
Decision Procedures

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Summer 2012

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 1 / 35

Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 2 / 35

First-Order Logic

Syntax of First-Order Logic

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables x , y , z , · · ·
constants a, b, c , · · ·
functions f , g , h, · · · with arity n > 0
terms variables, constants or

n-ary function applied to n terms as arguments
a, x , f (a), g(x , b), f (g(x , f (b)))

predicates p, q, r , · · · with arity n ≥ 0

atom >, ⊥, or an n-ary predicate applied to n terms
literal atom or its negation

p(f (x), g(x , f (x))), ¬p(f (x), g(x , f (x)))

Note: 0-ary functions: constant
0-ary predicates: P,Q,R, . . .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 4 / 35

Syntax of First-Order Logic (2)

quantifiers

existential quantifier ∃x .F [x]
“there exists an x such that F [x]”

universal quantifier ∀x .F [x]
“for all x , F [x]”

FOL formula literal, application of logical connectives
(¬,∨,∧,→,↔) to formulae,
or application of a quantifier to a formula

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 5 / 35

Example

FOL formula

∀x . (p(f (x), x) → (∃y . (p(f (g(x , y)), g(x , y))︸ ︷︷ ︸
G

)) ∧ q(x , f (x))

︸ ︷︷ ︸
F

)

The scope of ∀x is F .
The scope of ∃y is G .
The formula reads:

“for all x,
if p(f (x), x)
then there exists a y such that
p(f (g(x , y)), g(x , y)) and q(x , f (x))”

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 6 / 35

Famous theorems in FOL

The length of one side of a triangle is less than the sum of the lengths
of the other two sides

∀x , y , z . triangle(x , y , z) → length(x) < length(y) + length(z)

Fermat’s Last Theorem.

∀n. integer(n) ∧ n > 2
→∀x , y , z .

integer(x) ∧ integer(y) ∧ integer(z)
∧x > 0 ∧ y > 0 ∧ z > 0
→xn + yn 6= zn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 7 / 35

Pumping Lemma

For every regular Language L there is some n ≥ 0, such that for all words
z ∈ L with |z | ≥ n there is a decomposition z = uvw with |v | ≥ 1 and
|uv | ≤ n, such that for all i ≥ 0: uv iw ∈ L.

∀L. regularlanguage(L)→
∃n. integer(n) ∧ n ≥ 0∧
∀z . z ∈ L ∧ |z | ≥ n→
∃u, v ,w . word(u) ∧ word(v) ∧ word(w)∧
z = uvw ∧ |v | ≥ 1 ∧ |uv | ≤ n∧
∀i . integer(i) ∧ i ≥ 0 → uv iw ∈ L

Predicates: regularlanguage, integer , word , · ∈ ·, · ≤ ·, · ≥ ·, · = ·
Constants: 0, 1
Functions: | · | (word length), concatenation, iteration

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 8 / 35

FOL Semantics

An interpretation I : (DI , αI) consists of:

Domain DI

non-empty set of values or objects
for example DI = playing cards (finite),

integers (countable infinite), or
reals (uncountable infinite)

Assignment αI

each variable x assigned value αI [x] ∈ DI

each n-ary function f assigned

αI [f] : Dn
I → DI

In particular, each constant a (0-ary function) assigned value
αI [a] ∈ DI

each n-ary predicate p assigned

αI [p] : Dn
I → {>,⊥}

In particular, each propositional variable P (0-ary predicate) assigned
truth value (>, ⊥)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9 / 35

Example

F : p(f (x , y), z) → p(y , g(z , x))

Interpretation I : (DI , αI)
DI = Z = {· · · ,−2,−1, 0, 1, 2, · · · } integers
αI [f] : D2

I → DI

(x , y) 7→ x + y
αI [g] : D2

I → DI

(x , y) 7→ x − y

αI [p] : D2
I → {>,⊥}

(x , y) 7→

{
> if x < y

⊥ otherwise

Also αI [x] = 13, αI [y] = 42, αI [z] = 1
Compute the truth value of F under I

1. I 6|= p(f (x , y), z) since 13 + 42 ≥ 1
2. I 6|= p(y , g(z , x)) since 42 ≥ 1 − 13
3. I |= F by 1, 2, and →

F is true under I
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 35

Semantics: Quantifiers

For a variable x :

