Decision Procedures J

Jochen Hoenicke

g Software Engineering

-=2- Albert-Ludwigs-University Freiburg

&
i

Summer 2012

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 1/73

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2/73

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2/73

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL
@ FOL is only semi-decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2/73

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL
@ FOL is only semi-decidable

— Restrictions to decidable fragments of FOL

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2/73

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL
@ FOL is only semi-decidable

— Restrictions to decidable fragments of FOL
o Quantifier Free Fragment (QFF)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2/73

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL
@ FOL is only semi-decidable

— Restrictions to decidable fragments of FOL

o Quantifier Free Fragment (QFF)
o QFF of Equality

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2/73

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL
@ FOL is only semi-decidable

— Restrictions to decidable fragments of FOL

o Quantifier Free Fragment (QFF)
o QFF of Equality
o Presburger arithmetic

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2/73

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL
@ FOL is only semi-decidable

— Restrictions to decidable fragments of FOL

o Quantifier Free Fragment (QFF)
o QFF of Equality

o Presburger arithmetic

o (QFF of) Linear integer arithmetic

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2/73

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL
@ FOL is only semi-decidable

— Restrictions to decidable fragments of FOL

o Quantifier Free Fragment (QFF)
o QFF of Equality

o Presburger arithmetic

o (QFF of) Linear integer arithmetic
o Real arithmetic

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2/73

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL

@ FOL is only semi-decidable

— Restrictions to decidable fragments of FOL
o Quantifier Free Fragment (QFF)
o QFF of Equality
o Presburger arithmetic
o (QFF of) Linear integer arithmetic
o Real arithmetic
o (QFF of) Linear real/rational arithmetic

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2/73

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL

@ FOL is only semi-decidable
— Restrictions to decidable fragments of FOL

o Quantifier Free Fragment (QFF)

o QFF of Equality

o Presburger arithmetic

o (QFF of) Linear integer arithmetic

o Real arithmetic

o (QFF of) Linear real/rational arithmetic
o QFF of Recursive Data Structures

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2/73

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL

@ FOL is only semi-decidable

— Restrictions to decidable fragments of FOL
o Quantifier Free Fragment (QFF)
o QFF of Equality
o Presburger arithmetic
o (QFF of) Linear integer arithmetic
o Real arithmetic
o (QFF of) Linear real/rational arithmetic

o QFF of Recursive Data Structures
o QFF of Arrays

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2/73

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL

@ FOL is only semi-decidable
— Restrictions to decidable fragments of FOL

o Quantifier Free Fragment (QFF)

o QFF of Equality

o Presburger arithmetic

o (QFF of) Linear integer arithmetic

o Real arithmetic

o (QFF of) Linear real/rational arithmetic
o QFF of Recursive Data Structures

o QFF of Arrays

o Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2/73

First-Order Logic

Syntax of First-Order Logic g

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables Xy Yy Zyo e
constants a,b,c,---
functions f,g,h,--- with arity n > 0

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 4/73

Syntax of First-Order Logic g

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables Xy Yy Zyo e
constants a,b,c,---
functions f,g,h,--- with arity n > 0
terms variables, constants or

n-ary function applied to n terms as arguments
a, x, f(a), g(x, b), f(g(x, f(b)))

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 4/73

Syntax of First-Order Logic g

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables Xy Yy Zyo e
constants a,b,c,---
functions f,g,h,--- with arity n > 0
terms variables, constants or

n-ary function applied to n terms as arguments

a, x, f(a), g(x, b), f(g(x, f(b)))
predicates p,q,r,--- with arity n > 0

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 4/73

Syntax of First-Order Logic g

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables Xy Yy Zyo e
constants a,b,c,---
functions f,g,h,--- with arity n > 0
terms variables, constants or

n-ary function applied to n terms as arguments
a, x, f(a), g(x, b), f(g(x, f(b)))
predicates p,q,r,--- with arity n > 0
atom T, L, or an n-ary predicate applied to n terms
literal atom or its negation

p(f(x),&(x,f(x))), —=p(f(x),&(x,f(x)))

Note: 0-ary functions: constant
0-ary predicates: P, Q,R,...

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 4/73

Syntax of First-Order Logic (2)

quantifiers

existential quantifier Ix.F[x]
“there exists an x such that F[x]"

universal quantifier Vx.F[x]
“for all x, F[x]"

FOL formula literal, application of logical connectives

(=, V, A, =, <) to formulae,
or application of a quantifier to a formula

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

5/173

Example &

FOL formula
Vx. (p(f(x),x) = (Fy. (p(f(g(x,¥)). &(x,¥)))) A a(x, f(x)))
G
F

The scope of Vx is F.
The scope of dy is G.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 6 /73

Example &

FOL formula

Vx. (p(f(x),x) = (Jy. (p(f(&(x,y)), &(x,¥)))) N a(x, f(x)))
G

The scope of Vx is F.
The scope of dy is G.
The formula reads:
“for all x,
if p(f(x),x)

then there exists a y such that
p(f(g(x,y)), &(x,y)) and q(x, f(x))"

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 6 /73

Famous theorems in FOL g

@ The length of one side of a triangle is less than the sum of the lengths
of the other two sides

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 7/73

Famous theorems in FOL g

@ The length of one side of a triangle is less than the sum of the lengths
of the other two sides

Vx,y,z. triangle(x,y,z) — length(x) < length(y) + length(z)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 7/73

Famous theorems in FOL g

@ The length of one side of a triangle is less than the sum of the lengths
of the other two sides

Vx,y,z. triangle(x,y,z) — length(x) < length(y) + length(z)

@ Fermat’'s Last Theorem.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 7/73

Famous theorems in FOL g

@ The length of one side of a triangle is less than the sum of the lengths
of the other two sides

Vx,y,z. triangle(x,y,z) — length(x) < length(y) + length(z)

@ Fermat’'s Last Theorem.

Vn. integer(n) A n > 2
—Vx,y, z.
integer(x) A integer(y) A integer(z)
AX>0ANy >0Az>0
*)Xn + yn # Zn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 7/73

Pumping Lemma g

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 8 /73

Pumping Lemma

For every regular Language L there is some n > 0, such that for all words
z € L with |z| > n there is a decomposition z = uvw with |v| > 1 and
|uv| < n, such that forall i > 0: uwv'w € L.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 8 /73

Pumping Lemma

For every regular Language L there is some n > 0, such that for all words

z € L with |z| > n there is a decomposition z = uvw with |v| > 1 and
|uv| < n, such that forall i > 0: uwv'w € L.

VL. regularlanguage(L)—
dn. integer(n) A n > OA
Vz.z € LA |z| > n—
Ju, v, w. word(u) A\ word(v) A word(w)A
z =uww A |v| > 1A |uv| < nA
Vi. integer(i) A i > 0 — uviw € L

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 8 /73

Pumping Lemma

For every regular Language L there is some n > 0, such that for all words
z € L with |z| > n there is a decomposition z = uvw with |v| > 1 and

luv| < n, such that for all i > 0: wv'w € L.

VL. regularlanguage(L)—
dn. integer(n) A n > OA
Vz.z € LA |z| > n—
Ju, v, w. word(u) A\ word(v) A word(w)A
z =uww A |v| > 1A |uv| < nA
Vi. integer(i) A i > 0 — uviw € L

Predicates: regularlanguage, integer, word, - € -, - <

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

> =

8 /173

Pumping Lemma

For every regular Language L there is some n > 0, such that for all words
z € L with |z| > n there is a decomposition z = uvw with |v| > 1 and

luv| < n, such that for all i > 0: wv'w € L.

VL. regularlanguage(L)—
dn. integer(n) A n > OA
Vz.z € LA |z| > n—
Ju, v, w. word(u) A\ word(v) A word(w)A
z =uww A |v| > 1A |uv| < nA
Vi. integer(i) A i > 0 — uviw € L

Predicates: regularlanguage, integer, word, - € -, - < -, - > - - = .
Constants: 0, 1
Functions: | - | (word length), concatenation, iteration

Jochen Hoenicke (Software Engineering)

Decision Procedures Summer 2012

8 /173

FOL Semantics &

An interpretation / : (Dj, «) consists of:
@ Domain Dy
non-empty set of values or objects

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9/73

FOL Semantics &

An interpretation / : (Dj, «) consists of:
@ Domain Dy

non-empty set of values or objects
for example Dy = playing cards (finite),

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9/73

FOL Semantics

An interpretation / : (Dj, «) consists of:
@ Domain Dy
non-empty set of values or objects
for example Dy = playing cards (finite),
integers (countable infinite), or

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

9/73

FOL Semantics &

An interpretation / : (Dj, «) consists of:
@ Domain Dy
non-empty set of values or objects
for example Dy = playing cards (finite),
integers (countable infinite), or
reals (uncountable infinite)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9/73

FOL Semantics &

An interpretation / : (Dj, «) consists of:
@ Domain Dy
non-empty set of values or objects
for example Dy = playing cards (finite),
integers (countable infinite), or
reals (uncountable infinite)
@ Assignment «y
e each variable x assigned value ay[x] € D

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9/73

FOL Semantics &

An interpretation / : (Dj, «) consists of:
@ Domain Dy
non-empty set of values or objects
for example Dy = playing cards (finite),
integers (countable infinite), or
reals (uncountable infinite)
@ Assignment «y
e each variable x assigned value ay[x] € D
e each n-ary function f assigned

a/[f] : Dln — D/

In particular, each constant a (0-ary function) assigned value
a/[a] e D

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9/73

FOL Semantics &

An interpretation / : (Dj, «) consists of:
@ Domain Dy
non-empty set of values or objects
for example Dy = playing cards (finite),
integers (countable infinite), or
reals (uncountable infinite)
@ Assignment «y

e each variable x assigned value ay[x] € D
e each n-ary function f assigned

a/[f] : Dln — D/
In particular, each constant a (0-ary function) assigned value
a,[a] € D
e each n-ary predicate p assigned
arfp] - D — {T, L1}
In particular, each propositional variable P (0-ary predicate) assigned
truth value (T, 1)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9/73

Example

F: p(f(x,y),z) = p(y,g(z,x))

