Decision Procedures

Jochen Hoenicke

Software Engineering Albert-Ludwigs-University Freiburg

Summer 2012

Theory of Arrays

Arrays: Quantifier-free Fragment of T_A

$$\Sigma_A \ : \ \{\cdot [\cdot], \ \cdot \langle \cdot \triangleleft \cdot \rangle, \ = \} \ ,$$

where

- a[i] is a binary function representing read of array a at index i;
- $a\langle i \triangleleft v \rangle$ is a ternary function representing write of value v to index i of array a;
- \bullet = is a binary predicate. It is not used on arrays.

Axioms of T_{Δ} :

• axioms of (reflexivity), (symmetry), and (transitivity) of $T_{\rm F}$

$$\forall a, v, i, j. i \neq j \rightarrow a \langle i \triangleleft v \rangle [j] = a[j]$$

(read-over-write 1)

(read-over-write 2)

Given quantifier-free conjunctive Σ_A -formula F. To decide the T_A -satisfiability of F:

Step 1

For every read-over-write term $a\langle i \triangleleft v \rangle [j]$ in *F*, replace *F* with the formula

$$(i = j \land F\{a\langle i \triangleleft v\rangle[j] \mapsto v\}) \lor (i \neq j \land F\{a\langle i \triangleleft v\rangle[j] \mapsto a[j]\})$$

Repeat until there are no more read-over-write terms.

FREIBURG

Step 2

Associate array variables *a* with fresh function symbol f_a . Replace read terms a[i] with $f_a(i)$.

Step 3

Now F is a T_E -Formula. Decide T_E -satisfiability using the congruence-closure algorithm for each of the disjuncts produced in Step 1.

Example: Consider Σ_A -formula

$$\mathsf{F}: \; i_1 = j \land i_1 \neq i_2 \land \mathsf{a}[j] = \mathsf{v}_1 \land \mathsf{a}\langle i_1 \triangleleft \mathsf{v}_1 \rangle \langle i_2 \triangleleft \mathsf{v}_2 \rangle [j] \neq \mathsf{a}[j] \; ,$$

F contains a read-over-write term,

$$a\langle i_1 \triangleleft v_1 \rangle \langle i_2 \triangleleft v_2 \rangle [j] \neq a[j]$$
.

Rewrite it to $F_1 \vee F_2$ with:

$$\begin{aligned} F_1 &: i_2 = j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land v_2 \neq a[j] , \\ F_2 &: i_2 \neq j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land a\langle i_1 \triangleleft v_1 \rangle [j] \neq a[j] . \end{aligned}$$

 F_1 does not contain any write terms, so rewrite it to

$$F_1': i_2 = j \wedge i_1 = j \wedge i_1 \neq i_2 \wedge f_a(j) = v_1 \wedge v_2 \neq f_a(j)$$
.

The first two literals imply that $i_1 = i_2$, contradicting the third literal, so F'_1 is T_E -unsatisfiable.

Jochen Hoenicke (Software Engineering)

Now, we try the second case (F_2) :

 F_2 contains the read-over-write term $a\langle i_1 \triangleleft v_1 \rangle [j]$. Rewrite it to $F_3 \lor F_4$ with

 $\begin{aligned} F_3 &: i_1 = j \land i_2 \neq j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land v_1 \neq a[j] , \\ F_4 &: i_1 \neq j \land i_2 \neq j \land i_1 = j \land i_1 \neq i_2 \land a[j] = v_1 \land a[j] \neq a[j] . \end{aligned}$

Rewrite the array reads to

$$\begin{array}{l} F_3':i_1=j\wedge i_2\neq j\wedge i_1=j\wedge i_1\neq i_2\wedge f_a(j)=v_1\wedge v_1\neq f_a(j)\,,\\ F_4':i_1\neq j\wedge i_2\neq j\wedge i_1=j\wedge i_1\neq i_2\wedge f_a(j)=v_1\wedge f_a(j)\neq f_a(j)\,. \end{array}$$

In F'_3 there is a contradiction because of the final two terms. In F'_4 , there are two contradictions: the first and third literals contradict each other, and the final literal is contradictory. Since F is equisatisfiable to $F'_1 \vee F'_3 \vee F'_4$, F is T_A -unsatisfiable.

