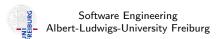
Decision Procedures

Jochen Hoenicke



Summer 2012

Quantifier Elimination (QE) removes quantifiers from formulae:

- Given a formula with quantifiers, e.g., $\exists x. F[x, y, z]$.
- Goal: find an equivalent quantifier-free formula G[y, z].
- The free variables of F and G are the same.

$$\exists x. F[x, y, z] \Leftrightarrow G[y, z]$$

Decide satisfiability for a formula F, e.g. in $T_{\mathbb{Q}}$, using quantifier elimination:

- Given a formula F, with free variable x_1, \ldots, x_n .
- Build $\exists x_1 \dots \exists x_n . F$.
- Build equivalent quantifier free formula G. G contains only constants, functions and predicates i.e. $0, 1, +, -, \geq, =$.
- Compute truth value of *G*.

In developing a QE algorithm for theory T, we need only consider formulae of the form

for quantifier-free F

Example: For Σ -formula

$$G_1$$
: $\exists x$. $\forall y$. $\underbrace{\exists z$. $F_1[x, y, z]}_{F_2[x,y]}$
 G_2 : $\exists x$. $\forall y$. $F_2[x, y]$
 G_3 : $\exists x$. $\neg \underbrace{\exists y$. $\neg F_2[x, y]}_{F_3[x]}$
 G_4 : $\underbrace{\exists x$. $\neg F_3[x]}_{F_4}$
 G_5 : F_4

 G_5 is quantifier-free and T-equivalent to G_1

Syntactic sugar for Rationals

Consider the Signature of Rationals: $\Sigma_{\mathbb{Q}}: \{0, 1, +, -, =, \geq\}$ We extend the signature with the predicate >, which is defined as

$$x > y :\Leftrightarrow x \geq y \land \neg(x = y).$$

Additionally we allow predicates < and \le :

$$x < y :\Leftrightarrow y > x$$
 $x \le y :\Leftrightarrow y \ge x$.

We extend the signature by fractions:

$$\frac{\cdot}{a} \in \Sigma_{\mathbb{Q}} \text{ for } a \in \mathbb{Z}^+$$

which are unary function symbols, with their usual meaning.

Given a $\Sigma_{\mathbb{Q}}$ -formula $\exists x. \ F[x]$, where F[x] is quantifier-free Generate quantifier-free formula F_4 (four steps) s.t.

 F_4 is $\Sigma_{\mathbb{Q}}$ -equivalent to $\exists x. F[x]$.

- Put F[x] in NNF.
- Eliminate negated literals.
- Solve the literals s.t. x appears isolated on one side.
- **4** Finite disjunction $\bigvee_{t \in S_F} F[t]$.

$$\exists x. F[x] \Leftrightarrow \bigvee_{t \in S_F} F[t].$$

where S_F depends on the formula F.

Step 1: Put F[x] in NNF. The result is $\exists x. F_1[x]$.

Step 2: Eliminate negated literals and \geq (left to right)

$$s \ge t \Leftrightarrow s > t \lor s = t$$

 $\neg(s > t) \Leftrightarrow t > s \lor t = s$
 $\neg(s \ge t) \Leftrightarrow t > s$
 $\neg(s = t) \Leftrightarrow t < s \lor t > s$

The result $\exists x. F_2[x]$ does not contain negations.

Solve for x in each atom of $F_2[x]$, e.g.,

$$ax + t_2 < bx + t_1 \qquad \Rightarrow \qquad x < \frac{t_1 - t_2}{a - b}$$

where $a - b \in \mathbb{Z}^+$.

All atoms containing x in the result $\exists x$. $F_3[x]$ have form

- (A) x < t
- (B) t < x
- (C) x = t

where t is a term that does not contain x.

Construct from $F_3[x]$

- left infinite projection $F_3[-\infty]$ by replacing
 - (A) atoms x < t by \top
 - (B) atoms t < x by \perp
 - (C) atoms x = t by \bot
- right infinite projection $F_3[+\infty]$ by replacing
 - (A) atoms x < t by \perp
 - (B) atoms t < x by \top
 - (C) atoms x = t by \perp

Step 4 (Part 2)

Let S be the set of terms t from (A), (B), (C) atoms. Construct the formula

$$F_4: igvee_{t \in S_F} F_3[t], \quad ext{where } S_F:=\{-\infty,\infty\} \cup \left\{rac{s+t}{2} \;\middle|\; s,t \in S
ight\}$$

which is $T_{\mathbb{Q}}$ -equivalent to $\exists x. F[x]$.