Interpretation | : (Dy, «y)
Dp=%2={--,-2,-1,0,1,2,---} integers

Oé[[f] . D12 — D/ a/[g] . Dlz — D/
(x,y) = x +y (x,y) = x —y
oz,[p] : D12 — {T7J—}
T ifx <y
(x,y) =

1 otherwise

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 73

Example 2
F: p(f(x,y),z) = p(y,g(z,x))

Interpretation | : (Dy, «y)

Dp=%2={--,-2,-1,0,1,2,---} integers
Oé[[f] . D12 — D/ a/[g] . Dlz — D/
(x,y) = x+y (x,y) = x —y
oz,[p] : D12 - {T7J—}
T ifx <y
(x,y) =

1 otherwise
Also ay[x] = 13, ay[y] = 42, c[z] = 1
Compute the truth value of F under /

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 73

Example
F: p(f(x,y),z) = p(y,g(z,x))

Interpretation | : (Dy, «y)

Dp=%2={--,-2,-1,0,1,2,---} integers
Oé[[f] . Dlz — D/ a/[g] . Dlz — D/
(x,y) = x+y (x,y) = x —y
a/[p] : D12 - {TvJ—}
T ifx <y
(x,y) =

1 otherwise
Also ay[x] = 13, ay[y] = 42, cy[z] =
Compute the truth value of F under /

1. | = p(f(x,y),z) since 13 + 42 > 1
2. |}~ ply, g(z x)) since 42 > 1 — 13
3. I EF by 1, 2, and —
F is true under /
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

10/ 73

Semantics: Quantifiers g

For a variable x:

Definition (x-variant)

An x-variant of interpretation / is an interpretation J : (D,, ay) such that
L D/ = DJ
e «ay[y] = ayly] for all symbols y, except possibly x

That is, / and J agree on everything except possibly the value of x

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 11 /73

Semantics: Quantifiers g

For a variable x:

Definition (x-variant)

An x-variant of interpretation / is an interpretation J : (D,, ay) such that
L D/ = DJ
e «ay[y] = ayly] for all symbols y, except possibly x

That is, / and J agree on everything except possibly the value of x

Denote J : | < {x — v} the x-variant of / in which a,[x] = v for some
v € Dy.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 11 /73

Semantics: Quantifiers g

For a variable x:

Definition (x-variant)

An x-variant of interpretation / is an interpretation J : (D,, ay) such that
L D/ = DJ
e «ay[y] = ayly] for all symbols y, except possibly x

That is, / and J agree on everything except possibly the value of x

Denote J : | < {x — v} the x-variant of / in which a,[x] = v for some
v € D;. Then

o/ =EVx. F iffforallve D, l<{x—v}E=F
o/ = 3x. F iffthereexistsv € Dyst. [<{x — v} E F

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 11 /73

Example

Consider
F:Vx.dy. 2.y =x
Here 2 - y is the infix notatation of the term (2, y),
and 2 - y = x is the infix notatation of the atom = (-(2,y), x).
@ 2 is a O-ary function symbol (a constant).
@ - is a 2-ary function symbol.
@ = is a 2-ary predicate symbol.
@ X,y are variables.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

12 /73

Example g

Consider
F:Vx.dy. 2.y =x
Here 2 - y is the infix notatation of the term (2, y),
and 2 - y = x is the infix notatation of the atom = (-(2,y), x).
@ 2 is a O-ary function symbol (a constant).
@ - is a 2-ary function symbol.
@ = is a 2-ary predicate symbol.

@ X,y are variables.

What is the truth-value of F?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 12 /73

Example (Z)

F:Vx.dy.2.-y =x

Let / be the standard interpration for integers, D; = Z.
Compute the value of F under [/:

Jochen Hoenicke (Software Engineering) Decision Procedures

Summer 2012 13 /73

Example (Z) -

F:Vx.dy.2.-y =x

Let / be the standard interpration for integers, D; = Z.
Compute the value of F under [/:

I EVx.3y. 2y =x
iff
forallv e D, la{x— v} E3Jy.2 -y =x
iff
for all v € Dy, there exists vi € Dy, I<{x — v}<{y = w1} E 2y = x

The latter is false since for 1 € D, there is no number v; with 2 - vy = 1.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 13 /73

Example (Q) g

F:Vx.dy. 2.y =x

Let / be the standard interpration for rational numbers, D; = Q.
Compute the value of F under [I:

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 14 /73

Example (Q) g

F:Vx.dy. 2.y =x
Let / be the standard interpration for rational numbers, D; = Q.
Compute the value of F under [I:

| EVx.dy. 2.y =x
iff

forallv e D, I a{x — v} =3y.2.-y =x

iff
for all v € Dy, there exists vi € Dy, I<{x — v}<{y — w1} F 2y = x

The latter is true since for v.€ D; we can choose vi = 3.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 14 /73

Satisfiability and Validity 2

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation / such that | = F.

Definition (Validity)

F is valid iff for all interpretations /, | }= F.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 15 /73

Satisfiability and Validity g

Definition (Satisfiability)
F is satisfiable iff there exists an interpretation / such that | = F.

Definition (Validity)
F is valid iff for all interpretations /, | }= F.

F is valid iff =F is unsatisfiable I

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 15 /73

Substitution g

Suppose, we want to replace terms with other terms in formulas, e.g.

F : Vy. (p(x,y) = p(y,x))

should be transformed to

G : Vy. (p(a,y) = ply,a))

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 16 / 73

Substitution g

Suppose, we want to replace terms with other terms in formulas, e.g.
F :Vy. (p(x,y) = p(y,x))
should be transformed to

G : Vy. (p(a,y) = ply,a))

We call the mapping from x to a a substituion denoted as o : {x — a}.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 16 / 73

Substitution g

Suppose, we want to replace terms with other terms in formulas, e.g.
F oy (p(x,y) = p(y,x))

should be transformed to
G : Vy. (p(a,y) = ply,a))

We call the mapping from x to a a substituion denoted as o : {x — a}.
We write Fo for the formula G.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 16 / 73

Substitution g

Suppose, we want to replace terms with other terms in formulas, e.g.
F oy (p(x,y) = p(y,x))

should be transformed to
G : Vy. (p(a,y) = ply,a))

We call the mapping from x to a a substituion denoted as o : {x — a}.
We write Fo for the formula G.

Another convenient notation is F[x] for a formula containing the variable
x and F[a] for Fo.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 16 / 73

Substitution g

Definition (Substitution)

A substitution is a mapping from terms to terms, e.g.

o {1.'1 = S1,...,th — Sn}

By Fo we denote the application of ¢ to formula F, i.e., the formula F
where all occurences of ty,...,t, are replaced by si,...,s,.

For a formula named F[x] we write F[t] as shorthand for F[x]{x — t}.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 17 /73

Safe Substitution g

Care has to be taken in the presence of quantifiers:
F[x] : 3y. y = Succ(x)

What is Fly|?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 18 / 73

Safe Substitution g

Care has to be taken in the presence of quantifiers:
F[x] : 3y. y = Succ(x)

What is Fly|?
We need to rename bounded variables occuring in the substitution:

Fly] : 3y’. y' = Succ(y)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 18 / 73

Safe Substitution g

Care has to be taken in the presence of quantifiers:
F[x] : 3y. y = Succ(x)

What is Fly|?
We need to rename bounded variables occuring in the substitution:

Fly] : 3y’ y' = Succ(y)
Bounded renaming does not change the models of a formula:

(Jy. y = Succ(x)) & (Fy'. y' = Succ(x))

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 18 / 73

Recursive Definition of Substitution g
~58-
o(t) t € dom(o)
to = § f(tio,...,tho) t & dom(o) At = f(t1,...,tn)
X t ¢ dom(o) ANt = x
p(ti, ..., th)o = p(tio, ..., tho)

(=F)o = —(Fo)
(FA G)o = (Fo) A (Go)

(x. F)o VX Fo x ¢ Vars(o)
X. =
((F{x — x'})o) otherwise and x’ is fresh
(3x. Flo = Ix. Fo x ¢ Vars(o)
X, ((F{x — x'})o) otherwise and x’ is fresh

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 19 /73

Example: Safe Substitution Fo

F (Y. p(x,y))—= a(f(y), x)
bound by ¥x ™\ free free /' ™\ free

o:{x— g(x), y = f(x), f(y) — h(x,y)}

Fo?

Jochen Hoenicke (Software Engineering)

Decision Procedures

Summer 2012

20/ 73

Example: Safe Substitution Fo &

F (Y. p(x,y))—= a(f(y), x)
bound by ¥x ™\ free free /' ™\ free

o:{x— g(x), y = f(x), f(y) — h(x,y)}
Fo?

@ Rename
F' 29X p(X'y) — q(f(y),x)
.

where x’ is a fresh variable
Q Fo : VX. p(X,f(x)) = q(h(x,y),g(x))

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 20/ 73

Semantic Tableaux

Recall rules from propositional logic:

I = —~F I = —F
I F I F
I'EFAG I~ FAG
IEF TEF | TEG
l':G<—and or
IEFVG I FVG
I'EF | IEG I~ F
I~ G
IEF—G I'EF — G
T F [TEG I'EF
I~ G
IEF+ G IEF & G
IEFAG | TEFVG ITEFA-G | TE-FAG
I = F
I £ F
= L

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

21/ 73

Semantic Tableaux for FOL

The following additional rules are used for quantifiers:

| = Vx.F[x] for any term t I £ Vx.F[x] for a fresh constant a
I'= Fli I~ Flal
I = 3x.F[x] for a fresh constant a I B~ 3x.F[x] for any term ¢t
I'F= Fla] I Flt]

(We assume that there are infinitely many constant symbols.)

The formula F[t] is created from the formula F[x] by the substitution
{x — t} (roughly, replace every x by t).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

22 /73

Example &

Show that (3x. Vy. p(x,y)) — (¥x. Jy. p(y, x)) is valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 23 /73

Example g

Show that (3x. Vy. p(x,y)) — (¥x. Jy. p(y, x)) is valid.

Assume otherwise.

