbols of Σ are just symbols without prior meaning

The axioms of T provide their meaning

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 38 / 73

First-Order Theories

Definition (First-order theory)

A First-order theory T consists of

A Signature Σ - set of constant, function, and predicate symbols

A set of axioms AT - set of closed (no free variables) Σ-formulae

A Σ-formula is a formula constructed of constants, functions, and
predicate symbols from Σ, and variables, logical connectives, and
quantifiers

The symbols of Σ are just symbols without prior meaning

The axioms of T provide their meaning

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 38 / 73

Theory of Equality TE

Signature Σ= : {=, a, b, c, · · · , f , g , h, · · · , p, q, r , · · · }

=, a binary predicate, interpreted by axioms.

all constant, function, and predicate symbols.

Axioms of TE :

1 ∀x . x = x (reflexivity)

2 ∀x , y . x = y → y = x (symmetry)

3 ∀x , y , z . x = y ∧ y = z → x = z (transitivity)

4 for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

(congruence)

5 for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → (p(x1, . . . , xn) ↔ p(y1, . . . , yn))

(equivalence)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 39 / 73

Theory of Equality TE

Signature Σ= : {=, a, b, c, · · · , f , g , h, · · · , p, q, r , · · · }

=, a binary predicate, interpreted by axioms.

all constant, function, and predicate symbols.

Axioms of TE :

1 ∀x . x = x (reflexivity)

2 ∀x , y . x = y → y = x (symmetry)

3 ∀x , y , z . x = y ∧ y = z → x = z (transitivity)

4 for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

(congruence)

5 for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → (p(x1, . . . , xn) ↔ p(y1, . . . , yn))

(equivalence)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 39 / 73

Theory of Equality TE

Signature Σ= : {=, a, b, c, · · · , f , g , h, · · · , p, q, r , · · · }

=, a binary predicate, interpreted by axioms.

all constant, function, and predicate symbols.

Axioms of TE :

1 ∀x . x = x (reflexivity)

2 ∀x , y . x = y → y = x (symmetry)

3 ∀x , y , z . x = y ∧ y = z → x = z (transitivity)

4 for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

(congruence)

5 for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → (p(x1, . . . , xn) ↔ p(y1, . . . , yn))

(equivalence)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 39 / 73

Theory of Equality TE

Signature Σ= : {=, a, b, c, · · · , f , g , h, · · · , p, q, r , · · · }

=, a binary predicate, interpreted by axioms.

all constant, function, and predicate symbols.

Axioms of TE :

1 ∀x . x = x (reflexivity)

2 ∀x , y . x = y → y = x (symmetry)

3 ∀x , y , z . x = y ∧ y = z → x = z (transitivity)

4 for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

(congruence)

5 for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → (p(x1, . . . , xn) ↔ p(y1, . . . , yn))

(equivalence)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 39 / 73

Axiom Schemata

Congruence and Equivalence are axiom schemata.

4 for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

(congruence)

5 for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → (p(x1, . . . , xn) ↔ p(y1, . . . , yn))

(equivalence)

For every function symbol there is an instance of the congruence axiom
schemata.
Example: Congruence axiom for binary function f2:
∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → f2(x1, x2) = f2(y1, y2)

ATE
contains an infinite number of these axioms.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 40 / 73

Axiom Schemata

Congruence and Equivalence are axiom schemata.

4 for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

(congruence)

5 for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → (p(x1, . . . , xn) ↔ p(y1, . . . , yn))

(equivalence)

For every function symbol there is an instance of the congruence axiom
schemata.
Example: Congruence axiom for binary function f2:
∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → f2(x1, x2) = f2(y1, y2)

ATE
contains an infinite number of these axioms.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 40 / 73

Axiom Schemata

Congruence and Equivalence are axiom schemata.

4 for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

(congruence)

5 for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → (p(x1, . . . , xn) ↔ p(y1, . . . , yn))

(equivalence)

For every function symbol there is an instance of the congruence axiom
schemata.
Example: Congruence axiom for binary function f2:
∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → f2(x1, x2) = f2(y1, y2)

ATE
contains an infinite number of these axioms.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 40 / 73

T -Validity and T -Satisfiability

Definition (T -interpretation)

An interpretation I is a T -interpretation, if it satisfies all the axioms of T .

Definition (T -valid)

A Σ-formula F is valid in theory T (T -valid, also T |= F),
if every T -interpretation satisfies F .

Definition (T -satisfiable)

A Σ-formula F is satisfiable in T (T -satisfiable),
if there is a T -interpretation that satisfies F

Definition (T -equivalent)

Two Σ-formulae F1 and F2 are equivalent in T (T -equivalent),
if F1 ↔ F2 is T -valid,

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 41 / 73

T -Validity and T -Satisfiability

Definition (T -interpretation)

An interpretation I is a T -interpretation, if it satisfies all the axioms of T .

Definition (T -valid)

A Σ-formula F is valid in theory T (T -valid, also T |= F),
if every T -interpretation satisfies F .

Definition (T -satisfiable)

A Σ-formula F is satisfiable in T (T -satisfiable),
if there is a T -interpretation that satisfies F

Definition (T -equivalent)

Two Σ-formulae F1 and F2 are equivalent in T (T -equivalent),
if F1 ↔ F2 is T -valid,

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 41 / 73

T -Validity and T -Satisfiability

Definition (T -interpretation)

An interpretation I is a T -interpretation, if it satisfies all the axioms of T .

Definition (T -valid)

A Σ-formula F is valid in theory T (T -valid, also T |= F),
if every T -interpretation satisfies F .

Definition (T -satisfiable)

A Σ-formula F is satisfiable in T (T -satisfiable),
if there is a T -interpretation that satisfies F

Definition (T -equivalent)

Two Σ-formulae F1 and F2 are equivalent in T (T -equivalent),
if F1 ↔ F2 is T -valid,

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 41 / 73

T -Validity and T -Satisfiability

Definition (T -interpretation)

An interpretation I is a T -interpretation, if it satisfies all the axioms of T .

Definition (T -valid)

A Σ-formula F is valid in theory T (T -valid, also T |= F),
if every T -interpretation satisfies F .

Definition (T -satisfiable)

A Σ-formula F is satisfiable in T (T -satisfiable),
if there is a T -interpretation that satisfies F

Definition (T -equivalent)

Two Σ-formulae F1 and F2 are equivalent in T (T -equivalent),
if F1 ↔ F2 is T -valid,

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 41 / 73

Example: TE-validity

Semantic argument method can be used for TE

Prove

F : a = b ∧ b = c → g(f (a), b) = g(f (c), a) TE-valid.

Suppose not; then there exists a TE-interpretation I such that I 6|= F .
Then,

1. I 6|= F assumption
2. I |= a = b ∧ b = c 1, →
3. I 6|= g(f (a), b) = g(f (c), a) 1, →
4. I |= ∀x , y , z . x = y ∧ y = z → x = z transitivity
5. I |= a = b ∧ b = c → a = c 4, 3 × ∀{x 7→ a, y 7→ b, z 7→ c}
6a I 6|= a = b ∧ b = c 5, →
7a I 6|= ⊥ 3 and 5 contradictory

6b. I |= a = c 4, 5, (5, →)
7b. I |= a = c → f (a) = f (c) (congruence), 2 × ∀
8ba. I 6|= a = c · · · I |= ⊥
8bb. I |= f (a) = f (c) 7b, →
9bb. I |= a = b 2, ∧
10bb. I |= a = b → b = a (symmetry), 2 × ∀
11bba. I 6|= a = b · · · I |= ⊥
11bbb. I |= b = a 10bb, →
12bbb. I |= f (a) = f (c) ∧ b = a → g(f (a), b) = g(f (c), a) (congruence), 4 × ∀
. . . 13 I |= g(f (a), b) = g(f (c), a) 8bb, 11bbb, 12bbb

3 and 13 are contradictory. Thus, F is TE-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 42 / 73

Example: TE-validity

Semantic argument method can be used for TE

Prove

F : a = b ∧ b = c → g(f (a), b) = g(f (c), a) TE-valid.

