Decision Procedures

Jochen Hoenicke

Software Engineering Software Lugmonting
Albert-Ludwigs-University Freiburg

Summer 2012

Jochen Hoenicke (Software Engineering) [Decision Procedures](#page-55-0) Summer 2012 1/56

[Organisation](#page-1-0)

Dates

- Lecture is Tuesday 14–16 (c.t) and Thursday 14–15 (c.t).
- **•** Tutorials will be given on Thursday 15–16. Starting next week (this week is a two hour lecture).
- Exercise sheets are uploaded on Tuesday. They are due on Tuesday the week after.

To successfully participate, you must

- prepare the exercises (at least 50 $\%$)
- actively participate in the tutorial
- pass an oral examination

THE CALCULUS OF COMPUTATION: Decision Procedures with Applications to Verification

by Aaron Bradley Zohar Manna

Springer 2007

Jochen Hoenicke (Software Engineering) [Decision Procedures](#page-0-0) Summer 2012 4 / 56

[Motivation](#page-4-0)

Decision Procedures are algorithms to decide formulae. These formulae can arise

- in Hoare-style software verification.
- **o** in hardware verification

Consider the following program:

$$
\begin{array}{l} \text{for} \\ \mathbb{Q} \ell \leq i \leq u \wedge (rv \leftrightarrow \exists j. \; \ell \leq j < i \wedge a[j] = e) \\ \text{(int } i := \ell; \; i \leq u; \; i := i + 1) \; \{ \\ \text{if } \big((a[i] = e) \big) \; \{ \\ \; rv := \text{true}; \end{array}
$$

How can we prove that the formula is a loop invariant?

Motivation (3)

UNI
FREIBURG

Prove the Hoare triples (one for if case, one for else case)

assume
$$
\ell \leq i \leq u \wedge (rv \leftrightarrow \exists j. \ell \leq j < i \wedge a[j] = e)
$$

\nassume $i \leq u$

\nassume $a[i] = e$

\n $rv := \text{true};$

\n $i := i + 1$

\n $\mathbb{Q} \ell \leq i \leq u \wedge (rv \leftrightarrow \exists j. \ell \leq j < i \wedge a[j] = e)$

assume
$$
\ell \leq i \leq u \wedge (rv \leftrightarrow \exists j. \ell \leq j < i \wedge a[j] = e)
$$

\nassume $i \leq u$

\nassume $a[i] \neq e$

\n $i := i + 1$

\n $\mathbb{Q} \ell \leq i \leq u \wedge (rv \leftrightarrow \exists j. \ell \leq j < i \wedge a[j] = e)$

Motivation (4)

A Hoare triple ${P} S {Q} holds, iff$

$$
P\to \mathit{wp}(S,Q)
$$

(wp denotes is weakest precondition) For assignments wp is computed by substitution:

assume
$$
\ell \leq i \leq u \wedge (rv \leftrightarrow \exists j. \ell \leq j < i \wedge a[j] = e)
$$

\nassume $i \leq u$

\nassume $a[i] = e$

\n $rv := \text{true};$

\n $i := i + 1$

\n $\mathbb{Q} \ell \leq i \leq u \wedge (rv \leftrightarrow \exists j. \ell \leq j < i \wedge a[j] = e)$

holds if and only if:

$$
\ell \leq i \leq u \wedge (rv \leftrightarrow \exists j. \ \ell \leq j < i \wedge a[j] = e) \wedge i \leq u \wedge a[i] = e
$$
\n
$$
\rightarrow \ell \leq i+1 \leq u \wedge (\text{true} \leftrightarrow \exists j. \ \ell \leq j < i+1 \wedge a[j] = e)
$$

INÍ
REIBURG

We need an algorithm that decides whether a formula holds.

$$
\ell \leq i \leq u \wedge (rv \leftrightarrow \exists j. \ \ell \leq j < i \wedge a[j] = e) \wedge i \leq u \wedge a[i] = e
$$
\n
$$
\rightarrow \ell \leq i+1 \leq u \wedge (\text{true} \leftrightarrow \exists j. \ \ell \leq j < i+1 \wedge a[j] = e)
$$

If the formula does not hold it should give a counterexample, e.g.:

$$
\ell = 0, i = 1, u = 1, rv = false, a[0] = 0, a[1] = 1, e = 1,
$$

This counterexample shows that $i + 1 \le u$ can be violated.