- ullet $F_3[-\infty]$ captures the case when small $x\in\mathbb{Q}$ satisfy $F_3[x]$
- ullet $F_3[-\infty]$ captures the case when large $x\in\mathbb{Q}$ satisfy $F_3[x]$
- if $s \equiv t$, $\frac{s+t}{2} = s$ captures the case when $s \in S$ satisfies $F_3[s]$ if s < t are adjacent numbers, $\frac{s+t}{2}$ represents the whole interval (s,t).

Intuition

Four cases are possible:

1 All numbers x smaller than the smallest term satisfy F[x].

$$\leftarrow$$
) $t_1 \ t_2 \cdots t_n$

② All numbers x larger than the largest term satisfy F[x].

$$t_1 \ t_2 \cdots t_n (\longrightarrow$$

3 Some t_i , satisfies F[x].

$$t_1 \quad \cdots \quad t_i \cdots \quad t_n$$

4 On an open interval between two terms every element satisfies F[x].

$$t_1 \cdots t_i (\underset{\frac{t_i+t_{i+1}}{2}}{\longleftrightarrow}) t_{i+1} \cdots t_n$$

Theorem

Let S_F be the set of terms constructed from $F_3[x]$ as in Step 4. Then $\exists x. \ F_3[x] \Leftrightarrow \bigvee_{t \in S_F} F_3[t]$.

Proof of Theorem

 \leftarrow If $\bigvee_{t \in S_F} F_3[t]$ is true, then $F_3[t]$ for some $t \in S_F$ is true.

If $F_3[\frac{s+t}{2}]$ is true, then obviously $\exists x. \ F_3[x]$ is true.

If $F_3[-\infty]$ is true, choose some x < t for all $t \in S$. Then $F_3[x]$ is true.

If $F_3[\infty]$ is true, choose some x > t for all $t \in S$. Then $F_3[x]$ is true.

Correctness of Step 4

 \Rightarrow If $I \models \exists x. F_3[x]$ then there is value v such that

$$I \triangleleft \{x \mapsto v\} \models F_3$$
.

If $v < \alpha_I[t]$ for all $t \in S$, then $I \models F_3[-\infty]$.

If $v > \alpha_I[t]$ for all $t \in S$, then $I \models F_3[\infty]$.

If $v = \alpha_I[t]$ for some $t \in S$, then $I \models F[\frac{t+t}{2}]$.

Otherwise choose largest $s \in S$ with $\alpha_I[s] < v$ and smallest $t \in S$ with $\alpha_I[t] > v$.

Since no atom of F_3 can distinguish between values in interval (s, t), $F_3[v] \Leftrightarrow F_3[\frac{s+t}{2}]$. Hence, $I \models F[\frac{s+t}{2}]$.

In all cases $I \models \bigvee_{t \in S_F} F_3[t]$.

Example

$$\exists x. \ \underbrace{3x+1 < 10 \land 7x - 6 > 7}_{F[x]}$$

Solving for x

$$\exists x. \ \underbrace{x < 3 \land x > \frac{13}{7}}_{F_3[x]}$$

Step 4:

$$F_4: \bigvee_{t \in S_F} \underbrace{\left(t < 3 \land t > \frac{13}{7}\right)}_{F_3[t]}$$

$$S_F = \{-\infty, +\infty, 3, \frac{13}{7}, \frac{3 + \frac{13}{7}}{2}\}.$$

 $F_3[x] = x < 3 \land x > 13/7$

$$F_{-\infty} \Leftrightarrow \top \wedge \bot \Leftrightarrow \bot \qquad F_{+\infty} \Leftrightarrow \bot \wedge \top \Leftrightarrow \bot$$

$$F_{3}[3] \bot \wedge \top \Leftrightarrow \bot \qquad F_{3}\left[\frac{13}{7}\right] \Leftrightarrow \top \wedge \bot \Leftrightarrow \bot$$

$$F_{3}\left[\frac{\frac{13}{7} + 3}{2}\right] : \frac{\frac{13}{7} + 3}{2} < 3 \wedge \frac{\frac{13}{7} + 3}{2} > \frac{13}{7} \Leftrightarrow \top$$

Thus, $F_4: \bigvee_{t \in S_F} F_3[t] \Leftrightarrow \top$ is $T_{\mathbb{Q}}$ -equivalent to $\exists x. \ F[x]$, so $\exists x. \ F[x]$ is $T_{\mathbb{Q}}$ -valid.