Suppose instead that F does not contain the literal $i_1 \neq i_2$. Is this new formula T_A -satisfiable?

Complexity of Decision Procedure for T_A

Our algorithm has a big disadvantage. Step 1 doubles the size of the formula:

$$(i = j \land F\{a\langle i \triangleleft v\rangle[j] \mapsto v\}) \lor (i \neq j \land F\{a\langle i \triangleleft v\rangle[j] \mapsto a[j]\})$$

This can be avoided by introducing fresh variables x_{aijv} :

$$F\{a\langle i \triangleleft v\rangle[j] \mapsto x_{aijv}\} \land$$
$$((i = j \land x_{aijv} = v) \lor (i \neq j \land x_{aijv} = a[j]))$$

However, this is not in the conjunctive fragment of T_E .

There is no way around:

The conjunctive fragment of T_A is NP-complete.

Arrays and Quantifiers

In programming languages, one often needs to express the following concepts:

• Containment contains(a, l, u, e): the array a contains element e at some index between l and u.

$$\exists i.\ell \leq i \leq u \land a[i] = e$$

Sortedness sorted(a, ℓ, u): the array a is sorted between index ℓ and index u.

$$\forall i, j. \ell \leq i \leq j \leq u \implies a[i] \leq a[j]$$

Partitioning partition(a, l₁, u₁, l₂, u₂): The array elements between l₁ and u₁ are smaller than all elements between l₂ and u₂.

$$\forall i, j. \ell_1 \leq i \leq u_1 \land \ell_2 \leq j \leq u_2 \implies a[i] \leq a[j]$$

These concepts can only be expressed as first-order formulae with quantifiers.

However: the general theory of arrays T_A with quantifier is not decidable.

Is there a decidable fragment of T_A that contains the above formulae?

Example

We want to prove validity for a formula, such as:

 $\neg contains(a, \ell, u, e) \land e \neq f \rightarrow \neg contains(a\langle j \triangleleft f \rangle, \ell, u, e)$

$$\neg (\exists i.\ell \leq i \leq u \land a[i] = e) \land e \neq f \rightarrow \neg (\exists i.\ell \leq i \leq u \land a\langle j \triangleleft f \rangle [i] \neq e)$$

Check satisfiability of negated formula:

$$\neg (\exists i.\ell \leq i \leq u \land a[i] = e) \land e \neq f \land (\exists i.\ell \leq i \leq u \land a\langle j \triangleleft f\rangle[i] \neq e).$$

Negation Normal Form:

 $(\forall i.\ell > i \lor i > u \lor a[i] \neq e) \land e \neq f \land (\exists i.\ell \le i \land i \le u \land a \langle j \triangleleft f \rangle [i] = e).$

or the equisatisfiable formula

 $\forall i.\ell > i \lor i > u \lor a[i] \neq e \land e \neq f \land \ell \leq i_2 \land i_2 \leq u \land a \langle j \triangleleft f \rangle [i_2] = e.$

We need to handle satisfiability for universal quantifiers.

Jochen Hoenicke (Software Engineering)

Decision Procedures

Array Property Fragment of T_A

Decidable fragment of \mathcal{T}_A that includes \forall quantifiers

Array property

 $\Sigma_A\text{-}\text{formula}$ of form

$$\forall \overline{i}. \ F[\overline{i}]
ightarrow G[\overline{i}]$$
 ,

where \overline{i} is a list of variables.