Definition (x-variant)

An x-variant of interpretation I is an interpretation J : (DJ , αJ) such that

DI = DJ

αI [y] = αJ [y] for all symbols y , except possibly x

That is, I and J agree on everything except possibly the value of x

Denote J : I / {x 7→ v} the x-variant of I in which αJ [x] = v for some
v ∈ DI . Then

I |= ∀x . F iff for all v ∈ DI , I / {x 7→ v} |= F

I |= ∃x . F iff there exists v ∈ DI s.t. I / {x 7→ v} |= F

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 11 / 35

Example

Consider
F : ∀x . ∃y . 2 · y = x

Here 2 · y is the infix notatation of the term ·(2, y),
and 2 · y = x is the infix notatation of the atom = (·(2, y), x).

2 is a 0-ary function symbol (a constant).

· is a 2-ary function symbol.

= is a 2-ary predicate symbol.

x , y are variables.

What is the truth-value of F?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 12 / 35

Example (Z)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpration for integers, DI = Z.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff
for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI , there exists v1 ∈ DI , I /{x 7→ v}/{y 7→ v1} |= 2 ·y = x

The latter is false since for 1 ∈ DI there is no number v1 with 2 · v1 = 1.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 13 / 35

Example (Q)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpration for rational numbers, DI = Q.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff
for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI , there exists v1 ∈ DI , I /{x 7→ v}/{y 7→ v1} |= 2 ·y = x

The latter is true since for v ∈ DI we can choose v1 = v
2 .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 14 / 35

Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that I |= F .

Definition (Validity)

F is valid iff for all interpretations I , I |= F .

Note

F is valid iff ¬F is unsatisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 15 / 35

Substitution

Suppose, we want to replace terms with other terms in formulas, e.g.

F : ∀y . (p(x , y) → p(y , x))

should be transformed to

G : ∀y . (p(a, y) → p(y , a))

We call the mapping from x to a a substituion denoted as σ : {x 7→ a}.
We write Fσ for the formula G .
Another convenient notation is F [x] for a formula containing the variable
x and F [a] for Fσ.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 16 / 35

Substitution

Definition (Substitution)

A substitution is a mapping from terms to terms, e.g.

σ : {t1 7→ s1, . . . , tn 7→ sn}

By Fσ we denote the application of σ to formula F , i.e., the formula F
where all occurences of t1, . . . , tn are replaced by s1, . . . , sn.

For a formula named F [x] we write F [t] as shorthand for F [x]{x 7→ t}.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 17 / 35

Safe Substitution

Care has to be taken in the presence of quantifiers:

F [x] : ∃y . y = Succ(x)

What is F [y]?
We need to rename bounded variables occuring in the substitution:

F [y] : ∃y ′. y ′ = Succ(y)

Bounded renaming does not change the models of a formula:

(∃y . y = Succ(x)) ⇔ (∃y ′. y ′ = Succ(x))

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 18 / 35

Recursive Definition of Substitution

tσ =

σ(t) t ∈ dom(σ)

f (t1σ, . . . , tnσ) t /∈ dom(σ) ∧ t = f (t1, . . . , tn)

x t /∈ dom(σ) ∧ t = x

p(t1, . . . , tn)σ = p(t1σ, . . . , tnσ)

(¬F)σ = ¬(Fσ)

(F ∧ G)σ = (Fσ) ∧ (Gσ)

. . .

(∀x . F)σ =

{
∀x . Fσ x /∈ Vars(σ)

∀x ′. ((F{x 7→ x ′})σ) otherwise and x ′ is fresh

(∃x . F)σ =

{
∃x . Fσ x /∈ Vars(σ)

∃x ′. ((F{x 7→ x ′})σ) otherwise and x ′ is fresh

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 19 / 35

Example: Safe Substitution Fσ

F : (∀x . p(x , y))→ q(f (y), x)
bound by ∀x ↗ ↖ free free ↗ ↖ free

σ : {x 7→ g(x), y 7→ f (x), f (y) 7→ h(x , y)}

Fσ?