Example

$$\exists x. \ \underbrace{2x > y \land 3x < z}_{F[x]}$$

Solving for *x*

$$\exists x. \ \underbrace{x > \frac{y}{2} \land x < \frac{z}{3}}_{F_3[x]}$$

Step 4: $F_{-\infty} \Leftrightarrow \bot$, $F_{+\infty} \Leftrightarrow \bot$, $F_3[\frac{y}{2}] \Leftrightarrow \bot$ and $F_3[\frac{z}{3}] \Leftrightarrow \bot$.

$$F_4: \frac{\frac{y}{2}+\frac{z}{3}}{2} > \frac{y}{2} \wedge \frac{\frac{y}{2}+\frac{z}{3}}{2} < \frac{z}{3}$$

which simplifies to:

$$F_4: 2z > 3y$$

Quantifier Elimination for $T_{\mathbb{Z}}$

$$\Sigma_{\mathbb{Z}}: \ \{\dots,-2,-1,0,\ 1,\ 2,\ \dots,-3\cdot,-2\cdot,2\cdot,\ 3\cdot,\ \dots,\ +,\ -,\ =,\ <\}$$
 Consider the formula

$$F: \exists x. \ 2x = y$$

Which quantifier free formula G[y] is equivalent to F?

There is no such formula!

No QE for $T_{\mathbb{Z}}$

Lemma

Given quantifier-free $\Sigma_{\mathbb{Z}}$ -formula F s.t. free $(F) = \{y\}$. Let $S_F : \{n \in \mathbb{Z} : F\{y \mapsto n\} \text{ is } T_{\mathbb{Z}}\text{-valid}\}$.

Either $\mathbb{Z}^+ \cap S_F$ or $\mathbb{Z}^+ \setminus S_F$ is finite.

where \mathbb{Z}^+ is the set of positive integers

Proof (Structural Induction over *F*)

Base case: F is an atomic formula:

$$\top, \bot, t_1 = t_2, a \cdot y = t, t_1 < t_2, a \cdot y < t.$$

- $\mathbb{Z}^+ \setminus S_\top = \mathbb{Z}^+ \cap S_\perp = \emptyset$ is finite
- $S_{t_1=t_2}$ and $S_{t_1 < t_2}$ are either S_{\top} or S_{\bot} .
- $\mathbb{Z}^+ \cap S_{a \cdot v = t}$, $(a \neq 0)$ has at most one element.
- $\mathbb{Z}^+ \cap S_{a \cdot y < t}$, a > 0 is finite.
- $\mathbb{Z}^+ \setminus S_{a \cdot v < t}$, a < 0 is finite.

No QE for $T_{\mathbb{Z}}$

Lemma

Given quantifier-free $\Sigma_{\mathbb{Z}}$ -formula F s.t. free $(F) = \{y\}$. Let $S_F: \{n \in \mathbb{Z} : F\{y \mapsto n\} \text{ is } T_{\mathbb{Z}}\text{-valid}\}.$

Either $\mathbb{Z}^+ \cap S_F$ or $\mathbb{Z}^+ \setminus S_F$ is finite. where \mathbb{Z}^+ is the set of positive integers

Proof (Structural Induction over F)

Induction step: Assume property holds for F, G. Show it for $\neg F.F \land G.F \lor G.F \rightarrow G.F \leftrightarrow G.$

- $\neg F$: We have $\mathbb{Z}^+ \cap S_{\neg F} = \mathbb{Z}^+ \setminus S$ and $\mathbb{Z}^+ \setminus S_{\neg F} = \mathbb{Z}^+ \cap S$ and by ind.-hyp one of these sets is finite.
- $F \wedge G$: We have $\mathbb{Z}^+ \cap S_{F \wedge G} = (\mathbb{Z}^+ \cap S_F) \cap (\mathbb{Z}^+ \cap S_G)$ and $\mathbb{Z}^+ \setminus S_{F \wedge G} = (\mathbb{Z}^+ \setminus S_F) \cup (\mathbb{Z}^+ \setminus S_G).$ If the latter set is not finite then one of $\mathbb{Z}^+ \cap S_F$ or $\mathbb{Z}^+ \cap S_G$ is finite. In both cases $\mathbb{Z}^+ \cap S_{F \wedge G}$ is finite.