• index guard $F[\overline{i}]$:

 $\begin{array}{rrrr} \mathsf{iguard} & \to & \mathsf{iguard} \land \mathsf{iguard} \mid \mathsf{iguard} \lor \mathsf{iguard} \mid \mathsf{atom} \\ \mathsf{atom} & \to & \mathsf{var} = \mathsf{var} \mid \mathsf{evar} \neq \mathsf{var} \mid \mathsf{var} \neq \mathsf{evar} \mid \top \\ \mathsf{var} & \to & \mathsf{evar} \mid \mathsf{uvar} \end{array}$

where *uvar* is any universally quantified index variable, and *evar* is any constant or unquantified variable.

• value constraint $G[\overline{i}]$: a universally quantified index can occur in a value constraint $G[\overline{i}]$ only in a read a[i], where a is an array term. The read cannot be nested; for example, a[b[i]] is not allowed.

Array property Fragment: Boolean combinations of quantifier-free T_A -formulae and array properties

Jochen Hoenicke (Software Engineering)

Example: Array Property Fragment

Is this formula in the array property fragment?

$$F : \forall i. i \neq a[k] \rightarrow a[i] = a[k]$$

The antecedent is not a legal index guard since a[k] is not a variable (neither a *uvar* nor an *evar*); however, by simple manipulation

$$F': v = a[k] \land \forall i. i \neq v \rightarrow a[i] = a[k]$$

Here, $i \neq v$ is a legal index guard, and a[i] = a[k] is a legal value constraint. F and F' are equisatisfiable. This trick works for every term that does not contain a uvar. However, no manipulation works for:

$$G : \forall i. i \neq a[i] \rightarrow a[i] = a[k]$$
.

Thus, G is not in the array property fragment.

Is this formula in the array property fragment?

$$F'$$
: $\forall ij. i \neq j \rightarrow a[i] \neq a[j]$

No, the term uvar \neq uvar is not allowed in the index guard. There is no workaround.

Remark: Array property fragment allows expressing equality between arrays (extensionality): two arrays are equal precisely when their corresponding elements are equal.

For given formula

$$F: \cdots \wedge a = b \wedge \cdots$$

with array terms a and b, rewrite F as

$$F': \cdots \wedge (\forall i. \top \rightarrow a[i] = b[i]) \wedge \cdots$$

F and F' are equisatisfiable. F' is in array property fragment of T_A .

FREIBURG

Basic Idea: Similar to quantifier elimination.

Replace universal quantification

 $\forall i.F[i]$

by finite conjunction

 $F[t_1] \wedge \ldots \wedge F[t_n].$

We call t_1, \ldots, t_n the index terms and they depend on the formula.

Example

FREIBURG

Consider

$$F: a\langle i \triangleleft v \rangle = a \land a[i] \neq v ,$$

which expands to

$$F'$$
: $\forall j. a \langle i \triangleleft v \rangle [j] = a[j] \land a[i] \neq v$.

Intuitively, only the index i is important:

$${\sf F}'': \left(igwedge_{j\in\{i\}} {\sf a}\langle i \triangleleft {\sf v}
angle [j] = {\sf a}[j]
ight) \wedge {\sf a}[i]
eq {\sf v} \; ,$$

or simply

$$a\langle i \triangleleft v \rangle [i] = a[i] \wedge a[i] \neq v$$
.

Simplifying,

$$v = a[i] \wedge a[i]
eq v ,$$

it is clear that this formula, and thus F, is T_A -unsatisfiable.

Decision Procedure for Array Property Fragment

UNI FREIBURG Given array property formula F, decide its T_A -satisfiability by the following steps:

Step 1

Put F in NNF, but do not rewrite inside a quantifier.

Step 2

Apply the following rule exhaustively to remove writes:

$$\frac{F[a\langle i \triangleleft v \rangle]}{F[a'] \land a'[i] = v \land (\forall j. \ j \neq i \rightarrow a[j] = a'[j])} \text{ for fresh } a' \quad (\text{write})$$

After an application of the rule, the resulting formula contains at least one fewer write terms than the given formula.