1. | ¥ (3x. Yy. p(x,y)) = (Vx. y. p(y, x)) assumption

2. | = 3x.Vy. p(x,y) 1 and —

3. | & Vx. 3y. p(y,x) 1and —

4. | = Vy. p(a,y) 2, 3 (x — a fresh)
5. 1 ¥~ 3y. p(y,b) 3,V (x — b fresh)
6. | = p(a,b) 4,V (y — b)

7. | = p(a,b) 5 3(y — a)

8. I =1L 6,7 contradictory

Thus, the formula is valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 23 /73

Example g
Is F: (¥x. p(x,x)) — (3x. Yy. p(x,y)) valid?. St

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 24 /73

Example &

Is F : (Vx. p(x,x)) = (3x. Vy. p(x,y)) valid?.

Assume [is a falsifying interpretation for F and apply semantic argument:

1. | B (Vx. p(x,x)) = (3x. Vy. p(x,y))

2. | E ¥x. p(x,x) 1and —
3. | £ 3x. Vy. p(x,y) 1and —
4. | E p(a1,a1) 2,V

5. | & Vy.p(a1,y) 3,3

6. |}~ p(a1,a) 5V

7. 1 E p(a2, a) 2,V

8. | & Vy.p(az,y) 3,3

9. |}~ p(az,a3) 8,V

No contradiction.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 24 /73

Example &

Is F : (Vx. p(x,x)) = (3x. Vy. p(x,y)) valid?.

Assume [is a falsifying interpretation for F and apply semantic argument:

1. | B (Vx. p(x,x)) = (3x. Vy. p(x,y))

2. | E ¥x. p(x,x) 1and —
3. | £ 3x. Vy. p(x,y) 1and —
4. | E p(a1,a1) 2,V

5. | & Vy.p(a1,y) 3,3

6. |}~ p(a1,a) 5V

7. 1 E p(a2, a) 2,V

8. | & Vy.p(az,y) 3,3

9. |}~ p(az,a3) 8,V

No contradiction. Falsifying interpretation / can be “read” from proof:
true y = X,
Dy =N, pi(x,y) = { false y =x+ 1,
arbitrary otherwise.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 24 /73

Semantic Argument Proof g

To show FOL formula F is valid, assume | = F and derive a contradiction
I = L in all branches

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 25 /73

Semantic Argument Proof £

To show FOL formula F is valid, assume | = F and derive a contradiction
I = L in all branches

@ Soundness
If every branch of a semantic argument proof reach | |= L, then F is
valid

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 25 /73

Semantic Argument Proof g

To show FOL formula F is valid, assume | = F and derive a contradiction
I = L in all branches

@ Soundness

If every branch of a semantic argument proof reach | |= L, then F is
valid

o Completeness

Each valid formula F has a semantic argument proof in which every
branch reach | = L

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 25 /73

Semantic Argument Proof g

To show FOL formula F is valid, assume | = F and derive a contradiction
I = L in all branches

@ Soundness
If every branch of a semantic argument proof reach | |= L, then F is
valid

o Completeness
Each valid formula F has a semantic argument proof in which every
branch reach | = L

@ Non-termination
For an invalid formula F the method is not guaranteed to terminate.
Thus, the semantic argument is not a decision procedure for validity.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 25 /73

Soundness (proof sketch) 2

If for interpretation / the assumption of the proof hold
then there is an interpretation /” and a branch
such that all statements on that branch hold.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 26 /73

Soundness (proof sketch)

If for interpretation / the assumption of the proof hold
then there is an interpretation /” and a branch
such that all statements on that branch hold.

I" differs from [in the values «y[a;] of fresh constants a;.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

26/ 73

Soundness (proof sketch) 2

If for interpretation / the assumption of the proof hold
then there is an interpretation /” and a branch
such that all statements on that branch hold.

I" differs from [in the values «y[a;] of fresh constants a;.

If all branches of the proof end with /| = L, then the assumption was
wrong.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 26 /73

Soundness (proof sketch) 2

If for interpretation / the assumption of the proof hold
then there is an interpretation /” and a branch
such that all statements on that branch hold.

I" differs from [in the values «y[a;] of fresh constants a;.

If all branches of the proof end with /| = L, then the assumption was
wrong. Thus, if the assumption was | [~ F, then F must be valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 26 /73

Completeness (proof sketch) 2

Consider (finite or infinite) proof trees starting with / [~ F. We assume
that

@ all possible proof rules were applied in all non-closed branches.

@ the V and J rules were applied for all terms.
This is possible since the terms are countable.

If every branch is closed, the tree is finite (KOnig's Lemma) and we have a
finite proof for F.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 27 /73

Completeness (proof sketch, continued) -
52
Otherwise, the proof tree has at least one open branch P. We show that F

is not valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 28 /73

Completeness (proof sketch, continued) -

52
Otherwise, the proof tree has at least one open branch P. We show that F

is not valid.

@ The statements on that branch P form a Hintikka set:
o/ EFAGE Pimplies!/ = F e Pand! = G € P.
'~ FANGe€ Pimplies! £ F e Porl £ G e P.
I |E Vx. F[x] € P implies for all terms ¢, | = F[t] € P.
I = ¥x. F[x] € P implies for some term a, | [= Fla] € P.

o
o
o
e Similarly for vV, —, <> 3.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 28 /73

Completeness (proof sketch, continued) -
52
Otherwise, the proof tree has at least one open branch P. We show that F

is not valid.

@ The statements on that branch P form a Hintikka set:

o/ EFAGE Pimplies!/ = F e Pand! = G € P.
' FAG € Pimplies! £ F € Porl £ G € P.
I |E Vx. F[x] € P implies for all terms ¢, | = F[t] € P.
I = ¥x. F[x] € P implies for some term a, | [= Fla] € P.
Similarly for VvV, —, +», 3.

@ Choose Dy := {t | tis term}, a;[f](t1,...,tn) = f(t1,...tn),

true | E p(t1,....ty) € P
false otherwise

wld = x arlpl(t..) = {

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 28 /73

Completeness (proof sketch, continued) -
52
Otherwise, the proof tree has at least one open branch P. We show that F

is not valid.

@ The statements on that branch P form a Hintikka set:

' EFANGecPimplies! = F € Pand! = G € P.
' FAG € Pimplies! £ F € Porl £ G € P.

I |E Vx. F[x] € P implies for all terms ¢, | = F[t] € P.

I = ¥x. F[x] € P implies for some term a, | [= Fla] € P.
Similarly for VvV, —, +», 3.

@ Choose Dy := {t | tis term}, a;[f](t1,...,tn) = f(t1,...tn),

true | E p(t1,....ty) € P
false otherwise

wld = x arlpl(t..) = {

© |/ satisfies all statements on the branch.
In particular, I is a falsifying interpretation of F, thus F is not valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 28 /73

Normal Forms
.

Also in first-order logic normal forms can be used:
@ Devise an algorithm to convert a formula to a normal form.
@ Then devise an algorithm for satisfiability /validity that only works on

the normal form.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 29 /73

Negation Normal Forms (NNF) g

Negations appear only in literals. (only =, A, V,3,V)
To transform F to equivalent F’/ in NNF use recursively
the following template equivalences (left-to-right):

-—f < A - T & L -1l < T
—|(F1 VAN Fz) & —F VvV ah

De Morgan's Law
—|(F1 V F2) & - AR

FR—FH < -FRVFHF
F1<—>F2<:>(F1—>F2)/\(F2—>F1)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 30/ 73

Negation Normal Forms (NNF) %

Negations appear only in literals. (only =, A, V,3,V)
To transform F to equivalent F’/ in NNF use recursively
the following template equivalences (left-to-right):

-—f < A - T & L -1l < T
—|(F1 VAN Fz) & —F VvV ah

De Morgan's Law
—|(F1 V F2) & - AR

FR—FH < -FRVFHF
F1<—>F2<:>(F1—>F2)/\(F2—>F1)

—Vx. F[x] & 3x. =F[x]
—3x. F[x] & Vx. =F[x]

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 30/ 73

Example: Conversion to NNF g

G : Vx. (3y. p(x,y) A p(x,2)) = Iw.p(x, w) .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 31/ 73

Example: Conversion to NNF 2

G : Vx. (3y. p(x,y) A p(x,z)) = Iw.p(x,w) .

Q Vx. (Jy. p(x,y) A p(x,2)) = Iw. p(x,w)

@ Vx. =(Jy. p(x,y) A p(x,2)) V Iw. p(x, w)
FR—>F < -FVEF

Q Vx. (Vy —|(p(X,y) A p(X,Z))) vV 3w. p(X, W)
—3x. F[x] & Vx. =F[x]

Q vx. (Vy. =p(x,y) V =p(x, z)) V Iw. p(x, w)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 31/ 73

Prenex Normal Form (PNF) g

All quantifiers appear at the beginning of the formula
Q1x1 -+ - QnXn. F[Xl, Tt 7Xn]
where Q; € {V, 3} and F is quantifier-free.

Every FOL formula F can be transformed to formula F’ in PNF s.t.
F' < F:

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 32/ 73

Prenex Normal Form (PNF) g

All quantifiers appear at the beginning of the formula
Q1x1 -+ - QnXn. F[Xl, Tt 7Xn]
where Q; € {V, 3} and F is quantifier-free.
Every FOL formula F can be transformed to formula F’ in PNF s.t.
F' < F:
Q@ Write F in NNF

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 32/ 73

Prenex Normal Form (PNF) g

All quantifiers appear at the beginning of the formula
Q1x1 -+ - QnXn. F[Xl, Tt 7Xn]
where Q; € {V, 3} and F is quantifier-free.
Every FOL formula F can be transformed to formula F’ in PNF s.t.
F' < F:
Q@ Write F in NNF

@ Rename quantified variables to fresh names

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 32/ 73

Prenex Normal Form (PNF) g

All quantifiers appear at the beginning of the formula
Q1x1 -+ - QnXn. F[Xl, Tt 7Xn]
where Q; € {V, 3} and F is quantifier-free.
Every FOL formula F can be transformed to formula F’ in PNF s.t.
F' < F:
Q@ Write F in NNF

@ Rename quantified variables to fresh names
© Move all quantifiers to the front

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 32/73

Example: PNF g

Find equivalent PNF of

F : Vx. ((3y. p(x,y) A p(x,2)) — Jy. p(x,y))

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 33/73

Example: PNF g

Find equivalent PNF of
F o ¥x. (By. p(x,¥) A p(x,2)) = Jy. p(x,y))
o Write F in NNF

Fy: x. (Vy _‘P(X,}/) v _‘P(X,Z)) v dy. p(Xa}/)
@ Rename quantified variables to fresh names

Fo o Vx. (Yy. =p(x,y) V =p(x,2)) V Iw. p(x, w)
T'in the scope of Vx

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 33/73

Example: PNF g

@ Move all quantifiers to the front
F3 : Vx.Vy.3w. =p(x,y) V =p(x,z) V p(x, w)
Alternately,
F5 . Vx. 3w. Vy. =p(x,y) V =p(x,2) V p(x, w)

Note: In Fp, Vy is in the scope of Vx, therefore the order of
quantifiers must be ---Vx---Vy--.

