Decision Procedures

Jochen Hoenicke

Software Engineering Albert-Ludwigs-University Freiburg

Summer 2012

Organisation

FREIBURG

Dates

- Lecture is Tuesday 14–16 (c.t) and Thursday 14–15 (c.t).
- Tutorials will be given on Thursday 15–16.
 Starting next week (this week is a two hour lecture).
- Exercise sheets are uploaded on Tuesday. They are due on Tuesday the week after.

To successfully participate, you must

- prepare the exercises (at least 50 %)
- actively participate in the tutorial
- pass an oral examination

THE CALCULUS OF COMPUTATION: Decision Procedures with Applications to Verification

by Aaron Bradley Zohar Manna

Springer 2007

Jochen Hoenicke (Software Engineering)

Decision Procedures

Motivation

Decision Procedures are algorithms to decide formulae. These formulae can arise

- in Hoare-style software verification.
- in hardware verification

Consider the following program:

for
 @
$$\ell \leq i \leq u \land (rv \leftrightarrow \exists j. \ell \leq j < i \land a[j] = e)$$

 (int $i := \ell; i \leq u; i := i + 1)$ {
 if (($a[i] = e$)) {
 rv := true;
 }
}

How can we prove that the formula is a loop invariant?

Motivation (3)

Prove the Hoare triples (one for if case, one for else case)

assume
$$\ell \leq i \leq u \land (rv \leftrightarrow \exists j. \ell \leq j < i \land a[j] = e)$$

assume $i \leq u$
assume $a[i] = e$
 $rv := true;$
 $i := i + 1$
 $@ \ell \leq i \leq u \land (rv \leftrightarrow \exists j. \ell \leq j < i \land a[j] = e)$

$$\begin{array}{l} \text{assume } \ell \leq i \leq u \land (\mathsf{rv} \leftrightarrow \exists j. \ \ell \leq j < i \land \mathsf{a}[j] = e_i \\ \text{assume } i \leq u \\ \text{assume } \mathsf{a}[i] \neq e \\ i := i + 1 \\ \mathbb{O} \ \ell \leq i \leq u \land (\mathsf{rv} \leftrightarrow \exists j. \ \ell \leq j < i \land \mathsf{a}[j] = e) \end{array}$$

Motivation (4)

A Hoare triple $\{P\}$ S $\{Q\}$ holds, iff

(wp denotes is weakest precondition) For assignments wp is computed by substitution:

$$\begin{array}{l} \text{assume } \ell \leq i \leq u \land (\mathsf{rv} \leftrightarrow \exists j. \ \ell \leq j < i \land a[j] = e) \\ \text{assume } i \leq u \\ \text{assume } a[i] = e \\ \mathsf{rv} := \mathsf{true}; \\ i := i + 1 \\ \mathbb{Q} \ \ell \leq i \leq u \land (\mathsf{rv} \leftrightarrow \exists j. \ \ell \leq j < i \land a[j] = e) \end{array}$$

holds if and only if:

$$\ell \leq i \leq u \land (rv \leftrightarrow \exists j. \ \ell \leq j < i \land a[j] = e) \land i \leq u \land a[i] = e$$

 $\rightarrow \ell \leq i + 1 \leq u \land (true \leftrightarrow \exists j. \ \ell \leq j < i + 1 \land a[j] = e)$

We need an algorithm that decides whether a formula holds.

$$\ell \leq i \leq u \land (rv \leftrightarrow \exists j. \ \ell \leq j < i \land a[j] = e) \land i \leq u \land a[i] = e$$

 $\rightarrow \ell \leq i + 1 \leq u \land (true \leftrightarrow \exists j. \ \ell \leq j < i + 1 \land a[j] = e)$

If the formula does not hold it should give a counterexample, e.g.:

$$\ell = 0, i = 1, u = 1, rv = false, a[0] = 0, a[1] = 1, e = 1,$$

This counterexample shows that $i + 1 \leq u$ can be violated.

This lecture is about algorithms checking for validity and producing these counterexamples.