Step 3

Apply the following rule exhaustively to remove existential quantification:

$$\frac{F[\exists \bar{i}. \ G[\bar{i}]]}{F[G[\bar{j}]]} \text{ for fresh } \bar{j} \quad (\text{exists})$$

Existential quantification can arise during Step 1 if the given formula has a negated array property.

Steps 4-6 accomplish the reduction of universal quantification to finite conjunction.

Main idea: select a set of symbolic index terms on which to instantiate all universal quantifiers. The set is sufficient for correctness.

Step 4

From the output F_3 of Step 3, construct the **index set** \mathcal{I} :

$$\begin{array}{rcl} \{\lambda\} \\ \mathcal{I} &=& \cup \{t : \cdot [t] \in F_3 \text{ such that } t \text{ is not a universally quantified variable} \} \\ & \cup \{t : t \text{ occurs as an } evar \text{ in the parsing of index guards} \end{array}$$

This index set is the finite set of indices that need to be examined. It includes

- all terms t that occur in some read a[t] anywhere in F (unless it is a universally quantified variable)
- all terms *t* (constant or unquantified variable) that are compared to a universally quantified variable in some index guard.
- λ is a fresh constant that represents all other index positions that are not explicitly in \mathcal{I} .

Step 5 (Key step)

Apply the following rule exhaustively to remove universal quantification:

$$\frac{H[\forall \bar{i}. F[\bar{i}] \to G[\bar{i}]]}{H\left[\bigwedge_{\bar{i} \in \mathcal{I}^n} \left(F[\bar{i}] \to G[\bar{i}]\right)\right]} \quad \text{(forall)}$$

where *n* is the number of quantified variables i.

Step 6

From the output F_5 of Step 5, construct

$$F_6$$
: $F_5 \wedge \bigwedge_{i \in \mathcal{I} \setminus \{\lambda\}} \lambda \neq i$.

The new conjuncts assert that the variable λ introduced in Step 4 is indeed unique.

Step 7

Decide the T_A -satisfiability of F_6 using the decision procedure for the quantifier-free fragment.

Jochen Hoenicke (Software Engineering)

Example

UNI FREIBURG

Is this $T_A^=$ -formula valid?

 $F : (\forall i. i \neq k \rightarrow a[i] = b[i]) \land b[k] = v \rightarrow a \langle k \triangleleft v \rangle = b$

Check satisfiability of:

 $\neg((\forall i. i \neq k \rightarrow a[i] = b[i]) \land b[k] = v \rightarrow (\forall i. a \langle k \triangleleft v \rangle[i] = b[i]))$

Step 1: NNF

 $F_1: (\forall i. i \neq k \rightarrow a[i] = b[i]) \land b[k] = v \land (\exists i. a \langle k \triangleleft v \rangle[i] \neq b[i])$ Step 2: Remove array writes

$$F_2 : (\forall i. i \neq k \rightarrow a[i] = b[i]) \land b[k] = v \land (\exists i. a'[i] \neq b[i]) \\ \land a'[k] = v \land (\forall i. i \neq k \rightarrow a'[i] = a[i])$$

Step 3: Remove existential quantifier

$$F_3: (\forall i. i \neq k \rightarrow a[i] = b[i]) \land b[k] = v \land a'[j] \neq b[j]$$

$$\land a'[k] = v \land (\forall i. i \neq k \rightarrow a'[i] = a[i])$$

Jochen Hoenicke (Software Engineering)

Decision Procedures

Example (cont)

Step 4: Compute index set $\mathcal{I} = \{\lambda, k, j\}$ **Step 5+6**: Replace universal quantifier:

$$F_{6} : (\lambda \neq k \rightarrow a[\lambda] = b[\lambda])$$

$$\land (k \neq k \rightarrow a[k] = b[k])$$

$$\land (j \neq k \rightarrow a[j] = b[j])$$

$$\land b[k] = v \land a'[j] \neq b[j] \land a'[k] = v$$

$$\land (\lambda \neq k \rightarrow a'[\lambda] = a[\lambda])$$

$$\land (k \neq k \rightarrow a'[k] = a[k])$$

$$\land (j \neq k \rightarrow a'[j] = a[j])$$

$$\land \lambda \neq k \land \lambda \neq j$$

Case distinction on j = k proves unsatisfiability of F_6 . Therefore F is valid

Jochen Hoenicke (Software Engineering)