Fs < Fand F} & F

Note: However G < F

G : Vy.3w. Vx. =p(x,y) V =p(x,z) V p(x,w)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 34 /73

Decidability of FOL &

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 /73

Decidability of FOL =

e FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is

valid, i.e. always halt and says "yes” if F is valid or say “no” if F is

invalid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 /73

Decidability of FOL g

e FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is
valid, i.e. always halt and says "yes” if F is valid or say “no” if F is
invalid.

@ FOL is semi-decidable
There is a procedure that always halts and says “yes" if F is valid,
but may not halt if F is invalid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 /73

Decidability of FOL g

e FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is
valid, i.e. always halt and says "yes” if F is valid or say “no” if F is
invalid.

@ FOL is semi-decidable
There is a procedure that always halts and says “yes" if F is valid,
but may not halt if F is invalid.

On the other hand,

@ PL is decidable
There exists an algorithm for deciding if a PL formula F is valid, e.g.,

the truth-table procedure.

Similarly for satisfiability

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 /73

Theories

Theories

UNI
1

FREIBURG

The formulal 4+ 1 = 3is

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 /73

Theories g

In first-order logic function symbols have no predefined meaning:
The formula 1 + 1 = 3 is satisfiable.

We want to fix the meaning for some function symbols.
Examples:

Equality theory

@ Theory of natural numbers
@ Theory of rational numbers
°

Theory of arrays or lists

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 /73

First-Order Theories &

Definition (First-order theory)

A First-order theory T consists of

@ A Signature X - set of constant, function, and predicate symbols

@ A set of axioms At - set of closed (no free variables) ¥-formulae

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 38 /73

First-Order Theories g

Definition (First-order theory)

A First-order theory T consists of

@ A Signature X - set of constant, function, and predicate symbols

@ A set of axioms At - set of closed (no free variables) ¥-formulae

A Y -formula is a formula constructed of constants, functions, and

predicate symbols from X, and variables, logical connectives, and
quantifiers

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 38 /73

First-Order Theories g

Definition (First-order theory)

A First-order theory T consists of

@ A Signature X - set of constant, function, and predicate symbols

@ A set of axioms At - set of closed (no free variables) ¥-formulae

A Y -formula is a formula constructed of constants, functions, and

predicate symbols from X, and variables, logical connectives, and
quantifiers

@ The symbols of ¥ are just symbols without prior meaning

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 38 /73

First-Order Theories g

Definition (First-order theory)
A First-order theory T consists of

@ A Signature X - set of constant, function, and predicate symbols

@ A set of axioms At - set of closed (no free variables) ¥-formulae

A Y -formula is a formula constructed of constants, functions, and

predicate symbols from X, and variables, logical connectives, and
quantifiers

@ The symbols of ¥ are just symbols without prior meaning
@ The axioms of T provide their meaning

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 38 /73

Theory of Equality T¢ &

Signature PR {:7aabac7"' 7f7gaha"' ,P,q,f,"'}
@ =, a binary predicate, interpreted by axioms.

@ all constant, function, and predicate symbols.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 39 /73

Theory of Equality Tg g

2
52
=]
Signature 1o {:7aabac7"' 7f7g>ha"' ,P,q,f,"'}
@ =, a binary predicate, interpreted by axioms.
@ all constant, function, and predicate symbols.
Axioms of TEg:
Q Vx. x = x (reflexivity)
Q Vx,y.x=y—=>y=x (symmetry)
QO Vx,y,zx=yANy=2z—x=2z (transitivity)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 39 /73

Theory of Equality T¢ =

Signature ZZ . {:7a’bacy"' 7f7g7ha"')paq)ra"'}
@ =, a binary predicate, interpreted by axioms.

@ all constant, function, and predicate symbols.

Axioms of TEg:
Q Vx. x = x
Q@ VX, y x=y—y=x
QO Vx,y,zx=yANy=z—>x=12
@ for each positive integer n and n-ary function symbol f,

VXl?"'aXm}/h"'ayn' /\iXi = VYi— f(Xl,"'vxn) = f(yla--'ayn)
(congruence)

(reflexivity)
(symmetry)
(transitivity)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 39 /73

Theory of Equality T¢ &

Signature 1o {:,a,b,c,-'- 7f7g7ha"')paq)ra"'}
@ =, a binary predicate, interpreted by axioms.

@ all constant, function, and predicate symbols.

Axioms of TEg:

Q Vx. x = x (reflexivity)
QVxy.x=y—=y=x (symmetry)
Q@ Vx,y,zx=yANy=z—=x=12z (transitivity)

@ for each positive integer n and n-ary function symbol f,
VXl?' -y Xny Y1, 5 Yn- /\iXi = VYi— f(X17"'7Xn) = f(yla 7yn)
(congruence)
© for each positive integer n and n-ary predicate symbol p,

VX17-~aXm)/1a-~a)/n- /\,‘Xi - YI—>(P(X1a--~aXn) <~ P(}/la‘-w)/n))
(equivalence)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 39 /73

Axiom Schemata g

Congruence and Equivalence are axiom schemata.

@ for each positive integer n and n-ary function symbol f,

VX17---;Xn;Y1a~--7Yn- /\,'Xi =Y — f(X17"'7Xn) - f(Y17-~-a)/n)
(congruence)

© for each positive integer n and n-ary predicate symbol p,

VX1, ooy Xy Y1 Yne \iXi = yi = (p(X1, -, xn) < p(yi,- -5 Yn))
(equivalence)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 40 / 73

Axiom Schemata =

Congruence and Equivalence are axiom schemata.

@ for each positive integer n and n-ary function symbol f,

VX17---;Xn;Y1a~--7Yn- /\,'Xi =Y — f(X17"'7Xn) - f(Y17-~-a)/n)
(congruence)

© for each positive integer n and n-ary predicate symbol p,
VX1, ooy Xy Y1 Yne \iXi = yi = (p(X1, -, xn) < p(yi,- -5 Yn))

(equivalence)
For every function symbol there is an instance of the congruence axiom

schemata.
Example: Congruence axiom for binary function f;:

Vxi, X0, Y1, ¥2. X1 = y1 A xo = yo = b(x1,x2) = h(y1,y2)

Jochen Hoenicke (Software Engineering) Decision Procedures

Summer 2012 40 / 73

Axiom Schemata =

Congruence and Equivalence are axiom schemata.

@ for each positive integer n and n-ary function symbol f,
VXl?' s Xny Y1y- -5 Yn- /\,'Xi =Y — f(X17' -~7Xn) - f()’h 7)/n)
(congruence)
© for each positive integer n and n-ary predicate symbol p,

VX1, ooy Xy Y1 Yne \iXi = yi = (p(X1, -, xn) < p(yi,- -5 Yn))
(equivalence)

For every function symbol there is an instance of the congruence axiom

schemata.
Example: Congruence axiom for binary function f;:
Vxi, X2, ¥1,Y2. X1 = y1 A x2 = y2 = h(x1,x2) = f(y1,y2)

AT, contains an infinite number of these axioms.

Jochen Hoenicke (Software Engineering) Decision Procedures

Summer 2012 40 / 73

T-Validity and T-Satisfiability g

Definition (T-interpretation)

An interpretation / is a T-interpretation, if it satisfies all the axioms of T.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 41 /73

T-Validity and T-Satisfiability g

Definition (T-interpretation)

An interpretation / is a T-interpretation, if it satisfies all the axioms of T.

Definition (T-valid)

A X-formula F is valid in theory T (T-valid, also T = F),
if every T-interpretation satisfies F.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 41 /73

T-Validity and T-Satisfiability g

Definition (T-interpretation)

An interpretation / is a T-interpretation, if it satisfies all the axioms of T.

Definition (T-valid)

A X-formula F is valid in theory T (T-valid, also T = F),
if every T-interpretation satisfies F.

Definition (T-satisfiable)

A Y-formula F is satisfiable in T (T-satisfiable),
if there is a T-interpretation that satisfies F

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 41 /73

T-Validity and T-Satisfiability g

Definition (T-interpretation)

An interpretation / is a T-interpretation, if it satisfies all the axioms of T.

Definition (T-valid)

A X-formula F is valid in theory T (T-valid, also T = F),
if every T-interpretation satisfies F.

Definition (T-satisfiable)

A Y-formula F is satisfiable in T (T-satisfiable),
if there is a T-interpretation that satisfies F

A\

Definition (T-equivalent)

Two X-formulae F; and F; are equivalent in T (T-equivalent),
if Fl <~ F2 is T—vaIid,

v

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 41 /73

Example: Tg-validity

UNI
1

FREIBURG

Semantic argument method can be used for Tg
Prove

F: a=bAb=c— g(f(a),b) = g(f(c),a) Tg-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 42 /73

Example: Tg-validity

Semantic argument method can be used for Tg
Prove

F: a=bAb=c— g(f(a),b) = g(f(c),a)

Te-valid.
Suppose not; then there exists a Tg-interpretation / such that | = F.

