

J. Hoenicke

22.05.2010 submit until 05.06.2012, 14:15

Tutorials for Decision Procedures Exercise sheet 5

Exercise 1: Induction in T_{PA}

Prove the T_{PA} -validity of the following formula using the semantic tableaux.

 $\forall x. \ 0 + x = x$

Write down each proof step explicitly. Besides introducing axioms, you are allowed to introduce formulae that you have previously proven as T_{PA} -valid. Note, that you may *not* assume commutativity, associativity, etc. Only use the Peano-axioms and the axioms from T_{E} . You need the induction axiom.

Exercise 2: Semantic Argument in $T_{\mathbb{R}}$

Show the $T_{\mathbb{R}}$ -validty of the following formula using the semantic argument.

 $\forall x. \ x \cdot x \ge 0$

Write down every step explicitly. Besides introducing axioms, you are allowed to introduce formulae that you have previously proven as $T_{\mathbb{R}}$ -valid. Additionally, you may use the following derived facts without proving them:

$$\forall x. \ 0 \ge x \to -x \ge 0$$

$$\forall x. \ (-x) \cdot (-x) = x \cdot x$$

Exercise 3: Integer Arithmetic

Consider the $T_{\mathbb{Z}}$ -formula $F : \exists x. \forall y. \neg (y+1=x)$.

- (a) Convert F into an equisatisfiable $T_{\mathbb{N}}$ -formula G.
- (b) Prove unsatisfiability of G using the semantic tableaux method. You may assume that associativity and commutativity of addition holds.
- (c) Prove validity of the $T_{\mathbb{N}}$ -formula $\exists x. \forall y. \neg (y+1=x)$.