This lecture is about algorithms checking for validity and producing these counterexamples.

[Contents of Lecture](#page-10-0)

- **•** Propositional Logic
- **•** First-Order Logic
- **First-Order Theories**
- Quantifier Elimination
- **Decision Procedures for Linear Arithmetic**
- Decision Procedures for Uninterpreted Functions
- Decision Procedures for Arrays
- **Combination of Decision Procedures**
- \bullet DPLL (T)
- **•** Craig Interpolants

[Foundations: Propositional Logic](#page-12-0)

Atom truth symbols \top ("true") and \bot ("false") propositional variables $P, Q, R, P_1, Q_1, R_1, \cdots$ Literal atom α or its negation $\neg \alpha$ Formula literal or application of a logical connective to formulae F, F_1, F_2 $\neg F$ "not" (negation) $(F_1 \wedge F_2)$ "and" (conjunction) $(F_1 \vee F_2)$ "or" (disjunction) $(F_1 \rightarrow F_2)$ "implies" (implication) $(F_1 \leftrightarrow F_2)$ "if and only if" (iff)

formula
$$
F : ((P \land Q) \rightarrow (\top \lor \neg Q))
$$

\natoms: P, Q, \top

\nliteral: $\neg Q$

\nsubformulas: $(P \land Q)$, $(\top \lor \neg Q)$

\nabbreviation

\n $F : P \land Q \rightarrow \top \lor \neg Q$

Semantics (meaning) of PL

UNI
FREIBURG

Formula F and Interpretation I is evaluated to a truth value $0/1$ where 0 corresponds to value false 1 true

Interpretation $I : \{P \mapsto 1, Q \mapsto 0, \dots\}$

Evaluation of logical operators:

$$
F: P \land Q \rightarrow P \lor \neg Q
$$

$$
I: \{P \mapsto 1, Q \mapsto 0\}
$$

$$
1 = \mathsf{true} \qquad \qquad 0 = \mathsf{false}
$$

F evaluates to true under I

Inductive Definition of PL's Semantics

$$
I \models F \text{ if } F \text{ evaluates to } 1 \text{ / true} \text{ under } I
$$

$$
I \not\models F \qquad 0 \text{ / false}
$$

Base Case:

 $I \models \top$ $I \not\models \bot$ $I \models P$ iff $I[P] = 1$ $I \not\models P$ iff $I[P]=0$

Inductive Case:

$$
I \models \neg F \quad \text{iff } I \not\models F
$$

\n
$$
I \models F_1 \land F_2 \quad \text{iff } I \models F_1 \text{ and } I \models F_2
$$

\n
$$
I \models F_1 \lor F_2 \quad \text{iff } I \models F_1 \text{ or } I \models F_2
$$

\n
$$
I \models F_1 \rightarrow F_2 \quad \text{iff, if } I \models F_1 \text{ then } I \models F_2
$$

\n
$$
I \models F_1 \leftrightarrow F_2 \quad \text{iff, } I \models F_1 \text{ and } I \models F_2,
$$

\n
$$
\text{or } I \not\models F_1 \text{ and } I \not\models F_2
$$

UNI
FREIBURG

Example: Inductive Reasoning

$$
F: P \wedge Q \rightarrow P \vee \neg Q
$$

$$
I: \{P \mapsto 1, Q \mapsto 0\}
$$

1. $I \models P$	since $I[P] = 1$	
2. $I \not\models Q$	since $I[Q] = 0$	
3. $I \models \neg Q$	by 2, \neg	
4. $I \not\models P \land Q$	by 2, \land	
5. $I \models P \lor \neg Q$	by 1, \lor	
6. $I \models F$	by 4, \rightarrow	Why?

Thus, F is true under I.

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that $I \models F$.

Definition (Validity)

F is valid iff for all interpretations $I, I \models F$.

Note

F is valid iff $\neg F$ is unsatisfiable

Proof.

F is valid iff \forall *I* : *I* \models *F* iff $\neg \exists$ *I* : *I* $\not\models$ *F* iff \neg *F* is unsatisfiable.

Decision Procedure: An algorithm for deciding validity or satisfiability.

Jochen Hoenicke (Software Engineering) **[Decision Procedures](#page-0-0)** Summer 2012 20 / 56

Examples: Satisfiability and Validity

Now assume, you are a decision procedure.

Which of the following formulae is satisfiable, which is valid?