Suppose not; then there exists a TE-interpretation I such that I 6|= F .
Then,

1. I 6|= F assumption
2. I |= a = b ∧ b = c 1, →
3. I 6|= g(f (a), b) = g(f (c), a) 1, →
4. I |= ∀x , y , z . x = y ∧ y = z → x = z transitivity
5. I |= a = b ∧ b = c → a = c 4, 3 × ∀{x 7→ a, y 7→ b, z 7→ c}
6a I 6|= a = b ∧ b = c 5, →
7a I 6|= ⊥ 3 and 5 contradictory

6b. I |= a = c 4, 5, (5, →)
7b. I |= a = c → f (a) = f (c) (congruence), 2 × ∀
8ba. I 6|= a = c · · · I |= ⊥
8bb. I |= f (a) = f (c) 7b, →
9bb. I |= a = b 2, ∧
10bb. I |= a = b → b = a (symmetry), 2 × ∀
11bba. I 6|= a = b · · · I |= ⊥
11bbb. I |= b = a 10bb, →
12bbb. I |= f (a) = f (c) ∧ b = a → g(f (a), b) = g(f (c), a) (congruence), 4 × ∀
. . . 13 I |= g(f (a), b) = g(f (c), a) 8bb, 11bbb, 12bbb

3 and 13 are contradictory. Thus, F is TE-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 42 / 73

Decidability of TE

Is it possible to decide TE -validity?

TE -validity is undecidable.

If we restrict ourself to quantifier-free formulae we get decidability:

For a quantifier-free formula TE -validity is decidable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 43 / 73

Decidability of TE

Is it possible to decide TE -validity?

TE -validity is undecidable.

If we restrict ourself to quantifier-free formulae we get decidability:

For a quantifier-free formula TE -validity is decidable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 43 / 73

Decidability of TE

Is it possible to decide TE -validity?

TE -validity is undecidable.

If we restrict ourself to quantifier-free formulae we get decidability:

For a quantifier-free formula TE -validity is decidable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 43 / 73

Fragments of Theories

A fragment of theory T is a syntactically-restricted subset of formulae of
the theory.

Example: quantifier-free fragment of theory T is the set of
quantifier-free formulae in T .

A theory T is decidable if T |= F (T -validity) is decidable for every
Σ-formula F ,

i.e., there is an algorithm that always terminate with “yes”,
if F is T -valid, and “no”, if F is T -invalid.

A fragment of T is decidable if T |= F is decidable for every Σ-formula F
in the fragment.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 44 / 73

Fragments of Theories

A fragment of theory T is a syntactically-restricted subset of formulae of
the theory.

Example: quantifier-free fragment of theory T is the set of
quantifier-free formulae in T .

A theory T is decidable if T |= F (T -validity) is decidable for every
Σ-formula F ,

i.e., there is an algorithm that always terminate with “yes”,
if F is T -valid, and “no”, if F is T -invalid.

A fragment of T is decidable if T |= F is decidable for every Σ-formula F
in the fragment.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 44 / 73

Natural Numbers and Integers

Natural numbers N = {0, 1, 2, · · · }
Integers Z = {· · · ,−2,−1, 0, 1, 2, · · · }

Three variations:

Peano arithmetic TPA: natural numbers with addition and
multiplication

Presburger arithmetic TN: natural numbers with addition

Theory of integers TZ: integers with +,−, >

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 45 / 73

Natural Numbers and Integers

Natural numbers N = {0, 1, 2, · · · }
Integers Z = {· · · ,−2,−1, 0, 1, 2, · · · }

Three variations:

Peano arithmetic TPA: natural numbers with addition and
multiplication

Presburger arithmetic TN: natural numbers with addition

Theory of integers TZ: integers with +,−, >

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 45 / 73

Natural Numbers and Integers

Natural numbers N = {0, 1, 2, · · · }
Integers Z = {· · · ,−2,−1, 0, 1, 2, · · · }

Three variations:

Peano arithmetic TPA: natural numbers with addition and
multiplication

Presburger arithmetic TN: natural numbers with addition

Theory of integers TZ: integers with +,−, >

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 45 / 73

Natural Numbers and Integers

Natural numbers N = {0, 1, 2, · · · }
Integers Z = {· · · ,−2,−1, 0, 1, 2, · · · }

Three variations:

Peano arithmetic TPA: natural numbers with addition and
multiplication

Presburger arithmetic TN: natural numbers with addition

Theory of integers TZ: integers with +,−, >

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 45 / 73

Peano Arithmetic TPA (first-order arithmetic)

Signature: ΣPA : {0, 1, +, ·, =}

Axioms of TPA: axioms of TE ,

1 ∀x . ¬(x + 1 = 0) (zero)

2 ∀x , y . x + 1 = y + 1 → x = y (successor)

3 F [0] ∧ (∀x . F [x] → F [x + 1]) → ∀x . F [x] (induction)

4 ∀x . x + 0 = x (plus zero)

5 ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

6 ∀x . x · 0 = 0 (times zero)

7 ∀x , y . x · (y + 1) = x · y + x (times successor)

Line 3 is an axiom schema.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 46 / 73

Peano Arithmetic TPA (first-order arithmetic)

Signature: ΣPA : {0, 1, +, ·, =}

Axioms of TPA: axioms of TE ,

1 ∀x . ¬(x + 1 = 0) (zero)

2 ∀x , y . x + 1 = y + 1 → x = y (successor)

3 F [0] ∧ (∀x . F [x] → F [x + 1]) → ∀x . F [x] (induction)

4 ∀x . x + 0 = x (plus zero)

5 ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

6 ∀x . x · 0 = 0 (times zero)

7 ∀x , y . x · (y + 1) = x · y + x (times successor)

Line 3 is an axiom schema.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 46 / 73

Peano Arithmetic TPA (first-order arithmetic)

Signature: ΣPA : {0, 1, +, ·, =}

Axioms of TPA: axioms of TE ,

1 ∀x . ¬(x + 1 = 0) (zero)

2 ∀x , y . x + 1 = y + 1 → x = y (successor)

3 F [0] ∧ (∀x . F [x] → F [x + 1]) → ∀x . F [x] (induction)

4 ∀x . x + 0 = x (plus zero)

5 ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

6 ∀x . x · 0 = 0 (times zero)

7 ∀x , y . x · (y + 1) = x · y + x (times successor)

Line 3 is an axiom schema.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 46 / 73

Peano Arithmetic TPA (first-order arithmetic)

Signature: ΣPA : {0, 1, +, ·, =}

Axioms of TPA: axioms of TE ,

1 ∀x . ¬(x + 1 = 0) (zero)

2 ∀x , y . x + 1 = y + 1 → x = y (successor)

3 F [0] ∧ (∀x . F [x] → F [x + 1]) → ∀x . F [x] (induction)

4 ∀x . x + 0 = x (plus zero)

5 ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

6 ∀x . x · 0 = 0 (times zero)

7 ∀x , y . x · (y + 1) = x · y + x (times successor)

Line 3 is an axiom schema.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 46 / 73

Peano Arithmetic TPA (first-order arithmetic)

Signature: ΣPA : {0, 1, +, ·, =}

Axioms of TPA: axioms of TE ,

1 ∀x . ¬(x + 1 = 0) (zero)

2 ∀x , y . x + 1 = y + 1 → x = y (successor)

3 F [0] ∧ (∀x . F [x] → F [x + 1]) → ∀x . F [x] (induction)

4 ∀x . x + 0 = x (plus zero)

5 ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

6 ∀x . x · 0 = 0 (times zero)

7 ∀x , y . x · (y + 1) = x · y + x (times successor)

Line 3 is an axiom schema.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 46 / 73

Peano Arithmetic TPA (first-order arithmetic)

Signature: ΣPA : {0, 1, +, ·, =}

Axioms of TPA: axioms of TE ,

1 ∀x . ¬(x + 1 = 0) (zero)