Contents of Lecture

- Propositional Logic
- First-Order Logic
- First-Order Theories
- Quantifier Elimination
- Decision Procedures for Linear Arithmetic
- Decision Procedures for Uninterpreted Functions
- Decision Procedures for Arrays
- Combination of Decision Procedures
- DPLL(T)
- Craig Interpolants

Foundations: Propositional Logic

<u>Atom</u>	truth symbols $ op$ ("true") and $ op$ ("false")					
	propositional variables $P, Q, R, P_1, Q_1, R_1, \cdots$					
Literal	atom α or its negation $\neg \alpha$					
<u>Formula</u>	literal or application of a					
	logical connective to formulae F, F_1, F_2					
	$\neg F$	"not"	(negation)			
	$(F_1 \wedge F_2)$	"and"	(conjunction)			
	$(F_1 \vee F_2)$	"or"	(disjunction)			
	$(F_1 \rightarrow F_2)$	"implies"	(implication)			
	$(F_1 \leftrightarrow F_2)$	"if and only if"	(iff)			

formula
$$F : ((P \land Q) \rightarrow (\top \lor \neg Q))$$

atoms: P, Q, \top
literal: $\neg Q$
subformulas: $(P \land Q), \quad (\top \lor \neg Q)$
abbreviation
 $F : P \land Q \rightarrow \top \lor \neg Q$

Semantics (meaning) of PL

Formula F and Interpretation I is evaluated to a truth value 0/1where 0 corresponds to value false 1 true

Interpretation $I : \{P \mapsto 1, Q \mapsto 0, \cdots\}$

Evaluation of logical operators:

F_1	<i>F</i> ₂	$\neg F_1$	$F_1 \wedge F_2$	$F_1 \vee F_2$	$F_1 \rightarrow F_2$	$F_1 \leftrightarrow F_2$
0	0	1	0	0	1	1
0	1	L	0	1	1	0
1	0	0	0	1	0	0
1	1	U	1	1	1	1

UNI FREIBURG

$$F : P \land Q \rightarrow P \lor \neg Q$$

$$I : \{P \mapsto 1, Q \mapsto 0\}$$

$$\boxed{\begin{array}{c|c}P & Q & \neg Q & P \land Q & P \lor \neg Q & F \\\hline 1 & 0 & 1 & 0 & 1 & 1 \\\hline 1 & = true & 0 = false\end{array}}$$

F evaluates to true under I

Inductive Definition of PL's Semantics

$$\begin{array}{l} I \models F & \text{if } F \text{ evaluates to } 1 \ / \text{ true } \text{ under } I \\ I \not\models F & 0 \ / \text{ false} \end{array}$$

Base Case:

 $I \models \top$ $I \not\models \bot$ $I \models P \quad \text{iff} \quad I[P] = 1$ $I \not\models P \quad \text{iff} \quad I[P] = 0$

Inductive Case:

$$\begin{array}{ll} I \models \neg F & \text{iff } I \not\models F \\ I \models F_1 \land F_2 & \text{iff } I \models F_1 \text{ and } I \models F_2 \\ I \models F_1 \lor F_2 & \text{iff } I \models F_1 \text{ or } I \models F_2 \\ I \models F_1 \rightarrow F_2 & \text{iff, if } I \models F_1 \text{ then } I \models F_2 \\ I \models F_1 \leftrightarrow F_2 & \text{iff, } I \models F_1 \text{ and } I \models F_2, \\ & \text{or } I \not\models F_1 \text{ and } I \not\models F_2 \end{array}$$

FREIBURG

Example: Inductive Reasoning

$$F : P \land Q \to P \lor \neg Q$$
$$I : \{P \mapsto 1, Q \mapsto 0\}$$

1.
$$I \models P$$
since $I[P] = 1$ 2. $I \not\models Q$ since $I[Q] = 0$ 3. $I \models \neg Q$ by 2, \neg 4. $I \not\models P \land Q$ by 2, \land 5. $I \models P \lor \neg Q$ by 1, \lor 6. $I \models F$ by 4, \rightarrow

Thus, F is true under I.

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that $I \models F$.

Definition (Validity)

F is valid iff for all interpretations I, $I \models F$.

Note

F is valid iff $\neg F$ is unsatisfiable

Proof.