- \bullet F_1 : $P \wedge Q$ satisfiable, not valid
- \bullet F₂ : $\neg (P \land Q)$ satisfiable, not valid
- \bullet F₃ : P $\vee \neg P$ satisfiable, valid
- \bullet F₄ : $\neg(P \lor \neg P)$ unsatisfiable, not valid

•
$$
F_5 : (P \rightarrow Q) \land (P \lor Q) \land \neg Q
$$

unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?

JNI
:REIBURC

Method 1: Truth Tables

F : P ∧ Q → P ∨ ¬Q P Q P ∧ Q ¬Q P ∨ ¬Q F 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1

Thus F is valid.

$$
\begin{array}{|c|c|c|c|c|}\n\hline\nF:P\lor Q &P\lor Q &P\land Q \\
\hline\nPQ &P\lor Q &P\land Q &F \\
\hline\n0 &0 &0 &1 & \leftarrow \text{satisfying 1} \\
\hline\n0 &1 &1 &0 &0 \\
\hline\n1 &0 &1 &1 &1 \\
\hline\n1 &1 &1 &1 &1 \\
\hline\n\end{array}
$$

Thus F is satisfiable, but invalid.

UNI
Freiburg

- Assume F is not valid and I a falsifying interpretation: $I \not\models F$
- Apply proof rules.
- If no contradiction reached and no more rules applicable, F is invalid.
- \bullet If in every branch of proof a contradiction reached, F is valid.

Semantic Argument: Proof rules

 $I \models \neg F$ $I \not\models F$ $I \not\models \neg F$ $I \models F$ $I \models F \wedge G$ $I \models F$ $I \models G \longleftarrow$ and $I \not\models F \wedge G$ 1 ⊭ F ∣ I ⊭ G \sim_{or} $I \models F \vee G$ $I \models F \mid I \models G$ $I \not\models F \vee G$ $I \not\models F$ $I \not\models G$ $I \models F \rightarrow G$ $I \not\models F \;\mid\; I \models G$ $I \not\models F \rightarrow G$ $I \models F$ $I \not\models G$ $I \models F \leftrightarrow G$ $I \models F \wedge G \mid I \not\models F \vee G$ $I \not\models F \leftrightarrow G$ $I \models F \land \neg G \mid I \models \neg F \land G$ $I \models F$ $I \not\models F$ $I \models \bot$

Prove $F: P \wedge Q \rightarrow P \vee \neg Q$ is valid.

Let's assume that F is not valid and that I is a falsifying interpretation.

Thus F is valid.

Example 2

Prove
$$
F: (P \to Q) \land (Q \to R) \to (P \to R)
$$
 is valid.

Let's assume that F is not valid.

1. $l \not\models F$	assumption	
2. $l \not\models (P \rightarrow Q) \land (Q \rightarrow R)$	1, Rule \rightarrow	
3. $l \not\models P \rightarrow R$	1, Rule \rightarrow	
4. $l \not\models P$	3, Rule \rightarrow	
5. $l \not\models R$	3, Rule \rightarrow	
6. $l \not\models P \rightarrow Q$	2, Rule \land	
7. $l \not\models Q \rightarrow R$	2, Rule \land	
8a. $l \not\models P$	8b. $l \not\models Q$	6 \rightarrow
9a. $l \not\models \perp$	9ba. $l \not\models Q$	9bb. $l \not\models R$
10ba. $l \not\models \perp$	10bb. $l \not\models \perp$	

Our assumption is incorrect in all cases $-F$ is valid.

Example 3

JNÍ
Réiburg

Is $F: P \vee Q \rightarrow P \wedge Q$ valid?

Let's assume that F is not valid.

1. $I \not\models P \lor Q \rightarrow P \land Q$	assumption		
2. $I \models P \lor Q$	1 and \rightarrow		
3. $I \not\models P \land Q$	1 and \rightarrow		
4a. $I \models P$	2 and \lor	4b. $I \models Q$	2 and \lor
5a. $I \not\models P$	5ab. $I \not\models Q$	5ba. $I \not\models P$	5bb. $I \not\models Q$
6aa. $I \models \bot$	6bb. $I \models \bot$		

We cannot always derive a contradiction. F is not valid.

Falsifying interpretation: $I_1 : \{P \mapsto \text{true}, Q \mapsto \text{false}\}$ $I_2 : \{Q \mapsto \text{true}, P \mapsto \text{false}\}$ We have to derive a contradiction in all cases for F to be valid.