2 ∀x , y . x + 1 = y + 1 → x = y (successor)

3 F [0] ∧ (∀x . F [x] → F [x + 1]) → ∀x . F [x] (induction)

4 ∀x . x + 0 = x (plus zero)

5 ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

6 ∀x . x · 0 = 0 (times zero)

7 ∀x , y . x · (y + 1) = x · y + x (times successor)

Line 3 is an axiom schema.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 46 / 73

Expressiveness of Peano Arithmetic

3x + 5 = 2y can be written using ΣPA

as

x + x + x + 1 + 1 + 1 + 1 + 1 = y + y

We can define > and ≥: 3x + 5 > 2y write as
∃z . z 6= 0 ∧ 3x + 5 = 2y + z

3x + 5 ≥ 2y write as ∃z . 3x + 5 = 2y + z

Examples for valid formulae:

Pythagorean Theorem is TPA-valid
∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xx + yy = zz

Fermat’s Last Theorem is TPA-valid (Andrew Wiles, 1994)
∀n. n > 2 → ¬∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xn + yn = zn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 47 / 73

Expressiveness of Peano Arithmetic

3x + 5 = 2y can be written using ΣPA as

x + x + x + 1 + 1 + 1 + 1 + 1 = y + y

We can define > and ≥:

3x + 5 > 2y write as
∃z . z 6= 0 ∧ 3x + 5 = 2y + z

3x + 5 ≥ 2y write as ∃z . 3x + 5 = 2y + z

Examples for valid formulae:

Pythagorean Theorem is TPA-valid
∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xx + yy = zz

Fermat’s Last Theorem is TPA-valid (Andrew Wiles, 1994)
∀n. n > 2 → ¬∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xn + yn = zn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 47 / 73

Expressiveness of Peano Arithmetic

3x + 5 = 2y can be written using ΣPA as

x + x + x + 1 + 1 + 1 + 1 + 1 = y + y

We can define > and ≥: 3x + 5 > 2y write as
∃z . z 6= 0 ∧ 3x + 5 = 2y + z

3x + 5 ≥ 2y write as ∃z . 3x + 5 = 2y + z

Examples for valid formulae:

Pythagorean Theorem is TPA-valid
∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xx + yy = zz

Fermat’s Last Theorem is TPA-valid (Andrew Wiles, 1994)
∀n. n > 2 → ¬∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xn + yn = zn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 47 / 73

Expressiveness of Peano Arithmetic

3x + 5 = 2y can be written using ΣPA as

x + x + x + 1 + 1 + 1 + 1 + 1 = y + y

We can define > and ≥: 3x + 5 > 2y write as
∃z . z 6= 0 ∧ 3x + 5 = 2y + z

3x + 5 ≥ 2y write as ∃z . 3x + 5 = 2y + z

Examples for valid formulae:

Pythagorean Theorem is TPA-valid
∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xx + yy = zz

Fermat’s Last Theorem is TPA-valid (Andrew Wiles, 1994)
∀n. n > 2 → ¬∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xn + yn = zn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 47 / 73

Expressiveness of Peano Arithmetic

3x + 5 = 2y can be written using ΣPA as

x + x + x + 1 + 1 + 1 + 1 + 1 = y + y

We can define > and ≥: 3x + 5 > 2y write as
∃z . z 6= 0 ∧ 3x + 5 = 2y + z

3x + 5 ≥ 2y write as ∃z . 3x + 5 = 2y + z

Examples for valid formulae:

Pythagorean Theorem is TPA-valid
∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xx + yy = zz

Fermat’s Last Theorem is TPA-valid (Andrew Wiles, 1994)
∀n. n > 2 → ¬∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xn + yn = zn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 47 / 73

Expressiveness of Peano Arithmetic (2)

In Fermat’s theorem we used xn, which is not a valid term in ΣPA.
However, there is the ΣPA-formula EXP[x , n, r] with

1 EXP[x , 0, r] ↔ r = 1

2 EXP[x , i + 1, r] ↔ ∃r1. EXP[x , i , r1] ∧ r = r1 · x

EXP[x , n, r] : ∃d ,m. (∃z . d = (m + 1)z + 1)∧
(∀i , r1. i < n ∧ r1 < m ∧ (∃z . d = ((i + 1)m + 1)z + r1)→

r1x < m ∧ (∃z . d = ((i + 2)m + 1)z + r1 · x))∧
r < m ∧ (∃z . d = ((n + 1)m + 1)z + r)

Fermat’s theorem can be stated as:

∀n. n > 2 → ¬∃x , y , z , rx , ry . x 6= 0 ∧ y 6= 0 ∧ z 6= 0∧
EXP[x , n, rx] ∧ EXP[y , n, ry] ∧ EXP[z , n, rx + ry]

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 48 / 73

Expressiveness of Peano Arithmetic (2)

In Fermat’s theorem we used xn, which is not a valid term in ΣPA.
However, there is the ΣPA-formula EXP[x , n, r] with

1 EXP[x , 0, r] ↔ r = 1

2 EXP[x , i + 1, r] ↔ ∃r1. EXP[x , i , r1] ∧ r = r1 · x

EXP[x , n, r] : ∃d ,m. (∃z . d = (m + 1)z + 1)∧
(∀i , r1. i < n ∧ r1 < m ∧ (∃z . d = ((i + 1)m + 1)z + r1)→

r1x < m ∧ (∃z . d = ((i + 2)m + 1)z + r1 · x))∧
r < m ∧ (∃z . d = ((n + 1)m + 1)z + r)

Fermat’s theorem can be stated as:

∀n. n > 2 → ¬∃x , y , z , rx , ry . x 6= 0 ∧ y 6= 0 ∧ z 6= 0∧
EXP[x , n, rx] ∧ EXP[y , n, ry] ∧ EXP[z , n, rx + ry]

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 48 / 73

Decidability of Peano Arithmetic

Gödel showed that for every recursive function f : Nn → N there is a
ΣPA-formula F [x1, . . . , xn, r] with

F [x1, . . . , xn, r] ↔ r = f (x1, . . . , xn)

TPA is undecidable. (Gödel, Turing, Post, Church)

The quantifier-free fragment of TPA is undecidable. (Matiyasevich, 1970)

Remark: Gödel’s first incompleteness theorem

Peano arithmetic TPA does not capture true arithmetic:
There exist closed ΣPA-formulae representing valid propositions of number
theory that are not TPA-valid.
The reason: TPA actually admits nonstandard interpretations

For decidability: no multiplication

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 49 / 73

Decidability of Peano Arithmetic

Gödel showed that for every recursive function f : Nn → N there is a
ΣPA-formula F [x1, . . . , xn, r] with

F [x1, . . . , xn, r] ↔ r = f (x1, . . . , xn)

TPA is undecidable. (Gödel, Turing, Post, Church)

The quantifier-free fragment of TPA is undecidable. (Matiyasevich, 1970)

Remark: Gödel’s first incompleteness theorem

Peano arithmetic TPA does not capture true arithmetic:
There exist closed ΣPA-formulae representing valid propositions of number
theory that are not TPA-valid.
The reason: TPA actually admits nonstandard interpretations

For decidability: no multiplication

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 49 / 73

Decidability of Peano Arithmetic

Gödel showed that for every recursive function f : Nn → N there is a
ΣPA-formula F [x1, . . . , xn, r] with

F [x1, . . . , xn, r] ↔ r = f (x1, . . . , xn)

TPA is undecidable. (Gödel, Turing, Post, Church)

The quantifier-free fragment of TPA is undecidable. (Matiyasevich, 1970)

Remark: Gödel’s first incompleteness theorem

Peano arithmetic TPA does not capture true arithmetic:
There exist closed ΣPA-formulae representing valid propositions of number
theory that are not TPA-valid.
The reason: TPA actually admits nonstandard interpretations

For decidability: no multiplication

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 49 / 73

Decidability of Peano Arithmetic

Gödel showed that for every recursive function f : Nn → N there is a
ΣPA-formula F [x1, . . . , xn, r] with