No QE for $T_{\mathbb{Z}}$

Lemma

Given quantifier-free $\Sigma_{\mathbb{Z}}$ -formula F s.t. free $(F)=\{y\}$. Let

 $S_F: \{n \in \mathbb{Z} : F\{y \mapsto n\} \text{ is } T_{\mathbb{Z}}\text{-valid}\}$.

Either $\mathbb{Z}^+ \cap S_F$ or $\mathbb{Z}^+ \setminus S_F$ is finite.

where \mathbb{Z}^+ is the set of positive integers

Proof (Structural Induction over *F*)

Induction step: Assume property holds for F, G. Show it for $\neg F, F \land G, F \lor G, F \to G, F \leftrightarrow G$.

- $F \lor G$ follows from previous, since $S_{F \lor G} = S_{\neg (\neg F \land \neg G)}$.
- $F \to G$ follows from $S_{F \to G} = S_{(\neg F \lor G)}$.
- $F \leftrightarrow G$ follows from $S_{F \leftrightarrow G} = S_{(F \to G) \land (G \to F)}$.

Lemma

Given quantifier-free $\Sigma_{\mathbb{Z}}$ -formula F s.t. free $(F) = \{y\}$. Let

$$S_F: \{n \in \mathbb{Z} : F\{y \mapsto n\} \text{ is } T_{\mathbb{Z}}\text{-valid}\}$$
.

Either $\mathbb{Z}^+ \cap S_F$ or $\mathbb{Z}^+ \setminus S_F$ is finite.

where \mathbb{Z}^+ is the set of positive integers

$$\Sigma_{\mathbb{Z}}$$
-formula $F: \exists x. \ 2x = y \text{ (with quantifier)}$

 S_F : even integers

 $\mathbb{Z}^+ \cap S_F$: positive even integers — infinite

 $\mathbb{Z}^+ \setminus S_F$: positive odd integers — infinite

Therefore, by the lemma, there is no quantifier-free $T_{\mathbb{Z}}$ -formula that is $T_{\mathbb{Z}}$ -equivalent to F.

Thus, $T_{\mathbb{Z}}$ does not admit QE.

Augmented theory $\widehat{T}_{\mathbb{Z}}$

 $\widehat{\Sigma_{\mathbb{Z}}}{:}\ \Sigma_{\mathbb{Z}}$ with countable number of unary divisibility predicates

$$\Sigma_{\mathbb{Z}} \cup \{1|\cdot,2|\cdot,3|\cdot,\dots\}$$

Intended interpretations:

 $k \mid x$ holds iff k divides x without any remainder

Axioms of $\widehat{T}_{\mathbb{Z}}$: axioms of $T_{\mathbb{Z}}$ with additional countable set of axioms

$$\forall x. \ k \mid x \leftrightarrow \exists y. \ x = ky \quad \text{for } k \in \mathbb{Z}^+$$

Example:

$$x > 1 \wedge y > 1 \wedge 2 \mid x + y$$

is satisfiable (choose x = 2, y = 2).

$$\neg (2 \mid x) \land 4 \mid x$$

is not satisfiable.

Algorithm: Given $\widehat{\Sigma}_{\mathbb{Z}}$ -formula $\exists x. \ F[x]$, where F is quantifier-free Construct quantifier-free $\widehat{\Sigma}_{\mathbb{Z}}$ -formula that is equivalent to $\exists x. \ F[x]$.

- Put F[x] into Negation Normal Form (NNF).
- ② Normalize literals: s < t, k|t, or $\neg(k|t)$.
- 1 Put x in s < t on one side: hx < t or s < hx.
- **9** Replace hx with x' without a factor.
- **Solution** Replace F[x'] by $\bigvee F[j]$ for finitely many j.