Idea: Simplify decision procedure, by simplifying the formula first. Convert it into a simpler normal form, e.g.:

- Negation Normal Form: No \rightarrow and no \leftrightarrow ; negation only before atoms.
- Conjunctive Normal Form: Negation normal form, where conjunction is outside, disjunction is inside.
- Disjunctive Normal Form: Negation normal form, where disjunction is outside, conjunction is inside.

The formula in normal form should be equivalent to the original input.

 F_1 and F_2 are equivalent $(F_1 \Leftrightarrow F_2)$ iff for all interpretations $I, I \models F_1 \leftrightarrow F_2$

To prove $F_1 \Leftrightarrow F_2$ show $F_1 \Leftrightarrow F_2$ is valid.

 F_1 implies F_2 ($F_1 \Rightarrow F_2$) iff for all interpretations $I, I \models F_1 \rightarrow F_2$

 $F_1 \Leftrightarrow F_2$ and $F_1 \Rightarrow F_2$ are not formulae!

Jochen Hoenicke (Software Engineering) [Decision Procedures](#page-0-0) Summer 2012 29 / 56

Equivalence is a Congruence relation

If $F_1 \Leftrightarrow F'_1$ and $F_2 \Leftrightarrow F'_2$, then

- $\neg \mathsf{F}_1 \Leftrightarrow \neg \mathsf{F}_1'$
- $F_1 \vee F_2 \Leftrightarrow F_1' \vee F_2'$
- $F_1 \wedge F_2 \Leftrightarrow F'_1 \wedge F'_2$
- $F_1 \rightarrow F_2 \Leftrightarrow F_1' \rightarrow F_2'$
- $F_1 \leftrightarrow F_2 \Leftrightarrow F_1' \leftrightarrow F_2'$
- if we replace in a formula F a subformula F_1 by F_1' and obtain $F',$ then $F \Leftrightarrow F'$.

Negations appear only in literals. (only \neg, \wedge, \vee)

To transform F to equivalent F' in NNF use recursively the following template equivalences (left-to-right):

$$
\neg\neg F_1 \Leftrightarrow F_1 \qquad \neg \top \Leftrightarrow \bot \qquad \neg \bot \Leftrightarrow \top
$$

\n
$$
\neg (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2
$$

\n
$$
\neg (F_1 \lor F_2) \Leftrightarrow \neg F_1 \land \neg F_2
$$

\n
$$
F_1 \rightarrow F_2 \Leftrightarrow \neg F_1 \lor F_2
$$

\n
$$
F_1 \leftrightarrow F_2 \Leftrightarrow (F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1)
$$

JNÍ
Réiburg

Convert $F : (Q_1 \vee \neg\neg R_1) \wedge (\neg Q_2 \rightarrow R_2)$ into NNF

$$
\begin{array}{l}(Q_1 \vee \neg\neg R_1) \wedge (\neg Q_2 \rightarrow R_2) \\ \Leftrightarrow (Q_1 \vee R_1) \wedge (\neg Q_2 \rightarrow R_2) \\ \Leftrightarrow (Q_1 \vee R_1) \wedge (\neg\neg Q_2 \vee R_2) \\ \Leftrightarrow (Q_1 \vee R_1) \wedge (Q_2 \vee R_2)\end{array}
$$

The last formula is equivalent to F and is in NNF.

JNI
Reiburg

Disjunction of conjunctions of literals

$$
\bigvee_i \bigwedge_{j} \ell_{i,j} \quad \text{for literals } \ell_{i,j}
$$

To convert F into equivalent F' in DNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
\begin{array}{l}\n(F_1 \vee F_2) \wedge F_3 \Leftrightarrow (F_1 \wedge F_3) \vee (F_2 \wedge F_3) \\
F_1 \wedge (F_2 \vee F_3) \Leftrightarrow (F_1 \wedge F_2) \vee (F_1 \wedge F_3)\n\end{array}
$$

Convert $F : (Q_1 \vee \neg\neg R_1) \wedge (\neg Q_2 \rightarrow R_2)$ into DNF

$$
(Q_1 \vee \neg\neg R_1) \wedge (\neg Q_2 \rightarrow R_2)
$$

\n
$$
\Leftrightarrow (Q_1 \vee R_1) \wedge (Q_2 \vee R_2)
$$
in NNF
\n
$$
\Leftrightarrow (Q_1 \wedge (Q_2 \vee R_2)) \vee (R_1 \wedge (Q_2 \vee R_2))
$$
dist
\n
$$
\Leftrightarrow (Q_1 \wedge Q_2) \vee (Q_1 \wedge R_2) \vee (R_1 \wedge Q_2) \vee (R_1 \wedge R_2)
$$
dist

The last formula is equivalent to F and is in DNF. Note that formulas can grow exponentially.

Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals

$$
\bigwedge_i \bigvee_j \ell_{i,j} \quad \text{for literals } \ell_{i,j}
$$

To convert F into equivalent F' in CNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
(F_1 \land F_2) \lor F_3 \Leftrightarrow (F_1 \lor F_3) \land (F_2 \lor F_3)
$$

$$
F_1 \lor (F_2 \land F_3) \Leftrightarrow (F_1 \lor F_2) \land (F_1 \lor F_3)
$$

A disjunction of literals $P_1 \vee P_2 \vee \neg P_3$ is called a clause. For brevity we write it as set: $\{P_1, P_2, \overline{P_3}\}.$ A formula in CNF is a set of clauses (a set of sets of literals).

Definition (Equisatisfiability)

 F and F' are equisatisfiable, iff

F is satisfiable if and only if F' is satisfiable

Every formula is equisatifiable to either \top or \bot . There is a efficient conversion of F to F' where

- F' is in CNF and
- F and F' are equisatisfiable

Note: efficient means polynomial in the size of F.

Conversion to CNF

Basic Idea:

- Introduce a new variable P_G for every subformula G; unless G is already an atom.
- For each subformula $G : G_1 \circ G_2$ produce a small formula $P_G \leftrightarrow P_{G_1} \circ P_{G_2}.$
- encode each of these (small) formulae separately to CNF. The formula

$$
P_F \wedge \bigwedge_G CNF(P_G \leftrightarrow P_{G_1} \circ P_{G_2})
$$

is equisatisfiable to F .

The number of subformulae is linear in the size of F. The time to convert one small formula is constant

Example: CNF

Convert $F : P \vee Q \rightarrow P \wedge \neg R$ to CNF. Introduce new variables: P_F , $P_{P\vee Q}$, $P_{P\wedge\neg R}$, $P_{\neg R}$. Create new formulae and convert them to CNF separately:

\n- \n
$$
P_F \leftrightarrow (P_{P \vee Q} \rightarrow P_{P \wedge \neg R})
$$
 in CNF:\n $F_1: \{ \{ \overline{P_F}, \overline{P_{P \vee Q}}, P_{P \wedge \neg R} \}, \{ P_F, P_{P \vee Q} \}, \{ P_F, \overline{P_{P \wedge \neg R}} \} \}$ \n
\n- \n $P_{P \vee Q} \leftrightarrow P \vee Q$ in CNF:\n $F_2: \{ \{ \overline{P_{P \vee Q}}, P \vee Q \}, \{ P_{P \vee Q}, \overline{P} \}, \{ P_{P \vee Q}, \overline{Q} \} \}$ \n
\n- \n $P_{P \wedge \neg R} \leftrightarrow P \wedge P_{\neg R}$ in CNF:\n
\n

$$
F_3: \{\{\overline{P_{P\wedge\neg R}} \vee P\},\{\overline{P_{P\wedge\neg R}},P_{\neg R}\},\{P_{P\wedge\neg R},\overline{P},\overline{P_{\neg R}}\}\}\
$$

 \bullet $P_{\neg R} \leftrightarrow \neg R$ in CNF: F_4 : $\{\{\overline{P_{\neg R}}, \overline{R}\}, \{P_{\neg R}, R\}\}\$ $\{\{P_F\}\}\cup F_1\cup F_2\cup F_3\cup F_4$ is in CNF and equisatisfiable to F. Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

```
let rec DPLL F =let F' = \text{PROP } F in
   let F'' = PLP F' in
   if F'' = \top then true
   else if F'' = \bot then false
  else
      let P = CHOOSE vars(F'') in
      (DPLL F''{P \rightarrow \top}) \vee (DPLL F''{P \rightarrow \bot})
```
JNÍ
FREIBURC

Unit Propagation (prop)

If a clause contains one literal ℓ ,

- Set ℓ to \top .
- Remove all clauses containing ℓ .
- Remove $\neg \ell$ in all clauses.