F [x1, . . . , xn, r] ↔ r = f (x1, . . . , xn)

TPA is undecidable. (Gödel, Turing, Post, Church)

The quantifier-free fragment of TPA is undecidable. (Matiyasevich, 1970)

Remark: Gödel’s first incompleteness theorem

Peano arithmetic TPA does not capture true arithmetic:
There exist closed ΣPA-formulae representing valid propositions of number
theory that are not TPA-valid.
The reason: TPA actually admits nonstandard interpretations

For decidability: no multiplication

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 49 / 73

Decidability of Peano Arithmetic

Gödel showed that for every recursive function f : Nn → N there is a
ΣPA-formula F [x1, . . . , xn, r] with

F [x1, . . . , xn, r] ↔ r = f (x1, . . . , xn)

TPA is undecidable. (Gödel, Turing, Post, Church)

The quantifier-free fragment of TPA is undecidable. (Matiyasevich, 1970)

Remark: Gödel’s first incompleteness theorem

Peano arithmetic TPA does not capture true arithmetic:
There exist closed ΣPA-formulae representing valid propositions of number
theory that are not TPA-valid.
The reason: TPA actually admits nonstandard interpretations

For decidability: no multiplication
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 49 / 73

Presburger Arithmetic TN

Signature: ΣN : {0, 1, +, =} no multiplication!

Axioms of TN: axioms of TE ,

1 ∀x . ¬(x + 1 = 0) (zero)

2 ∀x , y . x + 1 = y + 1 → x = y (successor)

3 F [0] ∧ (∀x . F [x] → F [x + 1]) → ∀x . F [x] (induction)

4 ∀x . x + 0 = x (plus zero)

5 ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

3 is an axiom schema.

TN-satisfiability and TN-validity are decidable. (Presburger 1929)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 50 / 73

Presburger Arithmetic TN

Signature: ΣN : {0, 1, +, =} no multiplication!

Axioms of TN: axioms of TE ,

1 ∀x . ¬(x + 1 = 0) (zero)

2 ∀x , y . x + 1 = y + 1 → x = y (successor)

3 F [0] ∧ (∀x . F [x] → F [x + 1]) → ∀x . F [x] (induction)

4 ∀x . x + 0 = x (plus zero)

5 ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

3 is an axiom schema.

TN-satisfiability and TN-validity are decidable. (Presburger 1929)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 50 / 73

Theory of Integers TZ

Signature:
ΣZ : {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . , +, −, =, >}
where

. . . ,−2,−1, 0, 1, 2, . . . are constants

. . . ,−3·,−2·, 2·, 3·, . . . are unary functions
(intended meaning: 2 · x is x + x)

+,−,=, > have the usual meanings.

Relation between TZ and TN

TZ and TN have the same expressiveness:

For every ΣZ-formula there is an equisatisfiable ΣN-formula.

For every ΣN-formula there is an equisatisfiable ΣZ-formula.

ΣZ-formula F and ΣN-formula G are equisatisfiable iff:

F is TZ-satisfiable iff G is TN-satisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 51 / 73

Theory of Integers TZ

Signature:
ΣZ : {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . , +, −, =, >}
where

. . . ,−2,−1, 0, 1, 2, . . . are constants

. . . ,−3·,−2·, 2·, 3·, . . . are unary functions
(intended meaning: 2 · x is x + x)

+,−,=, > have the usual meanings.

Relation between TZ and TN

TZ and TN have the same expressiveness:

For every ΣZ-formula there is an equisatisfiable ΣN-formula.

For every ΣN-formula there is an equisatisfiable ΣZ-formula.

ΣZ-formula F and ΣN-formula G are equisatisfiable iff:

F is TZ-satisfiable iff G is TN-satisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 51 / 73

Theory of Integers TZ

Signature:
ΣZ : {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . , +, −, =, >}
where

. . . ,−2,−1, 0, 1, 2, . . . are constants

. . . ,−3·,−2·, 2·, 3·, . . . are unary functions
(intended meaning: 2 · x is x + x)

+,−,=, > have the usual meanings.

Relation between TZ and TN

TZ and TN have the same expressiveness:

For every ΣZ-formula there is an equisatisfiable ΣN-formula.

For every ΣN-formula there is an equisatisfiable ΣZ-formula.

ΣZ-formula F and ΣN-formula G are equisatisfiable iff:

F is TZ-satisfiable iff G is TN-satisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 51 / 73

Example: ΣZ-formula to ΣN-formula

Consider the ΣZ-formula
F0 : ∀w , x . ∃y , z . x + 2y − z − 7 > −3w + 4

Introduce two variables, vp and vn (range over the nonnegative integers) for
each variable v (range over the integers) of F0

F1 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

(xp − xn) + 2(yp − yn) − (zp − zn) − 7 > −3(wp − wn) + 4

Eliminate − by moving to the other side of >

F2 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

xp + 2yp + zn + 3wp > xn + 2yn + zp + 7 + 3wn + 4

Eliminate > and numbers:

F3 :

∀wp,wn, xp, xn. ∃yp, yn, zp, zn. ∃u.
¬(u = 0) ∧ xp + yp + yp + zn + wp + wp + wp

= xn + yn + yn + zp + wn + wn + wn + u
+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

which is a ΣN-formula equisatisfiable to F0.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 52 / 73

Example: ΣZ-formula to ΣN-formula

Consider the ΣZ-formula
F0 : ∀w , x . ∃y , z . x + 2y − z − 7 > −3w + 4

Introduce two variables, vp and vn (range over the nonnegative integers) for
each variable v (range over the integers) of F0

F1 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

(xp − xn) + 2(yp − yn) − (zp − zn) − 7 > −3(wp − wn) + 4

Eliminate − by moving to the other side of >

F2 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

xp + 2yp + zn + 3wp > xn + 2yn + zp + 7 + 3wn + 4

Eliminate > and numbers:

F3 :

∀wp,wn, xp, xn. ∃yp, yn, zp, zn. ∃u.
¬(u = 0) ∧ xp + yp + yp + zn + wp + wp + wp

= xn + yn + yn + zp + wn + wn + wn + u
+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

which is a ΣN-formula equisatisfiable to F0.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 52 / 73

Example: ΣZ-formula to ΣN-formula

Consider the ΣZ-formula
F0 : ∀w , x . ∃y , z . x + 2y − z − 7 > −3w + 4

Introduce two variables, vp and vn (range over the nonnegative integers) for
each variable v (range over the integers) of F0

F1 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

(xp − xn) + 2(yp − yn) − (zp − zn) − 7 > −3(wp − wn) + 4

Eliminate − by moving to the other side of >

F2 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

xp + 2yp + zn + 3wp > xn + 2yn + zp + 7 + 3wn + 4

Eliminate > and numbers:

F3 :

∀wp,wn, xp, xn. ∃yp, yn, zp, zn. ∃u.
¬(u = 0) ∧ xp + yp + yp + zn + wp + wp + wp

= xn + yn + yn + zp + wn + wn + wn + u
+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

which is a ΣN-formula equisatisfiable to F0.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 52 / 73

Example: ΣZ-formula to ΣN-formula

Consider the ΣZ-formula
F0 : ∀w , x . ∃y , z . x + 2y − z − 7 > −3w + 4

Introduce two variables, vp and vn (range over the nonnegative integers) for
each variable v (range over the integers) of F0

F1 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

(xp − xn) + 2(yp − yn) − (zp − zn) − 7 > −3(wp − wn) + 4

Eliminate − by moving to the other side of >

F2 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

xp + 2yp + zn + 3wp > xn + 2yn + zp + 7 + 3wn + 4

Eliminate > and numbers:

F3 :

∀wp,wn, xp, xn. ∃yp, yn, zp, zn. ∃u.
¬(u = 0) ∧ xp + yp + yp + zn + wp + wp + wp

= xn + yn + yn + zp + wn + wn + wn + u
+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

which is a ΣN-formula equisatisfiable to F0.
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 52 / 73

Example: ΣN-formula to ΣZ-formula.