1 Rename
F ′ : ∀x ′. p(x ′, y) → q(f (y), x)

↑ ↑

where x ′ is a fresh variable

2 Fσ : ∀x ′. p(x ′, f (x)) → q(h(x , y), g(x))

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 20 / 35

Semantic Tableaux

Recall rules from propositional logic:

I |= ¬F
I 6|= F

I 6|= ¬F
I |= F

I |= F ∧ G

I |= F
I |= G

←and

I 6|= F ∧ G

I 6|= F | I 6|= G
↖or

I |= F ∨ G

I |= F | I |= G

I 6|= F ∨ G

I 6|= F
I 6|= G

I |= F → G

I 6|= F | I |= G

I 6|= F → G

I |= F
I 6|= G

I |= F ↔ G

I |= F ∧ G | I 6|= F ∨ G

I 6|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧ G

I |= F
I 6|= F

I |= ⊥

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 21 / 35

Semantic Tableaux for FOL

The following additional rules are used for quantifiers:

I |= ∀x .F [x]
I |= F [t]

for any term t I 6|= ∀x .F [x]
I 6|= F [a]

for a fresh constant a

I |= ∃x .F [x]
I |= F [a]

for a fresh constant a I 6|= ∃x .F [x]
I 6|= F [t]

for any term t

(We assume that there are infinitely many constant symbols.)

The formula F [t] is created from the formula F [x] by the substitution
{x 7→ t} (roughly, replace every x by t).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 22 / 35

Example

Show that (∃x . ∀y . p(x , y)) → (∀x . ∃y . p(y , x)) is valid.

Assume otherwise.

1. I 6|= (∃x . ∀y . p(x , y)) → (∀x . ∃y . p(y , x)) assumption
2. I |= ∃x . ∀y . p(x , y) 1 and →
3. I 6|= ∀x . ∃y . p(y , x) 1 and →
4. I |= ∀y . p(a, y) 2, ∃ (x 7→ a fresh)
5. I 6|= ∃y . p(y , b) 3, ∀ (x 7→ b fresh)
6. I |= p(a, b) 4, ∀ (y 7→ b)
7. I 6|= p(a, b) 5, ∃ (y 7→ a)
8. I |= ⊥ 6,7 contradictory

Thus, the formula is valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 23 / 35

Example

Is F : (∀x . p(x , x)) → (∃x . ∀y . p(x , y)) valid?.

Assume I is a falsifying interpretation for F and apply semantic argument:

1. I 6|= (∀x . p(x , x)) → (∃x . ∀y . p(x , y))
2. I |= ∀x . p(x , x) 1 and →
3. I 6|= ∃x . ∀y . p(x , y) 1 and →
4. I |= p(a1, a1) 2, ∀
5. I 6|= ∀y .p(a1, y) 3, ∃
6. I 6|= p(a1, a2) 5, ∀
7. I |= p(a2, a2) 2, ∀
8. I 6|= ∀y .p(a2, y) 3, ∃
9. I 6|= p(a2, a3) 8, ∀
...

No contradiction. Falsifying interpretation I can be “read” from proof:

DI = N, pI (x , y) =

true y = x ,

false y = x + 1,

arbitrary otherwise.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 24 / 35

Semantic Argument Proof

To show FOL formula F is valid, assume I 6|= F and derive a contradiction
I |= ⊥ in all branches

Soundness
If every branch of a semantic argument proof reach I |= ⊥, then F is
valid

Completeness
Each valid formula F has a semantic argument proof in which every
branch reach I |= ⊥
Non-termination
For an invalid formula F the method is not guaranteed to terminate.
Thus, the semantic argument is not a decision procedure for validity.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 25 / 35

Soundness (proof sketch)

If for interpretation I the assumption of the proof hold
then there is an interpretation I ′ and a branch
such that all statements on that branch hold.

I ′ differs from I in the values αI [ai] of fresh constants ai .