Based on resolution

$$
\frac{\ell \quad \neg \ell \lor C}{C} \leftarrow \text{ clause}
$$

UNI
FREIBURG

Pure Literal Propagation (PLP)

If P occurs only positive (without negation), set it to \top . If P occurs only negative set it to \perp .

Example

$$
\begin{array}{c}\n \stackrel{1}{\text{number}} \\
 \stackrel{1}{\text{Frelbunc}}\n \end{array}
$$

$$
F: (\neg P \lor Q \lor R) \land (\neg Q \lor R) \land (\neg Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)
$$

Branching on Q

$$
F\{Q \mapsto \top\} : (R) \wedge (\neg R) \wedge (P \vee \neg R)
$$

By unit resolution

$$
\begin{array}{c}\nR \quad (\neg R) \\
\perp\n\end{array}
$$

 $F\{Q \mapsto T\} = \perp \Rightarrow$ false

On the other branch $F\{Q \mapsto \perp\} : (\neg P \vee R)$ $F{Q \mapsto \bot, R \mapsto \top, P \mapsto \bot} = \top \Rightarrow \text{true}$

٠

 F is satisfiable with satisfying interpretation

 $I : {P \mapsto \text{false}, Q \mapsto \text{false}, R \mapsto \text{true}}$

Example

A island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You meet four inhabitants: Alice, Bob, Charles and Doris.

- Alice says that Doris is a knave.
- Bob tells you that Alice is a knave.
- **Charles claims that Alice is a knave.**
- Doris tells you, 'Of Charles and Bob, exactly one is a knight.'

Knight and Knaves

Let A denote that Alice is a Knight, etc. Then:

- \bullet A $\leftrightarrow \neg D$
- $B \leftrightarrow \neg A$
- \bullet $C \leftrightarrow \neg A$
- \bullet D $\leftrightarrow \neg(C \leftrightarrow B)$

In CNF:

- $\bullet \{\overline{A}, \overline{D}\}, \{A, D\}$
- $\bullet \{\overline{B}, \overline{A}\}, \{B, A\}$
- $\bullet \{\overline{C}, \overline{A}\}, \{C, A\}$
- $\bullet \{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}\$

JNÍ
Reiburg

Solving Knights and Knaves

$$
F: \{\{\overline{A},\overline{D}\},\{A,D\},\{\overline{B},\overline{A}\},\{B,A\},\{\overline{C},\overline{A}\},\{C,A\},\\\{\overline{D},\overline{C},\overline{B}\},\{\overline{D},C,B\},\{D,\overline{C},B\},\{D,C,\overline{B}\}\}
$$

PROP and PLP are not applicable. Decide on A:

 $F\{A \mapsto \perp\} : \{\{D\}, \{B\}, \{C\}, \{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}\}\$ By prop we get:

$$
F\{A \rightarrow \perp, D \rightarrow \top, B \rightarrow \top, C \rightarrow \top\} : \perp
$$

Unsatisfiable! Now set A to \top :

 $F\{A \mapsto \top\} : \{\{\overline{D}\}, {\{\overline{B}\}, \{\overline{C}\}, {\{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}\}\}\$ By prop we get:

$$
F\{A \rightarrow \top, D \rightarrow \bot, B \rightarrow \bot, C \rightarrow \bot\} : \top
$$

Satisfying assignment!

Jochen Hoenicke (Software Engineering) [Decision Procedures](#page-0-0) Summer 2012 46 / 56

JNI
Reiburg

Consider the following problem:

$$
\{\{A_1, B_1\}, \{\overline{P_0}, \overline{A_1}, P_1\}, \{\overline{P_0}, \overline{B_1}, P_1\}, \{A_2, B_2\}, \{\overline{P_1}, \overline{A_2}, P_2\}, \{\overline{P_1}, \overline{B_2}, P_2\}, \ldots, \{A_n, B_n\}, \{\overline{P_{n-1}}, \overline{A_n}, P_n\}, \{\overline{P_{n-1}}, \overline{B_n}, P_n\}, \{P_0\}, \{\overline{P_n}\}\}\
$$

For some literal orderings, we need exponentially many steps. Note, that

$$
\{\{A_i, B_i\}, \{\overline{P_{i-1}}, \overline{A_i}, P_i\}, \{\overline{P_{i-1}}, \overline{B_i}, P_i\}\} \Rightarrow \{\{\overline{P_{i-1}}, P_i\}\}\
$$

If we learn the right clauses, unit propagation will immediately give unsatisfiable.