Example: The ΣN-formula

∀x . ∃y . x = y + 1

is equisatisfiable to the ΣZ-formula:

∀x . x > −1 → ∃y . y > −1 ∧ x = y + 1.

To decide TZ-validity for a ΣZ-formula F :

transform ¬F to an equisatisfiable ΣN-formula ¬G ,

decide TN-validity of G .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 53 / 73

Example: ΣN-formula to ΣZ-formula.

Example: The ΣN-formula

∀x . ∃y . x = y + 1

is equisatisfiable to the ΣZ-formula:

∀x . x > −1 → ∃y . y > −1 ∧ x = y + 1.

To decide TZ-validity for a ΣZ-formula F :

transform ¬F to an equisatisfiable ΣN-formula ¬G ,

decide TN-validity of G .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 53 / 73

Example: ΣN-formula to ΣZ-formula.

Example: The ΣN-formula

∀x . ∃y . x = y + 1

is equisatisfiable to the ΣZ-formula:

∀x . x > −1 → ∃y . y > −1 ∧ x = y + 1.

To decide TZ-validity for a ΣZ-formula F :

transform ¬F to an equisatisfiable ΣN-formula ¬G ,

decide TN-validity of G .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 53 / 73

Rationals and Reals

Σ = {0, 1, +, −, ·, =, ≥}

Theory of Reals TR (with multiplication)

x · x = 2 ⇒ x = ±
√

2

Theory of Rationals TQ (no multiplication)

2x︸︷︷︸
x+x

= 7 ⇒ x =
2

7

Note: Strict inequality

∀x , y . ∃z . x + y > z

can be expressed as

∀x , y . ∃z . ¬(x + y = z) ∧ x + y ≥ z

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 54 / 73

Rationals and Reals

Σ = {0, 1, +, −, ·, =, ≥}

Theory of Reals TR (with multiplication)

x · x = 2 ⇒ x = ±
√

2

Theory of Rationals TQ (no multiplication)

2x︸︷︷︸
x+x

= 7 ⇒ x =
2

7

Note: Strict inequality

∀x , y . ∃z . x + y > z

can be expressed as

∀x , y . ∃z . ¬(x + y = z) ∧ x + y ≥ z

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 54 / 73

Rationals and Reals

Σ = {0, 1, +, −, ·, =, ≥}

Theory of Reals TR (with multiplication)

x · x = 2 ⇒ x = ±
√

2

Theory of Rationals TQ (no multiplication)

2x︸︷︷︸
x+x

= 7 ⇒ x =
2

7

Note: Strict inequality

∀x , y . ∃z . x + y > z

can be expressed as

∀x , y . ∃z . ¬(x + y = z) ∧ x + y ≥ z

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 54 / 73

Theory of Reals TR

Signature: ΣR : {0, 1, +, −, ·, =, ≥} with multiplication.

Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)
2 ∀x , y . x + y = y + x (+ commutativity)
3 ∀x . x + 0 = x (+ identity)
4 ∀x . x + (−x) = 0 (+ inverse)
5 ∀x , y , z . (x · y) · z = x · (y · z) (· associativity)
6 ∀x , y . x · y = y · x (· commutativity)
7 ∀x . x · 1 = x (· identity)
8 ∀x . x 6= 0 → ∃y . x · y = 1 (· inverse)
9 ∀x , y , z . x · (y + z) = x · y + x · z (distributivity)
10 0 6= 1 (separate identies)
11 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)
12 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
13 ∀x , y . x ≥ y ∨ y ≥ x (totality)
14 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)
15 ∀x , y . x ≥ 0 ∧ y ≥ 0 → x · y ≥ 0 (· ordered)
16 ∀x . ∃y . x = y · y ∨ x = −y · y (square root)
17 for each odd integer n,
∀x0, . . . , xn−1. ∃y . yn + xn−1yn−1 · · · + x1y + x0 = 0 (at least one root)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 / 73

Theory of Reals TR

Signature: ΣR : {0, 1, +, −, ·, =, ≥} with multiplication.

Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)
2 ∀x , y . x + y = y + x (+ commutativity)
3 ∀x . x + 0 = x (+ identity)
4 ∀x . x + (−x) = 0 (+ inverse)

5 ∀x , y , z . (x · y) · z = x · (y · z) (· associativity)
6 ∀x , y . x · y = y · x (· commutativity)
7 ∀x . x · 1 = x (· identity)
8 ∀x . x 6= 0 → ∃y . x · y = 1 (· inverse)
9 ∀x , y , z . x · (y + z) = x · y + x · z (distributivity)
10 0 6= 1 (separate identies)
11 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)
12 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
13 ∀x , y . x ≥ y ∨ y ≥ x (totality)
14 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)
15 ∀x , y . x ≥ 0 ∧ y ≥ 0 → x · y ≥ 0 (· ordered)
16 ∀x . ∃y . x = y · y ∨ x = −y · y (square root)
17 for each odd integer n,
∀x0, . . . , xn−1. ∃y . yn + xn−1yn−1 · · · + x1y + x0 = 0 (at least one root)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 / 73

Theory of Reals TR

Signature: ΣR : {0, 1, +, −, ·, =, ≥} with multiplication.

Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)
2 ∀x , y . x + y = y + x (+ commutativity)
3 ∀x . x + 0 = x (+ identity)
4 ∀x . x + (−x) = 0 (+ inverse)
5 ∀x , y , z . (x · y) · z = x · (y · z) (· associativity)
6 ∀x , y . x · y = y · x (· commutativity)
7 ∀x . x · 1 = x (· identity)
8 ∀x . x 6= 0 → ∃y . x · y = 1 (· inverse)

9 ∀x , y , z . x · (y + z) = x · y + x · z (distributivity)
10 0 6= 1 (separate identies)
11 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)
12 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
13 ∀x , y . x ≥ y ∨ y ≥ x (totality)
14 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)
15 ∀x , y . x ≥ 0 ∧ y ≥ 0 → x · y ≥ 0 (· ordered)
16 ∀x . ∃y . x = y · y ∨ x = −y · y (square root)
17 for each odd integer n,
∀x0, . . . , xn−1. ∃y . yn + xn−1yn−1 · · · + x1y + x0 = 0 (at least one root)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 / 73

Theory of Reals TR

Signature: ΣR : {0, 1, +, −, ·, =, ≥} with multiplication.

Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)
2 ∀x , y . x + y = y + x (+ commutativity)
3 ∀x . x + 0 = x (+ identity)
4 ∀x . x + (−x) = 0 (+ inverse)
5 ∀x , y , z . (x · y) · z = x · (y · z) (· associativity)
6 ∀x , y . x · y = y · x (· commutativity)
7 ∀x . x · 1 = x (· identity)
8 ∀x . x 6= 0 → ∃y . x · y = 1 (· inverse)
9 ∀x , y , z . x · (y + z) = x · y + x · z (distributivity)

10 0 6= 1 (separate identies)
11 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)
12 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
13 ∀x , y . x ≥ y ∨ y ≥ x (totality)
14 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)
15 ∀x , y . x ≥ 0 ∧ y ≥ 0 → x · y ≥ 0 (· ordered)
16 ∀x . ∃y . x = y · y ∨ x = −y · y (square root)
17 for each odd integer n,
∀x0, . . . , xn−1. ∃y . yn + xn−1yn−1 · · · + x1y + x0 = 0 (at least one root)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 / 73

Theory of Reals TR

Signature: ΣR : {0, 1, +, −, ·, =, ≥} with multiplication.

Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)
2 ∀x , y . x + y = y + x (+ commutativity)
3 ∀x . x + 0 = x (+ identity)
4 ∀x . x + (−x) = 0 (+ inverse)
5 ∀x , y , z . (x · y) · z = x · (y · z) (· associativity)
6 ∀x , y . x · y = y · x (· commutativity)
7 ∀x . x · 1 = x (· identity)
8 ∀x . x 6= 0 → ∃y . x · y = 1 (· inverse)
9 ∀x , y , z . x · (y + z) = x · y + x · z (distributivity)
10 0 6= 1 (separate identies)

11 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)
12 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
13 ∀x , y . x ≥ y ∨ y ≥ x (totality)
14 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)
15 ∀x , y . x ≥ 0 ∧ y ≥ 0 → x · y ≥ 0 (· ordered)
16 ∀x . ∃y . x = y · y ∨ x = −y · y (square root)
17 for each odd integer n,
∀x0, . . . , xn−1. ∃y . yn + xn−1yn−1 · · · + x1y + x0 = 0 (at least one root)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 / 73

Theory of Reals TR

Signature: ΣR : {0, 1, +, −, ·, =, ≥} with multiplication.

Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)
2 ∀x , y . x + y = y + x (+ commutativity)
3 ∀x . x + 0 = x (+ identity)
4 ∀x . x + (−x) = 0 (+ inverse)
5 ∀x , y , z . (x · y) · z = x · (y · z) (· associativity)
6 ∀x , y . x · y = y · x (· commutativity)
7 ∀x . x · 1 = x (· identity)
8 ∀x . x 6= 0 → ∃y . x · y = 1 (· inverse)
9 ∀x , y , z . x · (y + z) = x · y + x · z (distributivity)
10 0 6= 1 (separate identies)
11 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)
12 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
13 ∀x , y . x ≥ y ∨ y ≥ x (totality)

14 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)
15 ∀x , y . x ≥ 0 ∧ y ≥ 0 → x · y ≥ 0 (· ordered)
16 ∀x . ∃y . x = y · y ∨ x = −y · y (square root)
17 for each odd integer n,
∀x0, . . . , xn−1. ∃y . yn + xn−1yn−1 · · · + x1y + x0 = 0 (at least one root)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 / 73

Theory of Reals TR

Signature: ΣR : {0, 1, +, −, ·, =, ≥} with multiplication.

Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)
2 ∀x , y . x + y = y + x (+ commutativity)
3 ∀x . x + 0 = x (+ identity)
4 ∀x . x + (−x) = 0 (+ inverse)
5 ∀x , y , z . (x · y) · z = x · (y · z) (· associativity)
6 ∀x , y . x · y = y · x (· commutativity)
7 ∀x . x · 1 = x (· identity)
8 ∀x . x 6= 0 → ∃y . x · y = 1 (· inverse)
9 ∀x , y , z . x · (y + z) = x · y + x · z (distributivity)
10 0 6= 1 (separate identies)
11 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)
12 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
13 ∀x , y . x ≥ y ∨ y ≥ x (totality)
14 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)
15 ∀x , y . x ≥ 0 ∧ y ≥ 0 → x · y ≥ 0 (· ordered)

16 ∀x . ∃y . x = y · y ∨ x = −y · y (square root)
17 for each odd integer n,
∀x0, . . . , xn−1. ∃y . yn + xn−1yn−1 · · · + x1y + x0 = 0 (at least one root)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 / 73

Theory of Reals TR

Signature: ΣR : {0, 1, +, −, ·, =, ≥} with multiplication.

Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)
2 ∀x , y . x + y = y + x (+ commutativity)
3 ∀x . x + 0 = x (+ identity)
4 ∀x . x + (−x) = 0 (+ inverse)
5 ∀x , y , z . (x · y) · z = x · (y · z) (· associativity)
6 ∀x , y . x · y = y · x (· commutativity)
7 ∀x . x · 1 = x (· identity)
8 ∀x . x 6= 0 → ∃y . x · y = 1 (· inverse)
9 ∀x , y , z . x · (y + z) = x · y + x · z (distributivity)
10 0 6= 1 (separate identies)
11 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)
12 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
13 ∀x , y . x ≥ y ∨ y ≥ x (totality)
14 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)
15 ∀x , y . x ≥ 0 ∧ y ≥ 0 → x · y ≥ 0 (· ordered)
16 ∀x . ∃y . x = y · y ∨ x = −y · y (square root)
17 for each odd integer n,
∀x0, . . . , xn−1. ∃y . yn + xn−1yn−1 · · · + x1y + x0 = 0 (at least one root)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 / 73

Example

F : ∀a, b, c. b2 − 4ac ≥ 0 ↔ ∃x . ax2 + bx + c = 0 is TR-valid.
As usual: x2 abbreviates x · x , we omit ·, e.g. in 4ac ,

4 abbreviate 1 + 1 + 1 + 1 and a − b abbreviates a + (−b).

1. I 6|= F assumption
2. I |= ∃y . bb − 4ac = y2 ∨ bb − 4ac = −y2 square root, ∀
3. I |= d2 = bb − 4ac ∨ d2 = −(bb − 4ac) 2, ∃
4. I |= d ≥ 0 ∨ 0 ≥ d ≥ total
5. I |= d2 ≥ 0 4, case distinction, · ordered
6. I |= 2a · e = 1 · inverse, ∀, ∃
7a. I |= bb − 4ac ≥ 0 1,↔
8a. I 6|= ∃x .axx + bx + c = 0 1,↔
9a. I 6|= a((−b + d)e)2 + b(−b + d)e + c = 0 8a, ∃
10a. I 6|= ab2e2 − 2abde2 + ad2e2

−b2e + bde + c = 0 distributivity
11a. I |= dd = bb − 4ac 3, 5, 7a
12a. I 6|= ab2e2 − bde + a(b2 − 4ac)e2

−b2e + bde + c = 0 6, 11a, congruence
13a. I 6|= 0 = 0 3, distributivity, inverse
14a. I |= ⊥ 13a, reflexivity

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 56 / 73

Example

F : ∀a, b, c. b2 − 4ac ≥ 0 ↔ ∃x . ax2 + bx + c = 0 is TR-valid.
As usual: x2 abbreviates x · x , we omit ·, e.g. in 4ac ,

4 abbreviate 1 + 1 + 1 + 1 and a − b abbreviates a + (−b).

1. I 6|= F assumption
2. I |= ∃y . bb − 4ac = y2 ∨ bb − 4ac = −y2 square root, ∀
3. I |= d2 = bb − 4ac ∨ d2 = −(bb − 4ac) 2, ∃
4. I |= d ≥ 0 ∨ 0 ≥ d ≥ total
5. I |= d2 ≥ 0 4, case distinction, · ordered
6. I |= 2a · e = 1 · inverse, ∀, ∃
7a. I |= bb − 4ac ≥ 0 1,↔
8a. I 6|= ∃x .axx + bx + c = 0 1,↔
9a. I 6|= a((−b + d)e)2 + b(−b + d)e + c = 0 8a, ∃
10a. I 6|= ab2e2 − 2abde2 + ad2e2

−b2e + bde + c = 0 distributivity
11a. I |= dd = bb − 4ac 3, 5, 7a
12a. I 6|= ab2e2 − bde + a(b2 − 4ac)e2

−b2e + bde + c = 0 6, 11a, congruence
13a. I 6|= 0 = 0 3, distributivity, inverse
14a. I |= ⊥ 13a, reflexivity

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 56 / 73

Example

F : ∀a, b, c. bb − 4ac ≥ 0 ↔ ∃x . axx + bx + c = 0 is TR-valid.
As usual: x2 abbreviates x · x , we omit ·, e.g., in 4ac,

4 abbreviate 1 + 1 + 1 + 1 and a − b abbreviates a + (−b).