Put F[x] in NNF $F_1[x]$, that is, $\exists x. \ F_1[x]$ has negations only in literals (only \land , \lor) and $\widehat{T}_{\mathbb{Z}}$ -equivalent to $\exists x. \ F[x]$

Example:

$$\exists x. \ \neg (x-6 < z-x \land 4 \mid 5x+1 \to 3x < y)$$
 is equivalent to

$$\exists x. \ \neg(3x < y) \land x - 6 < z - x \land 4 \mid 5x + 1$$

Replace (left to right)

$$egin{array}{lll} s = t &\Leftrightarrow& s < t+1 \wedge t < s+1 \ \lnot(s = t) &\Leftrightarrow& s < t ee t < s \ \lnot(s < t) &\Leftrightarrow& t < s+1 \end{array}$$

The output $\exists x. F_2[x]$ contains only literals of form

$$s < t$$
, $k \mid t$, or $\neg(k \mid t)$,

where s, t are $\widehat{T}_{\mathbb{Z}}$ -terms and $k \in \mathbb{Z}^+$.

Example:

$$\exists x. \ \neg (3x < y) \land x - 6 < z - x \land 4 \mid 5x + 1$$
 is equivalent to

$$\exists x. \ y < 3x + 1 \land x - 6 < z - x \land 4 \mid 5x + 1$$

Collect terms containing x so that literals have the form

$$hx < t$$
, $t < hx$, $k \mid hx + t$, or $\neg(k \mid hx + t)$,

where t is a term and $h, k \in \mathbb{Z}^+$. The output is the formula $\exists x. F_3[x]$, which is $\widehat{T}_{\mathbb{Z}}$ -equivalent to $\exists x. F[x]$.

Example:

$$\exists x. \ y < 3x + 1 \land x - 6 < z - x \land 4 \mid 5x + 1$$
 is equivalent to

$$\exists x. \ y - 1 < 3x \land 2x < z + 6 \land 4 \mid 5x + 1$$

Cooper's Method: Step 4

Let

$$\delta = \text{lcm}\{h : h \text{ is a coefficient of } x \text{ in } F_3[x]\}\ ,$$

where lcm is the least common multiple. Multiply atoms in $F_3[x]$ by constants so that δ is the coefficient of x everywhere:

The result $\exists x. F_3'[x]$, in which all occurrences of x in $F_3'[x]$ are in terms δx .

Replace δx terms in F_3' with a fresh variable x' to form

$$F_3''$$
: $F_3\{\delta x \mapsto x'\}$

Finally, construct

$$\exists x'. \ \underbrace{F_3''[x'] \land \delta \mid x'}_{F_4[x']}$$

 $\exists x'. F_4[x']$ is equivalent to $\exists x. F[x]$ and each literal of $F_4[x']$ has one of the forms:

- (A) x' < t
- (B) t < x'
- (C) $k \mid x' + t$
- (D) $\neg (k \mid x' + t)$

where t is a term that does not contain x, and $k \in \mathbb{Z}^+$.

Cooper's Method: Step 4 (Example)

Example: $\widehat{T}_{\mathbb{Z}}$ -formula

ole:
$$I_{\mathbb{Z}}$$
-formula

$$\exists x. \ \underbrace{2x < z + 6 \land y - 1 < 3x \land 4 \mid 5x + 1}_{F_3[x]}$$

Collecting coefficients of x:

$$\delta = \text{lcm}(2, 3, 5) = 30$$

Multiply when necessary

$$\exists x. \ 30x < 15z + 90 \land 10y - 10 < 30x \land 24 \mid 30x + 6$$

Replacing 30x with fresh x'

$$\exists x'. \ \underline{x' < 15z + 90 \ \land \ 10y - 10 < x' \ \land \ 24 \mid x' + 6 \ \land \ 30 \mid x'}$$

 $\exists x'. \ F_4[x']$ is equivalent to $\exists x. \ F_3[x]$

 $\exists x'. F_4[x']$ is equivalent to $\exists x. F[x]$ and each literal of $F_4[x']$ has one of the forms:

- (A) x' < t
- (B) t < x'
- (C) k | x' + t
- (D) $\neg (k \mid x' + t)$

where t is a term that does not contain x, and $k \in \mathbb{Z}^+$.