If all branches of the proof end with I |= ⊥, then the assumption was
wrong. Thus, if the assumption was I 6|= F , then F must be valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 26 / 35

Completeness (proof sketch)

Consider (finite or infinite) proof trees starting with I 6|= F . We assume
that

all possible proof rules were applied in all non-closed branches.

the ∀ and ∃ rules were applied for all terms.
This is possible since the terms are countable.

If every branch is closed, the tree is finite (Kőnig’s Lemma) and we have a
finite proof for F .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 27 / 35

Completeness (proof sketch, continued)

Otherwise, the proof tree has at least one open branch P. We show that F
is not valid.

1 The statements on that branch P form a Hintikka set:

I |= F ∧ G ∈ P implies I |= F ∈ P and I |= G ∈ P.
I 6|= F ∧ G ∈ P implies I 6|= F ∈ P or I 6|= G ∈ P.
I |= ∀x . F [x] ∈ P implies for all terms t, I |= F [t] ∈ P.
I 6|= ∀x . F [x] ∈ P implies for some term a, I 6|= F [a] ∈ P.
Similarly for ∨,→,↔,∃.

2 Choose DI := {t | t is term}, αI [f](t1, . . . , tn) = f (t1, . . . tn),

αI [x] = x , αI [p](t1, . . . , tn) =

{
true I |= p(t1, . . . , tn) ∈ P

false otherwise

3 I satisfies all statements on the branch.
In particular, I is a falsifying interpretation of F , thus F is not valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 28 / 35

Normal Forms

Also in first-order logic normal forms can be used:

Devise an algorithm to convert a formula to a normal form.

Then devise an algorithm for satisfiability/validity that only works on
the normal form.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 29 / 35

Negation Normal Forms (NNF)

Negations appear only in literals. (only ¬,∧,∨, ∃, ∀)

To transform F to equivalent F ′ in NNF use recursively
the following template equivalences (left-to-right):

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2
¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2
F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

¬∀x . F [x] ⇔ ∃x . ¬F [x]
¬∃x . F [x] ⇔ ∀x . ¬F [x]

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 30 / 35

Example: Conversion to NNF

G : ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w .p(x ,w) .

1 ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w . p(x ,w)

2 ∀x . ¬(∃y . p(x , y) ∧ p(x , z)) ∨ ∃w . p(x ,w)
F1 → F2 ⇔ ¬F1 ∨ F2

3 ∀x . (∀y . ¬(p(x , y) ∧ p(x , z))) ∨ ∃w . p(x ,w)
¬∃x . F [x] ⇔ ∀x . ¬F [x]

4 ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 31 / 35

Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

Q1x1 · · ·Qnxn. F [x1, · · · , xn]

where Qi ∈ {∀, ∃} and F is quantifier-free.

Every FOL formula F can be transformed to formula F ′ in PNF s.t.
F ′ ⇔ F :

1 Write F in NNF

2 Rename quantified variables to fresh names

3 Move all quantifiers to the front

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 32 / 35

Example: PNF

Find equivalent PNF of

F : ∀x . ((∃y . p(x , y) ∧ p(x , z)) → ∃y . p(x , y))

Write F in NNF

F1 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃y . p(x , y)

Rename quantified variables to fresh names

F2 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)
↑ in the scope of ∀x

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 33 / 35

Example: PNF

Move all quantifiers to the front

F3 : ∀x . ∀y . ∃w . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Alternately,

F ′
3 : ∀x . ∃w . ∀y . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Note: In F2, ∀y is in the scope of ∀x , therefore the order of
quantifiers must be · · · ∀x · · · ∀y · · ·

F4 ⇔ F and F ′
4 ⇔ F

Note: However G < F

G : ∀y . ∃w . ∀x . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 34 / 35

Decidability of FOL

FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is
valid, i.e. always halt and says “yes” if F is valid or say “no” if F is
invalid.

FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is valid,
but may not halt if F is invalid.

On the other hand,

PL is decidable
There exists an algorithm for deciding if a PL formula F is valid, e.g.,
the truth-table procedure.

Similarly for satisfiability

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 / 35

	First-Order Logic
	Satisfiability and Validity
	Normal Forms