F is valid iff $\forall I : I \models F$ iff $\neg \exists I : I \not\models F$ iff $\neg F$ is unsatisfiable.

Decision Procedure: An algorithm for deciding validity or satisfiability.

Jochen Hoenicke (Software Engineering)

Decision Procedures

Examples: Satisfiability and Validity

Now assume, you are a decision procedure.

Which of the following formulae is satisfiable, which is valid?

- F_1 : $P \land Q$ satisfiable, not valid
- F_2 : $\neg(P \land Q)$ satisfiable, not valid
- $F_3 : P \lor \neg P$ satisfiable, valid
- F_4 : $\neg(P \lor \neg P)$ unsatisfiable, not valid

•
$$F_5$$
 : $(P \rightarrow Q) \land (P \lor Q) \land \neg Q$
unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?

JNI REIBURG

Method 1: Truth Tables

$$F : P \land Q \rightarrow P \lor \neg Q$$
 $P Q$
 $P \land Q$
 $\neg Q$
 $P \lor \neg Q$
 F

 0
 0
 1
 1
 1

 0
 1
 0
 0
 1

 1
 0
 0
 1
 1

 1
 1
 1
 1
 1

 1
 1
 0
 1
 1

Thus F is valid.

 $F : P \lor Q \to P \land Q$ $P \lor Q$ $P \land$ F Ρ Q Q 0 0 0 0 1 \leftarrow satisfying *I* \leftarrow falsifying *I* 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1

Thus F is satisfiable, but invalid.

UNI FREIBURG

- Assume F is not valid and I a falsifying interpretation: $I \not\models F$
- Apply proof rules.
- If no contradiction reached and no more rules applicable, F is invalid.
- If in every branch of proof a contradiction reached, F is valid.

Semantic Argument: Proof rules

 $\frac{I \models \neg F}{I \not\models F}$ $\frac{I \not\models \neg F}{I \models F}$ $\frac{I \not\models F \land G}{I \not\models F \mid I \not\models G}$ $\frac{I \models F \land G}{I \models F} \quad \leftarrow \text{and}$ $\frac{I \models F \lor G}{I \models F \mid I \models G}$ $\frac{I \not\models F \lor G}{I \not\models F}$ $I \nvDash G$ $\frac{I \models F \rightarrow G}{I \not\models F \mid I \models G}$ $\frac{I \not\models F \to G}{I \models F}$ I ⊭ G $\frac{I \models F \leftrightarrow G}{I \models F \wedge G \mid I \nvDash F \vee G} \qquad \frac{I \nvDash F \leftrightarrow G}{I \models F \wedge \neg G \mid I \models \neg F \wedge G}$ $\begin{array}{c} I \models F \\ I \not\models F \\ \hline I \models - \end{array}$

FREIBURG

 $\mathsf{Prove} \quad F \, : \, P \, \land \, Q \, \rightarrow \, P \, \lor \, \neg Q \quad \text{ is valid.}$

Let's assume that F is not valid and that I is a falsifying interpretation.

1.	$I \not\models P \land Q ightarrow P \lor \neg Q$	assumption
2.	$I \models P \land Q$	1, Rule $ ightarrow$
3.	$I \not\models P \lor \neg Q$	1, Rule $ ightarrow$
4.	$I \models P$	2, Rule \wedge
5.	$I \not\models P$	3, Rule \lor
6.	$I \models \bot$	4 and 5 are contradictory

Thus F is valid.

Example 2

$$\mathsf{Prove} \quad F \,:\, (P \to Q) \land (Q \to R) \to (P \to R) \quad \text{ is valid.}$$

Let's assume that F is not valid.

Our assumption is incorrect in all cases — F is valid.

Example 3

 $\mathsf{Is} \quad F \,:\, P \,\lor\, Q \to P \,\land\, Q \quad \mathsf{valid}?$

Let's assume that F is not valid.

We cannot always derive a contradiction. F is not valid.

Idea: Simplify decision procedure, by simplifying the formula first. Convert it into a simpler normal form, e.g.:

- Negation Normal Form: No \rightarrow and no \leftrightarrow ; negation only before atoms.
- Conjunctive Normal Form: Negation normal form, where conjunction is outside, disjunction is inside.
- Disjunctive Normal Form: Negation normal form, where disjunction is outside, conjunction is inside.