Then,

1. I ¥ F assumption

2. Il =Ea=bAb=c 1, —

31 glf(a).b) = g(f(c).a) L -

4. I EVx,y,z.x =y ANy =z—>x=12z transitivity

5. lEa=bAb=c—a=c 4,3 X V{x — a,y — b,z — c}

6a Il Ea=bAb=c 5 —

7a I L 3 and 5 contradictory

6b. lEa=c 4,5, (5 —)

7b. I =a=c— f(a) = f(c) (congruence), 2 x V¥

8ba. Ita=c -1 L

8bb. I'= f(a) = f(c) 7b, —

9bb. I=a=b 2, A

10bb. | =Ea=b—b=a (symmetry), 2 x V

1lbba. | = a=b I = L

11bbb. | = b =a 10bb, —

12bbb. | = f(a) = f(c) A b = a— g(f(a),b) = g(f(c),a) (congruence), 4 x V¥
.13 | = g(f(a),b) = g(f(c),a) 8bb, 11bbb, 12bbb

3 and 13 are contradictory. Thus, F is Tg-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures

Summer 2012 42 /73

Decidability of Tg g

Is it possible to decide Tg-validity?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 43 /73

Decidability of Tg

Is it possible to decide Tg-validity?

Tg-validity is undecidable.

Jochen Hoenicke (Software Engineering) Decision Procedures

Summer 2012 43 /73

Decidability of Tg

Is it possible to decide Tg-validity?

Tg-validity is undecidable.

If we restrict ourself to quantifier-free formulae we get decidability:

For a quantifier-free formula Tg-validity is decidable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

43 /73

Fragments of Theories &

A fragment of theory T is a syntactically-restricted subset of formulae of
the theory.

Example: quantifier-free fragment of theory T is the set of
quantifier-free formulae in T.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 44 /73

Fragments of Theories g

A fragment of theory T is a syntactically-restricted subset of formulae of
the theory.

Example: quantifier-free fragment of theory T is the set of
quantifier-free formulae in T.

A theory T is decidable if T |= F (T-validity) is decidable for every
> -formula F,

i.e., there is an algorithm that always terminate with “yes",
if Fis T-valid, and “no”, if F is T-invalid.

A fragment of T is decidable if T |= F is decidable for every ¥-formula F
in the fragment.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 44 /73

Natural Numbers and Integers

Natural numbers N = {0,1,2,---}

Integers Z=A{-,-2,-1,0,1,2,---

Three variations:

Jochen Hoenicke (Software Engineering) Decision Procedures

Summer 2012 45 /73

Natural Numbers and Integers &

Natural numbers N = {0,1,2,---}
Integers zZ=4{-,-2,-1,01,2,---}

Three variations:

@ Peano arithmetic Tpa: natural numbers with addition and
multiplication

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 45 /73

Natural Numbers and Integers &

Natural numbers N = {0,1,2,---}
Integers zZ=4{-,-2,-1,01,2,---}

Three variations:

@ Peano arithmetic Tpa: natural numbers with addition and
multiplication

@ Presburger arithmetic Ty: natural numbers with addition

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 45 /73

Natural Numbers and Integers

Natural numbers N = {0,1,2,---}
Integers zZ=4{-,-2,-1,01,2,---}

Three variations:
@ Peano arithmetic Tpa: natural numbers with addition and
multiplication
@ Presburger arithmetic Ty: natural numbers with addition

@ Theory of integers Ty: integers with +, — >

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

45 /73

Peano Arithmetic Tpa (first-order arithmetic)

BURG

Su

Signature: Ypa o {0, 1, 4, -, =}

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 46 / 73

Peano Arithmetic Tpa (first-order

Signature: Ypa: {0, 1, +, -, =}

Axioms of Tpa: axioms of TEg,
QO Vx. =(x +1 =0)
QVx,y x+l=y+1l=x=y

Jochen Hoenicke (Software Engineering) Decision Procedures

arithmetic)

(zero)

(successor)

Summer 2012 46 / 73

Peano Arithmetic Tpa (first-order arithmetic)

Signature: Ypa: {0, 1, +, -, =}

Axioms of Tpa: axioms of Tg,
QO Vx. =(x +1 =0)
QVx,y x+l=y+1l=x=y
@ F[0] A (Vx. F[x] = F[x + 1]) — V¥x. F[x]

Jochen Hoenicke (Software Engineering) Decision Procedures

(zero)
(successor)
(induction)

Summer 2012 46 / 73

Peano Arithmetic Tpa (first-order arithmetic) g
-5
Signature: Ypa o {0, 1, +, -, =}
Axioms of Tpa: axioms of Tg,
Q Vx. o(x+1=0) (zero)
QVx,y.x+1l=y+1—-x=y (successor)
@ F[0] A (Vx. F[x] = F[x + 1]) — V¥x. F[x] (induction)
Q Vx.x +0 = x (plus zero)
QO V,y. x+(y+1) =(kx+y)+1 (plus successor)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 46 / 73

Peano Arithmetic Tpa (first-order arithmetic) g
-5
Signature: Ypa o {0, 1, +, -, =}
Axioms of Tpa: axioms of Tg,
Q Vx. o(x+1=0) (zero)
QO Vx,y.x+1l=y+1=>x=y (successor)
@ F[0] A (Vx. F[x] = F[x + 1]) — V¥x. F[x] (induction)
Q Vx.x+0=x (plus zero)
QO V,y. x+(y+1) =(kx+y)+1 (plus successor)
QO Vx.x-0=0 (times zero)
Q@ Vx,y.x-(y+1)=x-y+x (times successor)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 46 / 73

Peano Arithmetic Tpa (first-order arithmetic) -

2
-5

Signature: Ypa o {0, 1, +, -, =}

Axioms of Tpa: axioms of Tg,

Q Vx. o(x+1=0) (zero)
QO Vx,y.x+1l=y+1=>x=y (successor)
@ F[0] A (Vx. F[x] = F[x + 1]) — V¥x. F[x] (induction)
Q Vx.x+0=x (plus zero)
QO V,y. x+(y+1) =(kx+y)+1 (plus successor)
QO Vx.x-0=0 (times zero)
Q@ Vx,y.x-(y+1)=x-y+x (times successor)

Line 3 is an axiom schema.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 46 / 73

Expressiveness of Peano Arithmetic &

3x + 5 = 2y can be written using ¥ pp

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 47 /73

Expressiveness of Peano Arithmetic &

3x + 5 = 2y can be written using Lpa as

X+x+x+1+1+1+14+1=y+y

We can define > and >:

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 47 / 73

Expressiveness of Peano Arithmetic g

3x + 5 = 2y can be written using Lpa as
X+x+x+1+1+1+1+1=y+y
We can define > and >: 3x +5 > 2y write as

dz.z #0A3x+5=2y+z
3x +5 >2y writtas dz.3x+4+5=2y 4z

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 47 / 73

Expressiveness of Peano Arithmetic
.

3x + 5 = 2y can be written using Lpa as

X+x+x+1+1+1+14+1=y+y

We can define > and >: 3x +5 > 2y write as

dz.z #0A3x+5=2y+z
3x +5 >2y writtas dz.3x+4+5=2y 4z
Examples for valid formulae:

o Pythagorean Theorem is Tpa-valid
Iy, zx EZO0OANYy #0Nz#O0AXx+ yy = zz

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 47 / 73

Expressiveness of Peano Arithmetic
.

3x + 5 = 2y can be written using Lpa as

X+x+x+1+1+1+14+1=y+y

We can define > and >: 3x +5 > 2y write as

dz.z #0A3x+5=2y+z
3x +5 >2y writtas dz.3x+4+5=2y 4z
Examples for valid formulae:
o Pythagorean Theorem is Tpa-valid
Ix,v,z.x ZAO0ANy 0Nz £A0Axx+ yy = zz
e Fermat's Last Theorem is Tpa-valid (Andrew Wiles, 1994)
Vnon>2— -3x,y,zx Z0Ay Z0ANz#0AX"+y" = 2"

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 47 / 73

Expressiveness of Peano Arithmetic (2)

In Fermat's theorem we used x”, which is not a valid term in Xpa.
However, there is the Xpa-formula EXP[x, n, r] with

Q@ EXP[x,0,r] < r =1
Q@ EXP[x,i + 1,r] <> 3n. EXP[x,i,n] Ar =n -x

EXP[x,n,r] : 3d,m. (3z. d = (m + 1)z + 1)A
(Vijrn.i <nAn<mA@z.d=((i+1)m+1)z+n)—
nx <mA@z.d=((+2m+1z+n-x)A
r<mA@z.d=((n+1)m+ 1)z +r)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 48 / 73

Expressiveness of Peano Arithmetic (2)

In Fermat's theorem we used x”, which is not a valid term in Xpa.
However, there is the Xpa-formula EXP[x, n, r] with

Q@ EXP[x,0,r] < r =1
Q@ EXP[x,i + 1,r] <> 3n. EXP[x,i,n] Ar =n -x

EXP[x,n,r] : 3d,m. (3z. d = (m + 1)z + 1)A
(Vijrn.i <nAn<mA@z.d=((i+1)m+1)z+n)—
nx <mA@z.d=((+2m+1z+n-x)A
r<mA@z.d=((n+1)m+ 1)z +r)

Fermat's theorem can be stated as:

Vn.n > 2 — —-3dx,y,z,rx,ry.x Z0Ay # 0A z # 0A
EXP[x,n,rx] A EXPly,n,ry] A EXP[z, n,rx + ry]

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 48 / 73

Decidability of Peano Arithmetic -

Godel showed that for every recursive function f : N7 — N there is a
Ypa-formula Flxi, ..., Xn, r] with

Flxi,...,xn, r] <> r = f(x1,...,Xn)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 49 /73

Decidability of Peano Arithmetic

Godel showed that for every recursive function f : N7 — N there is a
Ypa-formula Flxi, ..., Xn, r] with

Flxi,...,xn, r] <> r = f(x1,...,%n)

Tpa is undecidable. (Godel, Turing, Post, Church)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 49 /73

Decidability of Peano Arithmetic

g
=
-
2y
Godel showed that for every recursive function f : N” — N thereisa
Ypa-formula Flxi, ..., Xn, r] with
Flxi,...,xn, r] <> r = f(x1,...,Xn)

Tpa is undecidable. (Godel, Turing, Post, Church)
The quantifier-free fragment of Tpa is undecidable. (Matiyasevich, 1970) J

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 49 /73

Decidability of Peano Arithmetic -

Godel showed that for every recursive function f : N7 — N there is a
Ypa-formula Flxi, ..., Xn, r] with

Flxi,...,xn, r] <> r = f(x1,...,Xn)

Tpa is undecidable. (Godel, Turing, Post, Church)
The quantifier-free fragment of Tpa is undecidable. (Matiyasevich, 1970) J

Remark: Godel's first incompleteness theorem

Peano arithmetic Tps does not capture true arithmetic:

There exist closed ¥ pa-formulae representing valid propositions of number
theory that are not Tpa-valid.