1. I 6|= F assumption
2. I |= ∃y . bb − 4ac = y2 ∨ bb − 4ac = −y2 square root, ∀
3. I |= d2 = bb − 4ac ∨ d2 = −(bb − 4ac) 2, ∃
4. I |= d ≥ 0 ∨ 0 ≥ d ≥ total
5. I |= d2 ≥ 0 4, case distinction, · ordered
6. I |= 2a · e = 1 · inverse, ∀,∃
7b. I 6|= bb − 4ac ≥ 0 1,↔
8b. I |= ∃x .axx + bx + c = 0 1,↔
9b. I |= aff + bf + c = 0 8b,∃
10b. I |= (2af + b)2 = bb − 4ac field axioms, TE

11b. I |= (2af + b)2 ≥ 0 analogous to 5
12b. I |= bb − 4ac ≥ 0 10b, 11b, equivalence
13b. I |= ⊥ 12b, 7b

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 57 / 73

Decidability of TR

TR is decidable (Tarski, 1930)

High time complexity

: O(22
kn

)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 58 / 73

Decidability of TR

TR is decidable (Tarski, 1930)

High time complexity: O(22
kn

)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 58 / 73

Theory of Rationals TQ

Signature: ΣQ : {0, 1, +, −, =, ≥} no multiplication!
Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)

2 ∀x , y . x + y = y + x (+ commutativity)

3 ∀x . x + 0 = x (+ identity)

4 ∀x . x + (−x) = 0 (+ inverse)

5 1 ≥ 0 ∧ 1 6= 0 (one)

6 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)

7 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)

8 ∀x , y . x ≥ y ∨ y ≥ x (totality)

9 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)

10 For every positive integer n:
∀x . ∃y . x = y + · · · + y︸ ︷︷ ︸

n

(divisible)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 59 / 73

Theory of Rationals TQ

Signature: ΣQ : {0, 1, +, −, =, ≥} no multiplication!
Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)

2 ∀x , y . x + y = y + x (+ commutativity)

3 ∀x . x + 0 = x (+ identity)

4 ∀x . x + (−x) = 0 (+ inverse)

5 1 ≥ 0 ∧ 1 6= 0 (one)

6 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)

7 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)

8 ∀x , y . x ≥ y ∨ y ≥ x (totality)

9 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)

10 For every positive integer n:
∀x . ∃y . x = y + · · · + y︸ ︷︷ ︸

n

(divisible)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 59 / 73

Theory of Rationals TQ

Signature: ΣQ : {0, 1, +, −, =, ≥} no multiplication!
Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)

2 ∀x , y . x + y = y + x (+ commutativity)

3 ∀x . x + 0 = x (+ identity)

4 ∀x . x + (−x) = 0 (+ inverse)

5 1 ≥ 0 ∧ 1 6= 0 (one)

6 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)

7 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)

8 ∀x , y . x ≥ y ∨ y ≥ x (totality)

9 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)

10 For every positive integer n:
∀x . ∃y . x = y + · · · + y︸ ︷︷ ︸

n

(divisible)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 59 / 73

Theory of Rationals TQ

Signature: ΣQ : {0, 1, +, −, =, ≥} no multiplication!
Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)

2 ∀x , y . x + y = y + x (+ commutativity)

3 ∀x . x + 0 = x (+ identity)

4 ∀x . x + (−x) = 0 (+ inverse)

5 1 ≥ 0 ∧ 1 6= 0 (one)

6 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)

7 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)

8 ∀x , y . x ≥ y ∨ y ≥ x (totality)

9 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)

10 For every positive integer n:
∀x . ∃y . x = y + · · · + y︸ ︷︷ ︸

n

(divisible)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 59 / 73

Theory of Rationals TQ

Signature: ΣQ : {0, 1, +, −, =, ≥} no multiplication!
Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)

2 ∀x , y . x + y = y + x (+ commutativity)

3 ∀x . x + 0 = x (+ identity)

4 ∀x . x + (−x) = 0 (+ inverse)

5 1 ≥ 0 ∧ 1 6= 0 (one)

6 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)

7 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)

8 ∀x , y . x ≥ y ∨ y ≥ x (totality)

9 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)

10 For every positive integer n:
∀x . ∃y . x = y + · · · + y︸ ︷︷ ︸

n

(divisible)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 59 / 73

Expressiveness and Decidability of TQ

Rational coefficients are simple to express in TQ

Example: Rewrite
1

2
x +

2

3
y ≥ 4

as the ΣQ-formula

x + x + x + y + y + y + y ≥ 1 + 1 + · · · + 1︸ ︷︷ ︸
24

TQ is decidable
Efficient algorithm for quantifier free fragment

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 60 / 73

Expressiveness and Decidability of TQ

Rational coefficients are simple to express in TQ

Example: Rewrite
1

2
x +

2

3
y ≥ 4

as the ΣQ-formula

x + x + x + y + y + y + y ≥ 1 + 1 + · · · + 1︸ ︷︷ ︸
24

TQ is decidable
Efficient algorithm for quantifier free fragment

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 60 / 73

Recursive Data Structures (RDS)

Data Structures are tuples of variables.
Like struct in C, record in Pascal.

Recursive Data Structures one of the tuple element can be the data
structure again.
Linked lists or trees.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 61 / 73

RDS theory of LISP-like lists, Tcons

Σcons : {cons, car, cdr, atom, =}

where
cons(a, b) – list constructed by adding a in front of list b
car(x) – left projector of x : car(cons(a, b)) = a
cdr(x) – right projector of x : cdr(cons(a, b)) = b
atom(x) – true iff x is a single-element list

Axioms: The axioms of ATE
plus

∀x , y . car(cons(x , y)) = x (left projection)

∀x , y . cdr(cons(x , y)) = y (right projection)

∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)

∀x , y . ¬atom(cons(x , y)) (atom)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 62 / 73

Axioms of Theory of Lists Tcons

1 The axioms of reflexivity, symmetry, and transitivity of =

2 Congruence axioms

∀x1, x2, y1, y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)
∀x , y . x = y → car(x) = car(y)
∀x , y . x = y → cdr(x) = cdr(y)

3 Equivalence axiom

∀x , y . x = y → (atom(x) ↔ atom(y))

4 ∀x , y . car(cons(x , y)) = x (left projection)

5 ∀x , y . cdr(cons(x , y)) = y (right projection)

6 ∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)

7 ∀x , y . ¬atom(cons(x , y)) (atom)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 63 / 73

Decidability of Tcons

Tcons is undecidable
Quantifier-free fragment of Tcons is efficiently decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 64 / 73

Decidability of Tcons

Tcons is undecidable

Quantifier-free fragment of Tcons is efficiently decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 64 / 73

Decidability of Tcons

Tcons is undecidable
Quantifier-free fragment of Tcons is efficiently decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 64 / 73

Example: Tcons-Validity

We argue that the following Σcons-formula F is Tcons-valid:

F :
car(a) = car(b) ∧ cdr(a) = cdr(b) ∧ ¬atom(a) ∧ ¬atom(b)
→a = b

1. I 6|= F assumption
2. I |= car(a) = car(b) 1, →, ∧
3. I |= cdr(a) = cdr(b) 1, →, ∧
4. I |= ¬atom(a) 1, →, ∧
5. I |= ¬atom(b) 1, →, ∧
6. I 6|= a = b 1, →
7. I |= cons(car(a), cdr(a)) = cons(car(b), cdr(b))

2, 3, (congruence)
8. I |= cons(car(a), cdr(a)) = a 4, (construction)
9. I |= cons(car(b), cdr(b)) = b 5, (construction)
10. I |= a = b 7, 8, 9, (transitivity)

Lines 6 and 10 are contradictory. Therefore, F is Tcons-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 65 / 73

Example: Tcons-Validity

We argue that the following Σcons-formula F is Tcons-valid:

F :
car(a) = car(b) ∧ cdr(a) = cdr(b) ∧ ¬atom(a) ∧ ¬atom(b)
→a = b

1. I 6|= F assumption
2. I |= car(a) = car(b) 1, →, ∧
3. I |= cdr(a) = cdr(b) 1, →, ∧
4. I |= ¬atom(a) 1, →, ∧
5. I |= ¬atom(b) 1, →, ∧
6. I 6|= a = b 1, →
7. I |= cons(car(a), cdr(a)) = cons(car(b), cdr(b))

2, 3, (congruence)
8. I |= cons(car(a), cdr(a)) = a 4, (construction)
9. I |= cons(car(b), cdr(b)) = b 5, (construction)
10. I |= a = b 7, 8, 9, (transitivity)

Lines 6 and 10 are contradictory. Therefore, F is Tcons-valid.
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 65 / 73

Theory of Arrays TA

Signature: ΣA : {·[·], ·〈· / ·〉, =},
where

a[i] binary function –
read array a at index i (“read(a,i)”)

a〈i / v〉 ternary function –
write value v to index i of array a (“write(a,i ,e)”)

Axioms

1 the axioms of (reflexivity), (symmetry), and (transitivity) of TE

2 ∀a, i , j . i = j → a[i] = a[j] (array congruence)

3 ∀a, v , i , j . i = j → a〈i / v〉[j] = v (read-over-write 1)

4 ∀a, v , i , j . i 6= j → a〈i / v〉[j] = a[j] (read-over-write 2)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 66 / 73

Equality in TA

Note: = is only defined for array elements

a[i] = e → a〈i / e〉 = a

not TA-valid, but

a[i] = e → ∀j . a〈i / e〉[j] = a[j] ,

is TA-valid.