The formula in normal form should be equivalent to the original input.

 F_1 and F_2 are equivalent $(F_1 \Leftrightarrow F_2)$ iff for all interpretations $I, I \models F_1 \leftrightarrow F_2$

To prove $F_1 \Leftrightarrow F_2$ show $F_1 \leftrightarrow F_2$ is valid.

 $\begin{array}{c} F_1 \ \underline{\text{implies}} \ F_2 \ (F_1 \ \Rightarrow \ F_2) \\ \hline \text{iff for all interpretations } I, \ I \ \models \ F_1 \ \rightarrow \ F_2 \end{array}$

 $F_1 \Leftrightarrow F_2$ and $F_1 \Rightarrow F_2$ are not formulae!

Equivalence is a Congruence relation

If $F_1 \Leftrightarrow F'_1$ and $F_2 \Leftrightarrow F'_2$, then

- $\neg F_1 \Leftrightarrow \neg F'_1$
- $F_1 \vee F_2 \Leftrightarrow F_1' \vee F_2'$
- $F_1 \wedge F_2 \Leftrightarrow F'_1 \wedge F'_2$
- $F_1 \to F_2 \Leftrightarrow F_1' \to F_2'$
- $F_1 \leftrightarrow F_2 \Leftrightarrow F_1' \leftrightarrow F_2'$
- if we replace in a formula F a subformula F_1 by F'_1 and obtain F', then $F \Leftrightarrow F'$.

Negations appear only in literals. (only \neg, \land, \lor)

To transform F to equivalent F' in NNF use recursively the following template equivalences (left-to-right):

$$\neg \neg F_1 \Leftrightarrow F_1 \quad \neg \top \Leftrightarrow \bot \quad \neg \bot \Leftrightarrow \top$$
$$\neg (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2 \\ \neg (F_1 \lor F_2) \Leftrightarrow \neg F_1 \land \neg F_2 \\ F_1 \rightarrow F_2 \Leftrightarrow \neg F_1 \land \neg F_2 \\ F_1 \leftrightarrow F_2 \Leftrightarrow (F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1)$$

UNI FREIBURG

 $\mathsf{Convert} \quad F \,:\, (\mathit{Q}_1 \,\lor\, \neg \neg \mathit{R}_1) \,\land\, (\neg \mathit{Q}_2 \to \mathit{R}_2) \mathsf{ into } \mathsf{NNF}$

$$\begin{array}{c} (Q_1 \lor \neg \neg R_1) \land (\neg Q_2 \to R_2) \\ \Leftrightarrow \quad (Q_1 \lor R_1) \land (\neg Q_2 \to R_2) \\ \Leftrightarrow \quad (Q_1 \lor R_1) \land (\neg \neg Q_2 \lor R_2) \\ \Leftrightarrow \quad (Q_1 \lor R_1) \land (Q_2 \lor R_2) \end{array}$$

The last formula is equivalent to F and is in NNF.

Disjunction of conjunctions of literals

$$\bigvee_{i} \bigwedge_{j} \ell_{i,j} \quad \text{for literals } \ell_{i,j}$$

To convert F into equivalent F' in DNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$\begin{array}{c} (F_1 \lor F_2) \land F_3 \Leftrightarrow (F_1 \land F_3) \lor (F_2 \land F_3) \\ F_1 \land (F_2 \lor F_3) \Leftrightarrow (F_1 \land F_2) \lor (F_1 \land F_3) \end{array} \right\} dist$$

Convert F : $(Q_1 \lor \neg \neg R_1) \land (\neg Q_2 \rightarrow R_2)$ into DNF

$$\begin{array}{l} (Q_1 \lor \neg \neg R_1) \land (\neg Q_2 \to R_2) \\ \Leftrightarrow (Q_1 \lor R_1) \land (Q_2 \lor R_2) & \text{in NNF} \\ \Leftrightarrow (Q_1 \land (Q_2 \lor R_2)) \lor (R_1 \land (Q_2 \lor R_2)) & \text{dist} \\ \Leftrightarrow (Q_1 \land Q_2) \lor (Q_1 \land R_2) \lor (R_1 \land Q_2) \lor (R_1 \land R_2) & \text{dist} \end{array}$$

The last formula is equivalent to F and is in DNF. Note that formulas can grow exponentially.

Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals

$$\bigwedge_{i} \bigvee_{j} \ell_{i,j} \quad \text{for literals } \ell_{i,j}$$

To convert F into equivalent F' in CNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$(F_1 \land F_2) \lor F_3 \Leftrightarrow (F_1 \lor F_3) \land (F_2 \lor F_3) F_1 \lor (F_2 \land F_3) \Leftrightarrow (F_1 \lor F_2) \land (F_1 \lor F_3)$$

A disjunction of literals $P_1 \vee P_2 \vee \neg P_3$ is called a clause. For brevity we write it as set: $\{P_1, P_2, \overline{P_3}\}$. A formula in CNF is a set of clauses (a set of sets of literals).

Definition (Equisatisfiability)

F and F' are equisatisfiable, iff

F is satisfiable if and only if F' is satisfiable

Every formula is equisatifiable to either \top or \bot . There is a efficient conversion of F to F' where

- F' is in CNF and
- F and F' are equisatisfiable

Note: efficient means polynomial in the size of F.

Conversion to CNF

Basic Idea:

- Introduce a new variable P_G for every subformula G; unless G is already an atom.
- For each subformula $G : G_1 \circ G_2$ produce a small formula $P_G \leftrightarrow P_{G_1} \circ P_{G_2}$.
- encode each of these (small) formulae separately to CNF.

The formula

$$P_F \land \bigwedge_G CNF(P_G \leftrightarrow P_{G_1} \circ P_{G_2})$$

is equisatisfiable to F.

The number of subformulae is linear in the size of F. The time to convert one small formula is constant!

Example: CNF

Convert $F : P \lor Q \to P \land \neg R$ to CNF. Introduce new variables: P_F , $P_{P\lor Q}$, $P_{P\land\neg R}$, $P_{\neg R}$. Create new formulae and convert them to CNF separately:

•
$$P_F \leftrightarrow (P_{P \lor Q} \rightarrow P_{P \land \neg R})$$
 in CNF:
 $F_1 : \{\{\overline{P_F}, \overline{P_{P \lor Q}}, P_{P \land \neg R}\}, \{P_F, P_{P \lor Q}\}, \{P_F, \overline{P_{P \land \neg R}}\}\}$
• $P_{P \lor Q} \leftrightarrow P \lor Q$ in CNF:
 $F_2 : \{\{\overline{P_{P \lor Q}}, P \lor Q\}, \{P_{P \lor Q}, \overline{P}\}, \{P_{P \lor Q}, \overline{Q}\}\}$
• $P_{P \land \neg R} \leftrightarrow P \land P_{\neg R}$ in CNF:
 $F_3 : \{\{\overline{P_{P \land \neg R}} \lor P\}, \{\overline{P_{P \land \neg R}}, P_{\neg R}\}, \{P_{P \land \neg R}, \overline{P}, \overline{P_{\neg R}}\}\}$
• $P_{\neg R} \leftrightarrow \neg R$ in CNF: $F_4 : \{\{\overline{P_{\neg R}}, \overline{R}\}, \{P_{\neg R}, R\}\}$

 $\{\{P_F\}\} \cup F_1 \cup F_2 \cup F_3 \cup F_4 \text{ is in CNF and equisatisfiable to } F.$

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

```
let rec DPLL F =

let F' = PROP F in

let F'' = PLP F' in

if F'' = \top then true

else if F'' = \bot then false

else

let P = CHOOSE vars(F'') in

(DPLL F''\{P \mapsto \top\}) \lor (DPLL F''\{P \mapsto \bot\})
```

FREIBURG

Unit Propagation (PROP)

If a clause contains one literal ℓ ,

- Set ℓ to \top .
- Remove all clauses containing ℓ .
- Remove $\neg \ell$ in all clauses.