Jochen Hoenicke (Software Engineering) [Decision Procedures](#page-0-0) Summer 2012 47 / 56

Do not change the clause set, but only assign literals (as global variables). When you assign true to a literal ℓ , also assign false to ℓ . For a partial assignment

- A clause is true if one of its literals is assigned true.
- A clause is a conflict clause if all its literals are assigned false.
- A clause is a unit clause if all but one literals are assigned false and the last literal is unassigned.

If the assignment of a literal from a conflict clause is removed we get a unit clause.

Explain unsatisfiability of partial assignment by conflict clause and learn it!

Idea: Explain unsatisfiability of partial assignment by conflict clause and learn it!

- **If a conflict is found we return the conflict clause.**
- If variable in conflict were derived by unit propagation use resolution rule to generate a new conflict clause.
- If variable in conflict was derived by decision, use learned conflict as unit clause

DPLL with CDCL

The functions DPLL and PROP return a conflict clause or satisfiable.

```
let rec DPLL =let PROP U =. . .
   if conflictclauses \neq \emptysetchoose conflictclauses
  else if unitclauses \neq \emptysetPROP (CHOOSE unitclauses)
  else if coreclauses \neq \emptyset\texttt{let} \ \ell = \texttt{CHOOSE} \ (\bigcup \texttt{coreclauses}) \ \cap \ \texttt{unassigned in}val[\ell] := \toplet C = \text{DPL} in
       if (C = satisfiable) satisfiable
       else
            val[\ell] := undef
            if (\bar{\ell} \notin C) Celse learn C; prop C
   else satisfiable
```
Unit propagation

The function $_{\rm{PROP}}$ takes a unit clause and does unit propagation. It calls DPLL recursively and returns a conflict clause or satisfiable. recursively:

```
let PROP U =let \ell = CHOOSE U \cap unassigned in
  val[\ell] := \toplet C = DPLL in
   if (C = satisfiable)
      satisfiable
   else
      val[\ell] := undef
      if (\overline{\ell} \notin C) Celse U \setminus \{\ell\} \cup C \setminus \{\overline{\ell}\}\
```
The last line does resolution:

$$
\frac{\ell \, \vee \, \mathit{C}_1 \quad \, \neg \ell \, \vee \, \mathit{C}_2}{\mathit{C}_1 \, \vee \, \mathit{C}_2}
$$

$\{\{A_1, B_1\}, \{\overline{P_0}, \overline{A_1}, P_1\}, \{\overline{P_0}, \overline{B_1}, P_1\}, \{A_2, B_2\}, \{\overline{P_1}, \overline{A_2}, P_2\}, \{\overline{P_1}, \overline{B_2}, P_2\},$. . . , { A_n, B_n }, { $\overline{P_{n-1}, A_n}, P_n$ }, { $\overline{P_{n-1}, B_n}, P_n$ }, { P_0 }, { $\overline{P_n}$ }}

- \bullet Unit propagation (PROP) sets P_0 and $\overline{P_n}$ to true.
- Decide, e.g. A_1 , PROP sets $\overline{P_1}$
- Continue until A_{n-1} , PROP sets $\overline{P_{n-1}}$, $\overline{A_n}$ and $\overline{B_n}$
- Conflict clause computed: $\{\overline{A_{n-1}}, \overline{P_{n-2}}, P_n\}$.
- Conflict clause does not depend on A_1, \ldots, A_{n-2} and can be used again.

DPLL (without Learning)

UNI
FREIBURG

DPLL with CDCL

UNI
FREIBURG

- Pure Literal Propagation is unnecessary: A pure literal is always chosen right and never causes a conflict. Modern SAT-solvers use this procedure but differ in
	- - heuristics to choose literals/clauses.
		- efficient data structures to find unit clauses.
		- more conflict resolution to minimize learned clauses.
		- restarts (without forgetting learned clauses).
- Even with the optimal heuristics DPLL is still exponential: The Pidgeon-Hole problem requires exponential resolution proofs.

- **•** Syntax and Semantics of Propositional Logic
- Methods to decide satisfiability/validity of formulae:
	- **•** Truth table
	- **Semantic Tableaux**
	- DPLL
- Run-time of all algorithm is worst-case exponential in length of formula.
- Deciding satisfiability is NP-complete.