Also
a = b → a[i] = b[i]

is not TA-valid: We only axiomatized a restricted congruence.

TA is undecidable
Quantifier-free fragment of TA is decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 67 / 73

Equality in TA

Note: = is only defined for array elements

a[i] = e → a〈i / e〉 = a

not TA-valid, but

a[i] = e → ∀j . a〈i / e〉[j] = a[j] ,

is TA-valid.

Also
a = b → a[i] = b[i]

is not TA-valid: We only axiomatized a restricted congruence.

TA is undecidable
Quantifier-free fragment of TA is decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 67 / 73

Equality in TA

Note: = is only defined for array elements

a[i] = e → a〈i / e〉 = a

not TA-valid, but

a[i] = e → ∀j . a〈i / e〉[j] = a[j] ,

is TA-valid.

Also
a = b → a[i] = b[i]

is not TA-valid: We only axiomatized a restricted congruence.

TA is undecidable
Quantifier-free fragment of TA is decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 67 / 73

Theory of Arrays T=
A (with extensionality)

Signature and axioms of T=
A are the same as TA, with one additional

axiom
∀a, b. (∀i . a[i] = b[i]) ↔ a = b (extensionality)

Example:
F : a[i] = e → a〈i / e〉 = a

is T=
A -valid.

T=
A is undecidable

Quantifier-free fragment of T=
A is decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 68 / 73

Theory of Arrays T=
A (with extensionality)

Signature and axioms of T=
A are the same as TA, with one additional

axiom
∀a, b. (∀i . a[i] = b[i]) ↔ a = b (extensionality)

Example:
F : a[i] = e → a〈i / e〉 = a

is T=
A -valid.

T=
A is undecidable

Quantifier-free fragment of T=
A is decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 68 / 73

Combination of Theories

How do we show that

1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

is (TE ∪ TZ)-unsatisfiable?

Or how do we prove properties about
an array of integers, or
a list of reals . . . ?

Given theories T1 and T2 such that

Σ1 ∩ Σ2 = {=}

The combined theory T1 ∪ T2 has

signature Σ1 ∪ Σ2

axioms A1 ∪ A2

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 69 / 73

Combination of Theories

How do we show that

1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

is (TE ∪ TZ)-unsatisfiable?

Or how do we prove properties about
an array of integers, or
a list of reals . . . ?

Given theories T1 and T2 such that

Σ1 ∩ Σ2 = {=}

The combined theory T1 ∪ T2 has

signature Σ1 ∪ Σ2

axioms A1 ∪ A2

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 69 / 73

Combination of Theories

How do we show that

1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

is (TE ∪ TZ)-unsatisfiable?

Or how do we prove properties about
an array of integers, or
a list of reals . . . ?

Given theories T1 and T2 such that

Σ1 ∩ Σ2 = {=}

The combined theory T1 ∪ T2 has

signature Σ1 ∪ Σ2

axioms A1 ∪ A2

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 69 / 73

Nelson & Oppen

qff = quantifier-free fragment

Nelson & Oppen showed that

if satisfiability of qff of T1 is decidable,
satisfiability of qff of T2 is decidable, and
certain technical requirements are met

then satisfiability of qff of T1 ∪ T2 is decidable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 70 / 73

Lists with equality T=
cons

T=
cons : TE ∪ Tcons

Signature: ΣE ∪ Σcons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of TE and Tcons

T=
cons is undecidable

Quantifier-free fragment of T=
cons is efficiently decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 71 / 73

Lists with equality T=
cons

T=
cons : TE ∪ Tcons

Signature: ΣE ∪ Σcons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of TE and Tcons

T=
cons is undecidable

Quantifier-free fragment of T=
cons is efficiently decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 71 / 73

Lists with equality T=
cons

T=
cons : TE ∪ Tcons

Signature: ΣE ∪ Σcons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of TE and Tcons

T=
cons is undecidable

Quantifier-free fragment of T=
cons is efficiently decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 71 / 73

Lists with equality T=
cons

T=
cons : TE ∪ Tcons

Signature: ΣE ∪ Σcons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of TE and Tcons

T=
cons is undecidable

Quantifier-free fragment of T=
cons is efficiently decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 71 / 73

Example: T=
cons-Validity

We argue that the following Σ=
cons-formula F is T=

cons-valid:

F :
car(a) = car(b) ∧ cdr(a) = cdr(b) ∧ ¬atom(a) ∧ ¬atom(b)
→f (a) = f (b)

1. I 6|= F assumption
2. I |= car(a) = car(b) 1, →, ∧
3. I |= cdr(a) = cdr(b) 1, →, ∧
4. I |= ¬atom(a) 1, →, ∧
5. I |= ¬atom(b) 1, →, ∧
6. I 6|= f (a) = f (b) 1, →
7. I |= cons(car(a), cdr(a)) = cons(car(b), cdr(b))

2, 3, (congruence)
8. I |= cons(car(a), cdr(a)) = a 4, (construction)
9. I |= cons(car(b), cdr(b)) = b 5, (construction)
10. I |= a = b 7, 8, 9, (transitivity)
11. I |= f (a) = f (b) 10, (congruence)

Lines 6 and 11 are contradictory. Therefore, F is T=
cons-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 72 / 73

Example: T=
cons-Validity

We argue that the following Σ=
cons-formula F is T=

cons-valid:

F :
car(a) = car(b) ∧ cdr(a) = cdr(b) ∧ ¬atom(a) ∧ ¬atom(b)
→f (a) = f (b)

1. I 6|= F assumption
2. I |= car(a) = car(b) 1, →, ∧
3. I |= cdr(a) = cdr(b) 1, →, ∧
4. I |= ¬atom(a) 1, →, ∧
5. I |= ¬atom(b) 1, →, ∧
6. I 6|= f (a) = f (b) 1, →
7. I |= cons(car(a), cdr(a)) = cons(car(b), cdr(b))

2, 3, (congruence)
8. I |= cons(car(a), cdr(a)) = a 4, (construction)
9. I |= cons(car(b), cdr(b)) = b 5, (construction)
10. I |= a = b 7, 8, 9, (transitivity)
11. I |= f (a) = f (b) 10, (congruence)

Lines 6 and 11 are contradictory. Therefore, F is T=
cons-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 72 / 73

First-Order Theories

Theory Decidable QFF Dec.

TE Equality − 3

TPA Peano Arithmetic − −
TN Presburger Arithmetic 3 3

TZ Linear Integer Arithmetic 3 3

TR Real Arithmetic 3 3

TQ Linear Rationals 3 3

Tcons Lists − 3

T=
cons Lists with Equality − 3

TA Arrays − 3

T=
A Arrays with Extensionality − 3

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 73 / 73

	First-Order Logic
	Satisfiability and Validity
	Normal Forms

	Theories
	Theory of Equality
	T-Validity and T-Satisfiability
	Natural Numbers and Integers
	Rationals and Reals
	Recursive Data Structures
	Arrays
	Combination of Theories
	Decidability