Cooper's Method: Step 5

Construct

left infinite projection $F_{-\infty}[x']$

of $F_4[x']$ by

- (A) replacing literals x' < t by \top
- (B) replacing literals t < x' by \bot

idea: very small numbers satisfy (A) literals but not (B) literals

Let

$$\delta = \operatorname{lcm} \left\{ \begin{array}{l} k \text{ of (C) literals } k \mid x' + t \\ k \text{ of (D) literals } \neg (k \mid x' + t) \end{array} \right\}$$

and B be the set of terms t appearing in (B) literals. Construct

$$F_5: \bigvee_{j=1}^{\delta} F_{-\infty}[j] \vee \bigvee_{j=1}^{\delta} \bigvee_{t \in B} F_4[t+j].$$

 F_5 is quantifier-free and $\widehat{T}_{\mathbb{Z}}$ -equivalent to F.

Cooper's Method: Step 5 (Example)

$$\exists x'. \ \underline{x' < 15z + 90 \land 10y - 10 < x' \land 24 \,|\, x' + 6 \land 30 \,|\, x'}_{F_4[x']}$$

Compute lcm: $\delta = lcm(24, 30) = 120$ Then

$$F_{5} = \bigvee_{j=1}^{120} \top \wedge \bot \wedge 24 | j + 6 \wedge 30 | j$$

$$\vee \bigvee_{j=1}^{120} 10y - 10 + j < 15z + 90 \wedge 10y - 10 < 10y - 10 + j$$

$$\wedge 24 | 10y - 10 + j + 6 \wedge 30 | 10y - 10 + j$$

The formula can be simplified to:

$$F_5 = \bigvee_{j=1}^{120} 10y - 10 + j < 15z + 90 \land 24 | 10y - 10 + j + 6 \land 30 | 10y - 10 + j$$

Theorem

Let F_5 be the formula constructed from $\exists x'$. $F_4[x']$ as in Step 5. Then $\exists x'$. $F_4[x'] \Leftrightarrow F_5$.

Lemma[Periodicity]: For all atoms $k \mid x' + t$ in F_4 , we have $k \mid \delta$. Therefore, $k \mid x' + t$ iff $k \mid x' + \lambda \delta + t$ for all $\lambda \in \mathbb{Z}$.

Proof of Theorem

 $= \text{ If } F_5 \text{ is true, there are two cases: } F_{-\infty}[j] \text{ is true or } F_4[t+j] \text{ is true.}$ If $F_4[t+j]$ is true, than obviously $\exists x'. \ F_4[x']$ is true. If $F_{-\infty}[j]$ is true, then (due to periodicity) $F_{-\infty}[j+\lambda\cdot\delta]$ is true. If $\lambda < t-1$ for all $t\in A\cup B$, then $j+\lambda\cdot\delta < \delta+(t-1)\delta=\delta t \leq t$. Thus,

$$F_{-\infty}[j + \lambda \cdot \delta] \Leftrightarrow F_4[j + \lambda \cdot \delta] \Rightarrow \exists x'. F_4[x'].$$

 \Rightarrow Assume for some x', $F_4[x']$ is true. If $\neg(t < x')$ for all $t \in B$, then choose $j_{x'} \in \{1, \dots, \delta\}$ such that $\delta \mid (j_{x'} - x')$. $j_{x'}$ will satisfy all (C) and (D) literals that x' satisfies. x' does not satisfy any (B) literal. Therefore if $F_4[x']$ is true, $F_{-\infty}[j]$ must be true. Therefore F_5 is true. If t < x' for some $t \in B$, then let

$$t_{x'} = \max\{t \in B | t < x'\}$$

and choose $j_{x'} \in \{1, \dots, \delta\}$ such that $\delta \mid (t_{x'} + j_{x'} - x')$. We claim that $F_4[t_{x'} + j_{x'}]$ is true.

Since $x' = t_{x'} + j_{x'} + \lambda \delta$, x' and $t_{x'} + j_{x'}$ satisfy the same (C) and (D) literals (due to periodicity).

Since $t_{x'} + j_{x'} > t_{x'} = \max\{t \in B | t < x'\}$, $t_{x'} + j_{x'}$ satisfies all (B) literals that are satisfied by x'.

Since $t_{x'} < x' = t_{x'} + j_{x'} + \lambda \delta \le t_{x'} + (\lambda + 1)\delta$, we conclude that $\lambda \ge 0$. Hence, $x' \ge t_{x'} + j_{x'}$ and $t_{x'} + j_{x'}$ satisfies all (A) literals satisfied by x'.