The reason: Tpa actually admits nonstandard interpretations

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 49 /73

Decidability of Peano Arithmetic -

z
Godel showed that for every recursive function f : N” — N thereisa -
Ypa-formula Flxi, ..., Xn, r] with
Flxi,...,xn, r] <> r = f(x1,...,Xn)
Tpa is undecidable. (Godel, Turing, Post, Church)
The quantifier-free fragment of Tpa is undecidable. (Matiyasevich, 1970) J

Remark: Godel's first incompleteness theorem

Peano arithmetic Tps does not capture true arithmetic:

There exist closed ¥ pa-formulae representing valid propositions of number
theory that are not Tpa-valid.

The reason: Tpa actually admits nonstandard interpretations

For decidability: no multiplication

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 49 /73

Presburger Arithmetic Ty g

2
-5

Signature: ¥y : {0, 1, +, =} no multiplication!

Axioms of Ty: axioms of Tg,

Q Vx.-(x+1=0) (zero)
QO Vx,y.x+1l=y+1=>x=y (successor)
@ F[0] A (Vx. F[x] — F[x + 1]) — Vx. F[x] (induction)
Q Vx.x+0=x (plus zero)
QO V,y.x+(y+1) =(kx+y)+1 (plus successor)

3 is an axiom schema.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 50/ 73

Presburger Arithmetic Ty g

2
-2~
=]
Signature: ¥y : {0, 1, +, =} no multiplication!
Axioms of Ty: axioms of Tg,
Q Vx.-(x+1=0) (zero)
QVx,y.x+1l=y+1—-x=y (successor)
@ F[0] A (Vx. F[x] = F[x + 1]) — V¥x. F[x] (induction)
Q Vx.x+0=x (plus zero)
QO V,y.x+(y+1) =(kx+y)+1 (plus successor)
3 is an axiom schema.
Ty-satisfiability and Ty-validity are decidable. (Presburger 1929) J

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 50/ 73

Theory of Integers Ty, g
2y
Signature: 2"
Yy o {...,—-2,-1,0, 1, 2, ..., —3:,=2, 2,3, ..., +, —, =, >}
where
@ ...,—2,—1,0, 1, 2, ... are constants
e ...,—3.,—2.,2.. 3. ... are unary functions

(intended meaning: 2 - x is x + x)
@ +,—,=,> have the usual meanings.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 51/ 73

Theory of Integers Ty, g

=
52
Signature: 7"
Yy o {...,—-2,-1,0, 1, 2, ..., —3:,=2, 2,3, ..., +, —, =, >}
where
e ...,—2,—1,0, 1, 2, ... are constants
e ...,—3.,—2.,2.. 3. ... are unary functions
(intended meaning: 2 - x is x + x)
@ +,—,=,> have the usual meanings.

Relation between Tz and Ty

Tz and Ty have the same expressiveness:
@ For every Y z-formula there is an equisatisfiable > -formula.

@ For every Y n-formula there is an equisatisfiable 2 7-formula.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 51/ 73

Theory of Integers Ty, g

=
52
Signature: 7"
Yy o {...,—-2,-1,0, 1, 2, ..., —3:,=2, 2,3, ..., +, —, =, >}
where
@ ...,—2,—1,0, 1, 2, ... are constants
e ...,—3.,—2.,2.. 3. ... are unary functions
(intended meaning: 2 - x is x + x)
@ +,—,=,> have the usual meanings.

Relation between Tz and Ty

Tz and Ty have the same expressiveness:
@ For every Y z-formula there is an equisatisfiable > -formula.

@ For every Y n-formula there is an equisatisfiable 2 7-formula.

Y z-formula F and Xn-formula G are equisatisfiable iff:

F is Ty-satisfiable iff G is Ty-satisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 51/ 73

Example: ¥;-formula to X -formula g

Consider the Xz-formula
Fo: Vw,x.3y,z. x+2y —z—-7 > 3w+ 4

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 52 /73

Example: 2 7-formula to > n-formula
Consider the Xz-formula
Fo: Vw,x.3y,z. x+2y —z—-7> 3w + 4
Introduce two variables, v, and v, (range over the nonnegative integers) for
each variable v (range over the integers) of Fy
o YWp, Wn, Xp, Xn- 3Yps Yns Zp, Zn-
1 -

(o =xn) +2(p —yn) — (2o — 20) =7 > =3(wp — wp) +4

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

52 /73

Example: 2 7-formula to > n-formula
Consider the Xz-formula
Fo: Vw,x.3y,z. x+2y —z—-7> 3w + 4

Introduce two variables, v, and v, (range over the nonnegative integers) for
each variable v (range over the integers) of Fy

F YWp, Wn, Xp, Xn- 3Yps Yns Zp, Zn-
(p = xn) +20yp —yn) = (zp — 20) =7 > —3(wp — wp) + 4

Eliminate — by moving to the other side of >

F> - VWp, Whn, Xp, Xn- HYp»Yn:ZmZm
>

Xp+2_yp+zn+3wp>Xn+2yn+2p+7+3wn+4

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

52 /73

Example: 2 7-formula to > n-formula

Consider the Xz-formula
Fo: Vw,x.3y,z. x+2y —z—-7> 3w + 4

Introduce two variables, v, and v, (range over the nonnegative integers) for
each variable v (range over the integers) of Fy

vWp7 Wn; Xp, Xn- H}/pv}’m Zpy Zn-

F1 :
(xp = xn) +2(¥p — ¥n) = (2p — 20) = 7 > —3(wp — wy) + 4
Eliminate — by moving to the other side of >

VWp» Whn, Xp, Xn- HYp»Yn:ZmZm

Xp+2yp+zn+3wp>Xn+2yn+2p+7+3wn+4

F

Eliminate > and numbers:

YWp, Wi, Xpy Xn- 3Yps Y, Zps Zn. 3U.
Fs - (u=0)Axp+yp+yp+2zn+ W+ wp+ w
=Xnt Ynt Ynt 2Zp+ Wqp+ Wp+ wy, +u
+14+14+1+14+1+14+1+1+1+1+1

which is a n-formula equisatisfiable to Fg.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

52 /73

Example: X y-formula to 27-formula. &

Example: The Ly-formula
Vx.dy.x =y +1
is equisatisfiable to the ¥ z-formula:

Vx.x > —-1—=dy.y > -1Ax=y+ L

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 53 /73

Example: Yy-formula to ¥z-formula. g

Example: The Ly-formula
Vx.dy.x =y +1
is equisatisfiable to the ¥ z-formula:

Vx.x > —-1—=dy.y > -1Ax=y+ L

To decide Tz-validity for a Xz-formula F:

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 53 /73

Example: X y-formula to 27-formula.

Example: The Ly-formula
Vx.dy.x =y +1
is equisatisfiable to the ¥ z-formula:

Vx.x > —-1—=dy.y > -1Ax=y+ L

To decide Tz-validity for a Xz-formula F:
e transform —F to an equisatisfiable Xy-formula =G,
o decide Ty-validity of G.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

53 /73

Rationals and Reals g

Z — {07 17 +7 Ty Ty T Z}

@ Theory of Reals Tr (with multiplication)

x-x=2 = x=+V2

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 54 /73

Rationals and Reals

Z — {07 17 +7 Ty Ty T Z}

@ Theory of Reals Tr (with multiplication)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

54 /73

Rationals and Reals
Z — {07 17 +7 Ty Ty T Z}
@ Theory of Reals Tr (with multiplication)

x-x=2 = x=+V2

e Theory of Rationals Tg (no multiplication)

2
2x =7 = x =z
7
X+Xx
Note: Strict inequality
Vx,y.dz.x+y > z
can be expressed as
Vx,y.3z. 2(x+y =2)Ax+y >z
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

54 /73

Theory of Reals Ty g

Signature: ¥g : {0, 1, 4+, —, -, =, >} with multiplication. o

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 /73

Theory of Reals Ty g

z
Signature: ¥g : {0, 1, +, —, -, =, >} with multiplication. &
Axioms of Tg: axioms of Tg,

Q Vx,y,z. (x+y)+z=x+(y + 2) (+ associativity)

Q Vx,y.x+y=y+x (+ commutativity)

Q Vx.x+0=x (+ identity)

Q Vx.x+(—x) =0 (+ inverse)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 /73

Theory of Reals Ty g

z
Signature: ¥g : {0, 1, +, —, -, =, >} with multiplication. SE
Axioms of Tg: axioms of Tg,
QO Vx,y,z. (x+y)+z=x+(y+2) (+ associativity)
Q Vx,y.x+y=y+x (+ commutativity)
Q Vx.x+0=x (+ identity)
Q Vx.x+(—x) =0 (+ inverse)
Q Vx,y,z. (x-y)-z=x-(y-2) (- associativity)
QVx,y. x-y=y-x (- commutativity)
Q@ Vx.x-1=x (- identity)
QVVx.x#0—>dy.x-y=1 (- inverse)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 /73

Theory of Reals Ty g

z
Signature: ¥g : {0, 1, +, —, -, =, >} with multiplication. &
Axioms of Tg: axioms of Tg,
Q Vx,y,z. (x+y)+z=x+(y + 2) (+ associativity)
Q Vx,y.x+y=y+x (+ commutativity)
Q Vx.x+0=x (+ identity)
Q Vx.x+(—x) =0 (+ inverse)
Q Vx,y,z. (x-y)-z=x-(y-2) (- associativity)
QVx,y. x-y=y-x (- commutativity)
Q@ Vx.x-1=x (- identity)
QVVx.x#0—>dy.x-y=1 (- inverse)
QVVx,y,zx-(y+z)=x-y+x-z (distributivity)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 /73

