Tutorials for Decision Procedures
 Exercise sheet 6

Exercise 1: Quantifier Elimination for $T_{\mathbb{Q}}$

Apply quantifier elimination to the following $\Sigma_{\mathbb{Q}}$-formulae:
(a) $\exists y \cdot(x=2 y \wedge y<x)$
(b) $\forall y \cdot(25<x+2 y \vee x+2 y<25)$
(c) $\forall x \cdot \exists y \cdot(y>x \wedge-y<x)$
(d) $\forall x .(x>0 \leftrightarrow \exists y .(x>y \wedge-x<y))$

Exercise 2: Sufficient Set

For $T_{\mathbb{Q}}$ the algorithm in the lecture examines terms $\frac{s+t}{2}$ for all $s, t \in S$. Suppose we split up S in S_{A}, S_{B}, S_{C} depending on whether the term t comes from an (A) $x<t$, (B) $t<x$, or (C) $x=t$ literal. Based on this distinction, give a smaller set of terms that still is sufficient.

Exercise 3: Quantifier Elimination for $T_{\mathbb{Z}}$

Apply quantifier elimination to the following $\Sigma_{\mathbb{Z}}$-formulae:
(a) $\exists y \cdot(x=2 y \wedge y<x)$
(b) $\forall y \cdot(25<x+2 y \vee x+2 y<25)$
(c) $\forall y \cdot(x+y<8 \rightarrow x+2 y<8)$