Based on resolution

$$\frac{\ell \quad \neg \ell \lor C}{C} \leftarrow \text{clause}$$

UNI FREIBURG

Pure Literal Propagation (PLP)

If *P* occurs only positive (without negation), set it to \top . If *P* occurs only negative set it to \bot .

Example

FREIBURG

$$F : (\neg P \lor Q \lor R) \land (\neg Q \lor R) \land (\neg Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)$$

Branching on Q

$$F\{Q \mapsto \top\} : (R) \land (\neg R) \land (P \lor \neg R)$$

By unit resolution

$$\frac{R \quad (\neg R)}{\perp}$$

$$F\{Q \mapsto \top\} = \bot \Rightarrow false$$

On the other branch

$$\begin{array}{rcl} F\{Q & \mapsto & \bot\} : (\neg P \lor R) \\ F\{Q & \mapsto & \bot, \ R & \mapsto & \top, \ P & \mapsto & \bot\} & = & \top \Rightarrow \ \mathsf{true} \end{array}$$

F is satisfiable with satisfying interpretation

 $I \ : \ \{P \ \mapsto \ \mathsf{false}, \ Q \ \mapsto \ \mathsf{false}, \ R \ \mapsto \ \mathsf{true}\}$

Example

A island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You meet four inhabitants: Alice, Bob, Charles and Doris.

- Alice says that Doris is a knave.
- Bob tells you that Alice is a knave.
- Charles claims that Alice is a knave.
- Doris tells you, 'Of Charles and Bob, exactly one is a knight.'

Knight and Knaves

Let A denote that Alice is a Knight, etc. Then:

- $A \leftrightarrow \neg D$
- $B \leftrightarrow \neg A$
- $C \leftrightarrow \neg A$
- $D \leftrightarrow \neg (C \leftrightarrow B)$

In CNF:

- $\{\overline{A}, \overline{D}\}, \{A, D\}$
- $\{\overline{B},\overline{A}\},\{B,A\}$
- $\{\overline{C},\overline{A}\}, \{C,A\}$
- $\{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}$

UNI FREIBURG Solving Knights and Knaves

$$\begin{aligned} F \ : \ \{\{\overline{A},\overline{D}\},\{A,D\},\{\overline{B},\overline{A}\},\{B,A\},\{\overline{C},\overline{A}\},\{C,A\},\\ \{\overline{D},\overline{C},\overline{B}\},\{\overline{D},C,B\},\{D,\overline{C},B\},\{D,C,\overline{B}\}\} \end{aligned}$$

PROP and PLP are not applicable. Decide on A:

 $F\{A \mapsto \bot\} : \{\{D\}, \{B\}, \{C\}, \{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}\}$ By PROP we get:

$$F\{A \mapsto \bot, D \mapsto \top, B \mapsto \top, C \mapsto \top\} : \bot$$

Unsatisfiable! Now set A to \top :

 $F\{A \mapsto \top\} : \{\{\overline{D}\}, \{\overline{B}\}, \{\overline{C}\}, \{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}\}$ By prop we get:

$$F\{A \mapsto \top, D \mapsto \bot, B \mapsto \bot, C \mapsto \bot\} : \top$$

Satisfying assignment!

Jochen Hoenicke (Software Engineering)

Consider the following problem:

$$\{\{A_1, B_1\}, \{\overline{P_0}, \overline{A_1}, P_1\}, \{\overline{P_0}, \overline{B_1}, P_1\}, \{A_2, B_2\}, \{\overline{P_1}, \overline{A_2}, P_2\}, \{\overline{P_1}, \overline{B_2}, P_2\}, \dots, \{A_n, B_n\}, \{\overline{P_{n-1}}, \overline{A_n}, P_n\}, \{\overline{P_{n-1}}, \overline{B_n}, P_n\}, \{P_0\}, \{\overline{P_n}\}\}$$

For some literal orderings, we need exponentially many steps. Note, that

$$\{\{A_i, B_i\}, \{\overline{P_{i-1}}, \overline{A_i}, P_i\}, \{\overline{P_{i-1}}, \overline{B_i}, P_i\}\} \Rightarrow \{\{\overline{P_{i-1}}, P_i\}\}$$

If we learn the right clauses, unit propagation will immediately give unsatisfiable.