Theory of Reals Ty g

z
Signature: ¥g : {0, 1, +, —, -, =, >} with multiplication. &
Axioms of Tg: axioms of Tg,
Q Vx,y,z. (x+y)+z=x+(y + 2) (+ associativity)
Q Vx,y.x+y=y+x (+ commutativity)
Q Vx.x+0=x (+ identity)
Q Vx.x+(—x) =0 (+ inverse)
Q Vx,y,z. (x-y)-z=x-(y-2) (- associativity)
QVx,y. x-y=y-x (- commutativity)
Q@ Vx.x-1=x (- identity)
QVVx.x#0—>dy.x-y=1 (- inverse)
QVVx,y,zx-(y+z)=x-y+x-z (distributivity)
@0#1 (separate identies)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 /73

Theory of Reals Ty g

z
Signature: ¥g : {0, 1, +, —, -, =, >} with multiplication. &
Axioms of Tg: axioms of Tg,
Q Vx,y,z. (x+y)+z=x+(y + 2) (+ associativity)
Q Vx,y.x+y=y+x (+ commutativity)
Q Vx.x+0=x (+ identity)
Q Vx.x+(—x) =0 (+ inverse)
Q Vx,y,z. (x-y)-z=x-(y-2) (- associativity)
QVx,y. x-y=y-x (- commutativity)
Q@ Vx.x-1=x (- identity)
QVVx.x#0—>dy.x-y=1 (- inverse)
QVVx,y,zx-(y+z)=x-y+x-z (distributivity)
@0#1 (separate identies)
@ VX, y. x> yAy>x—>x=y (antisymmetry)
@ Vx,y,zx>yANy>z—=x2>z (transitivity)
® Vx,y.x >yVy>x (totality)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 /73

Theory of Reals Ty g

z
Signature: ¥g : {0, 1, +, —, -, =, >} with multiplication. &
Axioms of Tg: axioms of Tg,

QO Vx,y,z. (x+y)+z=x+(y + 2) (+ associativity)

Q Vx,y.x+y=y+x (+ commutativity)

Q Vx.x+0=x (+ identity)

Q Vx.x+(—x) =0 (+ inverse)

Q Vx,y,z. (x-y)-z=x-(y-2) (- associativity)

QVx,y. x-y=y-x (- commutativity)

Q@ Vx.x-1=x (- identity)

QVVx.x#0—>dy.x-y=1 (- inverse)

QVx,y,zx-(y+z)=x-y+x-z (distributivity)

@0#1 (separate identies)

@ VX, y. x> yAy>x—>x=y (antisymmetry)

@ Vx,y,zx>yANy>z—=x2>z (transitivity)

® Vx,y.x >yVy>x (totality)

Q@ Vx,y,zx>y—osx+z>y+z (+ ordered)

O Vx,y. x >0ANy >0—=>x-y >0 (- ordered)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 /73

Theory of Reals Ty g

z
Signature: ¥g : {0, 1, +, —, -, =, >} with multiplication. &
Axioms of Tg: axioms of Tg,
Q Vx,y,z. (x+y)+z=x+(y + 2) (+ associativity)
Q Vx,y.x+y=y+x (+ commutativity)
Q Vx.x+0=x (+ identity)
Q Vx.x+(—x) =0 (+ inverse)
Q Vx,y,z. (x-y)-z=x-(y-2) (- associativity)
QVx,y. x-y=y-x (- commutativity)
Q@ Vx.x-1=x (- identity)
QVVx.x#0—>dy.x-y=1 (- inverse)
QVVx,y,zx-(y+z)=x-y+x-z (distributivity)
@0#1 (separate identies)
@ VX, y. x> yAy>x—>x=y (antisymmetry)
@ Vx,y,zx>yANy>z—=x2>z (transitivity)
@ Vx,y. x> yVy > x (totality)
Q@ Vx,y,z x>y —ax+z>y+z (+ ordered)
O Vx,y. x >0ANy >0—=>x-y >0 (- ordered)
QVx.dy. x=y - yVx=—-y-y (square root)

@ for each odd integer n,
VX0, - oy Xne1. Y. YT+ Xp—1y" e+ xy +x =0 (at least one root)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 55 /73

Example g
-
F: Va,b,c. b*> — 4ac > 0 > 3x. ax®> 4+ bx + ¢ = 0 is Tg-valid. o

As usual: x? abbreviates x - x, we omit -, e.g. in 4ac,
4 abbreviate 1 + 1 + 1 4+ 1 and a — b abbreviates a + (—b).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 56 / 73

Example g
-
F: Va,b,c. b*> — 4ac > 0 > 3x. ax®> 4+ bx + ¢ = 0 is Tg-valid. o

As usual: x? abbreviates x - x, we omit -, e.g. in 4ac,
4 abbreviate 1 + 1 + 1 4+ 1 and a — b abbreviates a + (—b).

o=

8a.
9a.

10a.

11a.
12a.

13a.
14a.

Jochen Hoenicke (Software Engineering)

I F
| = 3y. bb — 4ac = y? V bb — 4ac = —y?
| = d? = bb — 4ac v d*> = —(bb — 4ac)
IEd>0v0>d
IEd>>0
l'E2a-e=1
| = bb —4ac > 0
I Ixaxx +bx+c=0
I = a((—=b + d)e)? + b(—b + d)e + c = 0
| £ ab?e? — 2abde? + ad?e?
—b?e + bde + ¢ =0
I = dd = bb — 4ac
| |~ ab?e? — bde + a(b®> — 4ac)e®
—b?e + bde +¢c =0
I£0=0
I =L

Decision Procedures

assumption

square root, V

2,3

> total

4, case distinction, - ordered
- inverse, V, 3

1,

1,

8a, 3

distributivity
3,5, 7a

6, 11a, congruence
3, distributivity, inverse
13a, reflexivity

Summer 2012 56 / 73

Example

F: Va,b,c. bb — 4ac > 0 < dx. axx + bx + ¢ = 0 is Tg-valid.

As usual: x? abbreviates x - x, we omit -, e.g., in 4ac,

4 abbreviate 1 + 1 + 1 + 1 and a — b abbreviates a + (—b).

1. I ¥~ F
2. | = 3y. bb — dac = y? V bb — 4ac = —y?
3. I = d? = bb — 4ac V d®> = —(bb — 4ac)
4. lEd>0v0>d
5. I'Ed>>0
6. Il E2a-e=1
7b. | £ bb—4ac > 0
8. | E dxax+bx+c=0
9. | = aff + bf +c =0
10b. | = (2af + b)? = bb — 4ac
11b. | |= (2af + b2 >0
12b. | |= bb—4ac > 0
13b. I E L
Jochen Hoenicke (Software Engineering) Decision Procedures

assumption
square root, V
2,3

> total

4, case distinction, - ordered

- inverse, V,3

1<

1<

8b,d

field axioms, Tg
analogous to 5

10b, 11b, equivalence
12b, 7b

Summer 2012

57 /73

Decidability of T

Tr is decidable (Tarski, 1930)
High time complexity

Jochen Hoenicke (Software Engineering)

Decision Procedures

Summer 2012 58 / 73

Decidability of T

Tr is decidable (Tarski, 1930)

High time complexity: O(2

2kn)

Jochen Hoenicke (Software Engineering)

Decision Procedures

Summer 2012 58 / 73

Theory of Rationals Tg g
Signature: Xg : {0, 1, +, —, =, >} no multiplication! 58
Axioms of Tg: axioms of Tg,
Q@ Vx,y,z. (x+y)+z=x+(y +2) (+ associativity)
QO Vx,y.x+y=y+x (+ commutativity)
Q@ Vx. x4+ 0 = x (+ identity)
QO Vx.x+(—x) =0 (+ inverse)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 59 /73

Theory of Rationals Tg g
Signature: Xg : {0, 1, +, —, =, >} no multiplication! 58
Axioms of Tg: axioms of Tg,
Q@ Vx,y,z. (x+y)+z=x+(y +2) (+ associativity)
QO Vx,y.x+y=y+x (+ commutativity)
Q@ Vx. x4+ 0 = x (+ identity)
QO Vx.x+(—x) =0 (+ inverse)
Q1>0A1#0 (one)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 59 /73

Theory of Rationals Tg g

Signature: Xg : {0, 1, +, —, =, >} no multiplication! 58

Axioms of Tgr: axioms of Tg,
Q@ Vx,y,z. (x+y)+z=x+(y +2) (+ associativity)
QO Vx,y.x+y=y+x (+ commutativity)
Q@ Vx. x4+ 0 = x (+ identity)
QO Vx.x+(—x) =0 (+ inverse)
Q1>0A1#0 (one)
QO VX, y. x>yANy>x—ox=y (antisymmetry)
Q@ Vx,y,zx>yANy>z—>x2>z (transitivity)
Q Vx,y.x>yVy >x (totality)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 59 /73

Theory of Rationals Tg g

Signature: Xg : {0, 1, +, —, =, >} no multiplication! 58

Axioms of Tgr: axioms of Tg,
Q@ Vx,y,z. (x+y)+z=x+(y +2) (+ associativity)
QO Vx,y.x+y=y+x (+ commutativity)
Q@ Vx. x4+ 0 = x (+ identity)
QO Vx.x+(—x) =0 (+ inverse)
Q1>0A1#0 (one)
QO VX, y. x>yANy>x—ox=y (antisymmetry)
Q@ Vx,y,zx>yANy>z—>x2>z (transitivity)
Q Vx,y.x>yVy >x (totality)
QVX,y,zx>y—=sx+z>y+z (4 ordered)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 59 /73

Theory of Rationals Tg g
Signature: Xg : {0, 1, +, —, =, >} no multiplication! 58
Axioms of Tgr: axioms of Tg,
Q@ Vx,y,z. (x+y)+z=x+(y +2) (+ associativity)
QO Vx,y.x+y=y+x (+ commutativity)
Q@ Vx. x4+ 0 = x (+ identity)
QO Vx.x+(—x) =0 (+ inverse)
Q1>0A1#0 (one)
QO VX, y. x>yAy>x—x=y (antisymmetry)
Q@ Vx,y,zx>yANy>z—>x2>z (transitivity)
Q Vx,y.x>yVy >x (totality)
QVX,y,zx>y—=sx+z>y+z (4 ordered)
@ For every positive integer n:
Vx.dy.x =y + -4y (divisible)
2

n

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 59 /73

Expressiveness and Decidability of Tg g

Rational coefficients are simple to express in Tg

Example: Rewrite
1 2
z —y >4
2x + 3y =

as the Y g-formula

X+x+x+y+y+y+y>14+14---+1

24

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 60 / 73

Expressiveness and Decidability of Tg

Rational coefficients are simple to express in Tg

Example: Rewrite

as the Y g-formula

X+x+x+y+y+y+y=>21+1+---

Tg is decidable

Efficient algorithm for quantifier free fragment

12,
7X p—
SX T 3Y 2

+1

24

Jochen Hoenicke (Software Engineering)

Decision Procedures

Summer 2012 60 / 73

Recursive Data Structures (RDS) g

o Data Structures are tuples of variables.
Like struct in C, record in Pascal.