The importance of λ

Is this formula satisfiable?

$$F : (\forall i.i \neq j \rightarrow a[i] = b[i]) \land (\forall i.i \neq k \rightarrow a[i] \neq b[i])$$

The algorithm produces:

$$F_{6} : \lambda \neq j \rightarrow a[\lambda] = b[\lambda]$$

$$\land j \neq j \rightarrow a[j] = b[j]$$

$$\land k \neq j \rightarrow a[k] = b[k]$$

$$\land \lambda \neq k \rightarrow a[\lambda] \neq b[\lambda]$$

$$\land j \neq k \rightarrow a[j] \neq b[j]$$

$$\land k \neq k \rightarrow a[k] \neq b[k]$$

$$\land \lambda \neq j \land \lambda \neq k$$

The first, fourth and last line give a contradiction!

UNI FREIBURG Without λ we had the formula:

$$F'_{6} : j \neq j \rightarrow a[j] = b[j]$$

$$\land k \neq j \rightarrow a[k] = b[k]$$

$$\land j \neq k \rightarrow a[j] \neq b[j]$$

$$\land k \neq k \rightarrow a[k] \neq b[k]$$

which simplifies to:

$$j \neq k \rightarrow a[k] = b[k] \wedge a[j] \neq b[j].$$

This formula is satisfiable!

UNI FREIBURG

Theorem

Consider a Σ_A -formula F from the array property fragment of T_A . The output F_6 of Step 6 of the algorithm is T_A -equisatisfiable to F.

This also works when extending the Logic with an arbitrary theory T with signature Σ for the elements:

Theorem

Consider a $\Sigma_A \cup \Sigma$ -formula F from the array property fragment of $T_A \cup T$. The output F_6 of Step 6 of the algorithm is $T_A \cup T$ -equisatisfiable to F.

Proof of Theorem

Proof: It is easy to see that steps 1–3 do not change the satisfiability of formula.

For step 4–6 we need to show:

(1)
$$H[\forall \overline{i}. (F[\overline{i}] \rightarrow G[\overline{i}])]$$
 is satisfiable
iff.
(2) $H[\bigwedge_{\overline{i} \in \mathcal{I}^n} (F[\overline{i}] \rightarrow G[\overline{i}])] \land \bigwedge_{i \in \mathcal{I} \setminus \{\lambda\}} \lambda \neq i$ is satisfiable.

If the formula (1) is satisfied some Interpretation, then (2) holds in the same interpretation.

UNI FREIBURG

Proof of Theorem (cont)

If the formula (2) holds in some interpretation I, we construct an interpretation J as follows:

$$proj_{\mathcal{I}}(j) = \begin{cases} i & \text{if } i \in \mathcal{I} \land \alpha_{I}[j] = \alpha_{I}[i] \\ \lambda & \text{otherwise} \end{cases}$$
$$\alpha_{J}[a[j]] = \alpha_{I}[a[proj_{\mathcal{I}}(j)]]$$
$$\alpha_{J}[x] = \alpha_{I}[x] \text{ for every non-array variable and constant}$$

J interprets the symbols occuring in formula (2) in the same way as I. Therefore, (2) holds in J.

To prove that formula (1) holds in J, it suffices to show:

$$J \models \bigwedge_{\overline{i} \in \mathcal{I}^n} (F[\overline{i}] \to G[\overline{i}]) \text{ implies } J \models \forall \overline{i}. \ (F[\overline{i}] \to G[\overline{i}])$$

Proof of Theorem (cont)

Assume $J \models \bigwedge_{\bar{i} \in \mathcal{I}^n} (F[\bar{i}] \to G[\bar{i}])$. Show: $F[\bar{i}] \to F[proj_{\mathcal{I}}(\bar{i})] \to G[proj_{\mathcal{I}}(\bar{i})] \to G[\bar{i}]$

The first implication $F[\overline{i}] \rightarrow F[proj_{\mathcal{I}}(\overline{i})]$ can be shown by structural induction over F. Base cases:

• $var_1 = var_2 \rightarrow proj_{\mathcal{I}}(var_1) = proj_{\mathcal{I}}(var_2)$: trivial.