Do not change the clause set, but only assign literals (as global variables). When you assign true to a literal ℓ , also assign false to $\overline{\ell}$. For a partial assignment

- A clause is true if one of its literals is assigned true.
- A clause is a conflict clause if all its literals are assigned false.
- A clause is a <u>unit clause</u> if all but one literals are assigned false and the last literal is unassigned.

If the assignment of a literal from a conflict clause is removed we get a unit clause.

Explain unsatisfiability of partial assignment by conflict clause and learn it!

Idea: Explain unsatisfiability of partial assignment by conflict clause and learn it!

- If a conflict is found we return the conflict clause.
- If variable in conflict were derived by unit propagation use resolution rule to generate a new conflict clause.
- If variable in conflict was derived by decision, use learned conflict as unit clause

DPLL with CDCL

The functions DPLL and PROP return a conflict clause or satisfiable.

```
let rec DPLL =
  let PROP U =
     . . .
  if conflictclauses \neq \emptyset
     CHOOSE conflictclauses
  else if unitclauses \neq \emptyset
     PROP (CHOOSE unitclauses)
  else if coreclauses \neq \emptyset
      let \ell = CHOOSE ([] coreclauses) \cap unassigned in
      val[\ell] := \top
      let C = DPLL in
      if (C = \text{satisfiable}) satisfiable
      else
          val[\ell] := undef
           if (\bar{\ell} \notin C) C
           else LEARN C; PROP C
  else satisfiable
```

Unit propagation

The function PROP takes a unit clause and does unit propagation. It calls DPLL recursively and returns a conflict clause or satisficity

```
let PROP U =
   let \ell = CHOOSE U \cap unassigned in
  val[\ell] := \top
   let C = DPLL in
   if (C = \text{satisfiable})
      satisfiable
   else
      val[\ell] := undef
      if (\bar{\ell} \notin C) C
      else U \setminus \{\ell\} \cup C \setminus \{\overline{\ell}\}
```

The last line does resolution:

$$\frac{\ell \lor C_1 \quad \neg \ell \lor C_2}{C_1 \lor C_2}$$

 $\{\{A_1, B_1\}, \{\overline{P_0}, \overline{A_1}, P_1\}, \{\overline{P_0}, \overline{B_1}, P_1\}, \{A_2, B_2\}, \{\overline{P_1}, \overline{A_2}, P_2\}, \{\overline{P_1}, \overline{B_2}, P_2\}, \dots, \{A_n, B_n\}, \{\overline{P_{n-1}}, \overline{A_n}, P_n\}, \{\overline{P_{n-1}}, \overline{B_n}, P_n\}, \{P_0\}, \{\overline{P_n}\}\}$

- Unit propagation (PROP) sets P_0 and $\overline{P_n}$ to true.
- Decide, e.g. A_1 , PROP sets $\overline{P_1}$
- Continue until A_{n-1} , PROP sets $\overline{P_{n-1}}, \overline{A_n}$ and $\overline{B_n}$
- Conflict clause computed: $\{\overline{A_{n-1}}, \overline{P_{n-2}}, P_n\}.$
- Conflict clause does not depend on A_1, \ldots, A_{n-2} and can be used again.

DPLL (without Learning)

UNI FREIBURG

DPLL with CDCL

UNI FREIBURG

- Pure Literal Propagation is unnecessary:
 A pure literal is always chosen right and never causes a conflict.
 Madam SAT scheme use this are assume but differ in
- Modern SAT-solvers use this procedure but differ in
 - heuristics to choose literals/clauses.
 - efficient data structures to find unit clauses.
 - more conflict resolution to minimize learned clauses.
 - restarts (without forgetting learned clauses).
- Even with the optimal heuristics DPLL is still exponential: The Pidgeon-Hole problem requires exponential resolution proofs.

- Syntax and Semantics of Propositional Logic
- Methods to decide satisfiability/validity of formulae:
 - Truth table
 - Semantic Tableaux
 - DPLL
- Run-time of all algorithm is worst-case exponential in length of formula.
- Deciding satisfiability is NP-complete.