@ Recursive Data Structures one of the tuple element can be the data
structure again.
Linked lists or trees.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 61 /73

RDS theory of LISP-like lists, Tcons

Ycons : {cons, car, cdr, atom, =}

where
cons(a,
car(x) - left projector of x: car(cons(a, b)) = a
cdr(x) - right projector of x: cdr(cons(a, b)) = b
atom(x) - true iff x is a single-element list

Axioms: The axioms of A7, plus
e Vx, y. car(cons(x,y)) = x
e Vx,y. cdr(cons(x,y)) = y
e Vx. matom(x) — cons(car(x),cdr(x)) = x

@ Vx,y. matom(cons(x, y))

Jochen Hoenicke (Software Engineering) Decision Procedures

b) — list constructed by adding a in front of list b

(left projection
(right projection

(construction

~— —r N N

(atom

Summer 2012 62 /73

Axioms of Theory of Lists Tcons &

@ The axioms of reflexivity, symmetry, and transitivity of =

@ Congruence axioms

VX1, X2, 1, Y2 X1 = X2 A yr = y2 —> cons(x1,y1) = cons(xz, y2)
Vx,y. x = y — car(x) = car(y)
Vx,y. x = y — cdr(x) = cdr(y)

© Equivalence axiom

Vx,y. x = y — (atom(x) <> atom(y))

Q Vx,y. car(cons(x,y)) = x (left projection)
@ Vx,y. cdr(cons(x,y)) = y (right projection)
@ Vx. —atom(x) — cons(car(x), cdr(x)) = x (construction)
@ Vx,y. ~atom(cons(x,y)) (atom)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 63 /73

DeCIdabI|lty of Tcons g

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 64 /73

Decidability of Tcons

UNI
1

FREIBURG

Teons is undecidable J

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 64 / 73

DeCIdab|||ty of Tcons g

Tcons is undecidable
Quantifier-free fragment of Tops is efficiently decidable J

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 64 /73

Example: T.ons-Validity £
We argue that the following ¥ cons-formula F is Teons-valid:

car(a) = car(b) A cdr(a) = cdr(b) A —atom(a) A —atom(b)

F —a=b

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 65/ 73

Example: T.ons-Validity g
We argue that the following ¥ cons-formula F is Teons-valid:

car(a) = car(b) A cdr(a) = cdr(b) A —atom(a) A —atom(b)

F —a=0>b
1. I~ F assumption
2. | = car(a) = car(b) 1, =, A
3. | = cdr(a) = cdr(b) 1L, = A
4. | | —atom(a) 1, =, A
5. | | —atom(b) 1, =, A
6. I FEa=05b 1, —
7. | |= cons(car(a),cdr(a)) = cons(car(b),cdr(b))
2, 3, (congruence)
8. | |= cons(car(a),cdr(a)) = 4, (construction)
9. | = cons(car(b),cdr(b)) = 5, (construction)
10. I =a=0» 7,8, 9, (transitivity)

Lines 6 and 10 are contradictory. Therefore, F is Tcons-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 65/ 73

Theory of Arrays T g
-5
Signature: Xa = {[], (- <), =},
where
e a[i] binary function —
read array a at index i (“read(a,i)")
@ a(i <« v) ternary function —
write value v to index i of array a (“write(a,i,e)")
Axioms
O the axioms of (reflexivity), (symmetry), and (transitivity) of Tg
Q Va,i,j. i =j— a[i] = a[j] (array congruence)
Q Va,v,i,j.i=j—ali<xv)[j] =v (read-over-write 1)
Q Va,v,i,j. i #j— a(i av)[j] = alj] (read-over-write 2)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 66 / 73

Equality in Tx &
Note: = is only defined for array elements

alil = e—a(ide) = a
not Ta-valid, but

alil = e = Vj. ali < e)[j] = alj],

is Ta-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 67 /73

Equality in Tx g

Note: = is only defined for array elements
alil = e—a(ide) = a
not Ta-valid, but
alil = e = Vj. ali < e)[j] = alj],
is Ta-valid.

Also
a = b— ali] = bli]

is not Ta-valid: We only axiomatized a restricted congruence.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 67 /73

Equality in Ta

Note: = is only defined for array elements
alil = e—a(ide) = a
not Ta-valid, but
alil = e = Vj. ali < e)[j] = alj],
is Ta-valid.

Also
a = b— ali] = bli]

is not Ta-valid: We only axiomatized a restricted congruence.

Ta is undecidable
Quantifier-free fragment of Ty is decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

67 / 73

Theory of Arrays T, (with extensionality) £

Signature and axioms of T, are the same as Tx, with one additional
axiom

Va,b. (Vi. a[i] = b[i]) <+ a = b (extensionality)
Example:
F: all=e—a(i<xe) = a

is T, -valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 68 / 73

Theory of Arrays T, (with extensionality) £

2
8-
=]
Signature and axioms of T, are the same as Tx, with one additional
axiom
Va,b. (Vi. a[i] = b[i]) <+ a = b (extensionality)
Example:
F: all=e—a(i<xe) = a
is T, -valid.
T, is undecidable
Quantifier-free fragment of T, is decidable J

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 68 / 73

Combination of Theories g

How do we show that
1 <xAx <2Af(x)#f(1) A f(x) # f(2)

is (Te U Tgz)-unsatisfiable?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 69 / 73

Combination of Theories g

How do we show that
1 < xAx <2Af(x)# f(1)AFf(x) # f(2)

is (Te U Tgz)-unsatisfiable?

Or how do we prove properties about
an array of integers, or
alistof reals ...?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 69 / 73

Combination of Theories g

How do we show that

1 < xAx <2Af(x)# f(1)Af(x) # f(2)

is (Te U Tgz)-unsatisfiable?

Or how do we prove properties about
an array of integers, or
alistof reals ...?

Given theories T1 and T» such that
Zl M 22 = {:}

The combined theory T; U T, has
@ signature X7 U 2

@ axioms A1 U Ay

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 69 / 73

Nelson & Oppen &

gff = quantifier-free fragment

Nelson & Oppen showed that
if satisfiability of gff of T7 is decidable,
satisfiability of qff of T, is decidable, and
certain technical requirements are met
then satisfiability of gff of 71 U T is decidable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 70 /73

Lists with equality T 8

cons

Tc:ons: Te U Teons
Signature: YE U Yeons

(this includes uninterpreted constants, functions, and predicates)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 71/ 73

Lists with equality T

cons

Tns @ TE U Teons

Signature: YE U Yeons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of Tg and Tcons

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

71/ 73

Lists with equality T

cons

Tions © TE U Teons

Signature: YE U Xeons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of Tg and Tcons

Tions is undecidable

Jochen Hoenicke (Software Engineering) Decision Procedures

Summer 2012

71/ 73

Lists with equality T

cons

Tns @ TE U Teons

Signature: YE U Yeons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of Tg and Tcons

Tions is undecidable

Quantifier-free fragment of T is efficiently decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012

71/ 73

Example: TS .-Validity g

We argue that the following ¥ -formula F is TS c-valid:

car(a) = car(b) A cdr(a) = cdr(b) A —atom(a) A —atom(b)

P Lf@) = f(b)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 72 /73

Example: TS .-Validity g

We argue that the following ¥ -formula F is TS c-valid:

car(a) = car(b) A cdr(a) = cdr(b) A —atom(a) A —atom(b)

P S = (b
I ¥ F assumption
I | car(a) = car(b) 1, —, A

I & cdr(a) = cdr(b)
| = —atom(a)
| | —atom(b)
I £ f(a) = f(b)
I |E cons(car(a),cdr(a)) = cons(car(b), cdr(b))

2, 3, (congruence)
8. | = cons(car(a), cdr 4, (construction)
9. | = cons(car(b),cdr 5, (construction)
0. I Ea=b 7

1

, 8, 9, (transitivity)
11. | E f(a) = f(b)

0, (congruence)
Lines 6 and 11 are contradictory. Therefore, F is TS c-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 72 /73

> > >

N
_>
—
—

= e

Noakswbd =

) =
) =

—_
S

First-Order Theories &

Theory Decidable QFF Dec.
Teg Equality —
Tea Peano Arithmetic

AN

Ty Presburger Arithmetic v v
Tz Linear Integer Arithmetic v v
Tr Real Arithmetic v v
Tg Linear Rationals v v
Teons Lists — v
cons Lists with Equality — v
Ta Arrays — v
v

Th Arrays with Extensionality —

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 73/ 73

	First-Order Logic
	Satisfiability and Validity
	Normal Forms

	Theories
	Theory of Equality
	T-Validity and T-Satisfiability
	Natural Numbers and Integers
	Rationals and Reals
	Recursive Data Structures
	Arrays
	Combination of Theories
	Decidability