Thus $F_4[t_x + j_x']$ is true. Therefore, F_5 is true.

Construct

left infinite projection $F_{-\infty}[x']$

of $F_4[x']$ by

- (A) replacing literals x' < t by \top
- (B) replacing literals t < x' by \bot

Let

$$\delta = \operatorname{lcm} \left\{ \begin{array}{l} k \text{ of (C) literals } k \mid x' + t \\ k \text{ of (D) literals } \neg (k \mid x' + t) \end{array} \right\}$$

and B be the set of terms t appearing in (B) literals. Construct

$$F_5: \bigvee_{j=1}^{\delta} F_{-\infty}[j] \vee \bigvee_{j=1}^{\delta} \bigvee_{t \in B} F_4[t+j].$$

 F_5 is quantifier-free and $\widehat{T}_{\mathbb{Z}}$ -equivalent to F.

Symmetric Elimination

In step 5, if there are fewer

(A) literals x' < t

than

(B) literals t < x'.

Construct the <u>right infinite projection</u> $F_{+\infty}[x']$ from $F_4[x']$ by replacing each (A) literal x' < t by \bot and each (B) literal t < x' by \top .

Then right elimination.

$$F_5: \bigvee_{j=1}^{\delta} F_{+\infty}[-j] \vee \bigvee_{j=1}^{\delta} \bigvee_{t \in A} F_4[t-j].$$

Symmetric Elimination (Example)

$$\exists x'. \ \underline{x' < 15z + 90 \land 10y - 10 < x' \land 24 \,|\, x' + 6 \land 30 \,|\, x'}$$

Compute lcm: $\delta = lcm(24, 30) = 120$ Then

$$F_{5} = \bigvee_{j=1}^{120} \bot \land \top \land 24 \mid -j + 6 \land 30 \mid -j$$

$$\lor \bigvee_{j=1}^{120} 15z + 90 - j < 15z + 90 \land 10y - 10 < 15z + 90 - j$$

$$\land 24 \mid 15z + 90 - j + 6 \land 30 \mid 15z + 90 - j$$

The formula can be simplified to:

$$F_5 = \bigvee_{i=1}^{120} 10y - 10 < 15z + 90 - j \land 24 \mid 15z + 90 - j + 6 \land 30 \mid 15z + 90 - j$$

Example

$$\underbrace{\exists x. \ (3x+1 < 10 \lor 7x - 6 > 7) \land 2 \mid x}_{F[x]}$$

Isolate x terms

$$\exists x. (3x < 9 \lor 13 < 7x) \land 2 \mid x$$
,

SO

$$\delta = \operatorname{lcm}\{3,7\} = 21 .$$

After multiplying coefficients by proper constants,

$$\exists x. (21x < 63 \lor 39 < 21x) \land 42 \mid 21x$$
,

we replace 21x by x':

$$\exists x'. \ \underbrace{(x' < 63 \lor 39 < x') \land 42 \mid x' \land 21 \mid x'}_{F_4[x']}.$$

Then

$$F_{-\infty}[x']$$
: $(\top \lor \bot) \land 42 \mid x' \land 21 \mid x'$,

or, simplifying,

$$F_{-\infty}[x']$$
 : 42 | $x' \wedge 21 | x'$.

Finally,

$$\delta = \text{lcm}\{21,42\} = 42 \text{ and } B = \{39\} \; ,$$

SO

$$\bigvee_{i=1}^{42} (42 \mid j \land 21 \mid j) \lor$$

$$F_5: \bigvee_{i=1}^{42} ((39+j < 63 \lor 39 < 39+j) \land 42 \mid 39+j \land 21 \mid 39+j).$$

Since 42 | 42 and 21 | 42, the left main disjunct simplifies to \top , so that F is $\widehat{T}_{\mathbb{Z}}$ -equivalent to \top . Thus, F is $\widehat{T}_{\mathbb{Z}}$ -valid.

Quantifier elimination decides validity/satisfiable quantified formulae.

Can also be used for quantifier free formulae:

To decide satisfiability of $F[x_1,...,x_n]$, apply QE on $\exists x_1,...,x_n$. $F[x_1,...,x_n]$.

But high complexity (doubly exponential for $T_{\mathbb{Q}}$).

Therefore, we are looking for a fast procedure.