

J. Hoenicke

12.06.2012 submit until 19.06.2012, 14:15

Tutorials for Decision Procedures Exercise sheet 6

Exercise 1: Deciding $T_{\mathbb{Q}}$

Apply the Dutertre-de-Moura algorithm to decide the $T_{\mathbb{Q}}$ -satisfiability of the following $\Sigma_{\mathbb{Q}}$ -formulae: Give a satisfying $T_{\mathbb{Q}}$ -interpretation if it exists.

(a) $x + 2y \ge 1 \land 2x + y \ge 1 \land x + y \le \frac{1}{2}$ (b) $x + 2y \ge 1 \land 2x + y \ge 1 \land x + y \le 1$ (c) $x + 2y > 1 \land 2x + y > 1 \land x + y < 1$ (d) $x + 2y \ge 1 \land 2x + y \ge 1 \land x + y < \frac{2}{3}$

Exercise 2: Implementing the decision procedure for $T_{\mathbb{Q}}$ (8points)

Implement the Dutetre de Moura Algorithm from the lecture for input in the SMTLIB 2 format you already know.

Assume a conjunctive fragment where only atoms of the form (<= (+ $t_1 \ldots t_n$) c_i) are asserted.

t_i ::= (* c_i x_i) | (- x_i) | x_i

c_i ::= (− n) | n

with ${\tt n}$ being a number and ${\tt x_i}$ being variable names.

On the lecture's website there is code which builds a tableau and the other necessary values from such input. You can copy both files into a directory together with the smtinterpol.jar from the website and compile it with

javac -cp smtinterpol.jar Main.java LraSolver.java Execute with

java -cp smtinterpol.jar:. Main (under Windows use ";" instead of ":")