•
$$evar_1 \neq var_2 \rightarrow proj_{\mathcal{I}}(evar_1) \neq proj_{\mathcal{I}}(var_2)$$
:
By definition of \mathcal{I} : $evar_1 \in \mathcal{I} \setminus \{\lambda\}$.
If $evar_1 = proj_{\mathcal{I}}(evar_1) = proj_{\mathcal{I}}(var_2)$, then $var_2 \in \mathcal{I} \setminus \{\lambda\}$, hence
 $evar_1 = proj_{\mathcal{I}}(var_2) = var_2$

• $var_1 \neq evar_2$ analogously.

The induction step is trivial.

The second implication $F[proj_{\mathcal{I}}(\bar{i})] \rightarrow G[proj_{\mathcal{I}}(\bar{i})]$ holds by assumption. The third implication $G[proj_{\mathcal{I}}(\bar{i})] \implies G[\bar{i}]$ holds because G contains variables i only in array reads a[i]. By definition of J: $\alpha_J[a[i]] = \alpha_J[a[proj_{\mathcal{I}}(i)]].$

REIBURG

Theory of Integer-Indexed Arrays

 \leq enables reasoning about subarrays and properties such as subarray is sorted or partitioned.

signature of ${\mathcal T}_A^{\mathbb Z} {:}\ \Sigma_A^{\mathbb Z} \,=\, \Sigma_A \,\cup\, \Sigma_{\mathbb Z}$

axioms of $T_A^{\mathbb{Z}}$: both axioms of T_A and $T_{\mathbb{Z}}$

Array Property Fragment of $T_A^{\mathbb{Z}}$

Array property: $\Sigma_A^{\mathbb{Z}}$ -formula of the form $\forall \overline{i}. \ F[\overline{i}] \rightarrow G[\overline{i}] ,$

where \overline{i} is a list of integer variables.

• $F[\overline{i}]$ index guard:

 $\mathsf{iguard} \quad \rightarrow \quad \mathsf{iguard} \ \land \ \mathsf{iguard} \ \mid \mathsf{iguard} \ \lor \ \mathsf{iguard} \ \mid \mathsf{atom}$

- $\mathsf{atom} \ \ \rightarrow \ \ \mathsf{expr} \ \leq \ \mathsf{expr} \ | \ \mathsf{expr} \ = \ \mathsf{expr}$
 - $\mathsf{expr} \ \ \rightarrow \ \ \, uvar \mid \mathsf{pexpr}$
- $\mathsf{pexpr} \ \to \ \mathsf{pexpr'}$

 $\mathsf{pexpr}' \quad \rightarrow \quad \mathbb{Z} \mid \mathbb{Z} \, \cdot \, \mathit{evar} \mid \mathsf{pexpr}' \, + \, \mathsf{pexpr}'$

where *uvar* is any universally quantified integer variable,

and evar is any existentially quantified or free integer variable.

• *G*[*i*] value constraint:

Any occurrence of a quantified index variable *i* must be as a read into an array, a[i], for array term *a*. Array reads may not be nested; *e.g.*, a[b[i]] is not allowed.

Array property fragment of $\mathcal{T}^{\mathbb{Z}}_A$ consists of formulae that are Boolean combinations of quantifier-free $\Sigma^{\mathbb{Z}}_A$ -formulae and array properties.

Jochen Hoenicke (Software Engineering)

Decision Procedures

Application: array property fragments

• Array equality
$$a = b$$
 in T_A :

 $\forall i. \ a[i] = b[i]$

• Bounded array equality $beq(a, b, \ell, u)$ in $T_A^{\mathbb{Z}}$:

$$\forall i. \ \ell \leq i \leq u \rightarrow a[i] = b[i]$$

• Universal properties F[x] in T_A :

∀i. F[a[i]]

• Bounded universal properties F[x] in $T_A^{\mathbb{Z}}$:

 $\forall i. \ \ell \leq i \leq u \rightarrow F[a[i]]$

• Bounded and unbounded sorted arrays sorted(a, ℓ, u) in $T_A^{\mathbb{Z}} \cup T_{\mathbb{Z}}$ or $T_A^{\mathbb{Z}} \cup T_{\mathbb{Q}}$:

 $\forall i, j. \ \ell \leq i \leq j \leq u \rightarrow a[i] \leq a[j]$

• Partitioned arrays partitioned $(a, \ell_1, u_1, \ell_2, u_2)$ in $T_A^{\mathbb{Z}} \cup T_{\mathbb{Z}}$ or $T_A^{\mathbb{Z}} \cup T_{\mathbb{Q}}$:

The Decision Procedure (Step 1–2)

FREIBURG

The idea again is to reduce universal quantification to finite conjunction. Given F from the array property fragment of $T_A^{\mathbb{Z}}$, decide its $T_A^{\mathbb{Z}}$ -satisfiability as follows:

Step 1

Put F in NNF.

Step 2

Apply the following rule exhaustively to remove writes:

$$\frac{F[a\langle i \triangleleft e\rangle]}{F[a'] \land a'[i] = e \land (\forall j. \ j \neq i \rightarrow a[j] = a'[j])} \text{ for fresh } a' \quad (\text{write})$$

To meet the syntactic requirements on an index guard, rewrite the third conjunct as

$$\forall j. \ j \leq i-1 \lor i+1 \leq j \rightarrow a[j] = a'[j] .$$

Jochen Hoenicke (Software Engineering)

The Decision Procedure (Step 3-4)

Step 3

Apply the following rule exhaustively to remove existential quantification:

$$\frac{F[\exists \overline{i}. \ G[\overline{i}]]}{F[G[\overline{j}]]} \text{ for fresh } \overline{j} \quad (\text{exists})$$

Existential quantification can arise during Step 1 if the given formula has a negated array property.

Step 4

From the output of Step 3, F_3 , construct the index set \mathcal{I} :

 $\mathcal{I} = \begin{cases} t : \cdot[t] \in F_3 \text{ such that } t \text{ is not a universally quantified variable} \\ \cup \{t : t \text{ occurs as a pexpr in the parsing of index guards} \end{cases}$

If $\mathcal{I} = \emptyset$, then let $\mathcal{I} = \{0\}$. The index set contains all relevant symbolic indices that occur in F_3 .

Step 5

Apply the following rule exhaustively to remove universal quantification:

$$\frac{H[\forall \bar{i}. \ F[\bar{i}] \to G[\bar{i}]]}{H\left[\bigwedge_{\bar{i} \in \mathcal{I}^n} \left(F[\bar{i}] \to G[\bar{i}]\right)\right]} \quad \text{(forall)}$$

n is the size of the block of universal quantifiers over \overline{i} .

Step 6

 F_5 is quantifier-free in the combination theory $T_A \cup T_{\mathbb{Z}}$. Decide the $(T_A \cup T_{\mathbb{Z}})$ -satisfiability of the resulting formula.

Example

 $\Sigma^{\mathbb{Z}}_A$ -formula:

$$F: \begin{array}{ll} (\forall i. \ \ell \leq i \leq u \rightarrow a[i] = b[i]) \\ \wedge \neg (\forall i. \ \ell \leq i \leq u + 1 \rightarrow a \langle u + 1 \triangleleft b[u + 1] \rangle [i] = b[i]) \end{array}$$

In NNF, we have

$$\textit{F}_1: \quad \begin{array}{l} (\forall i. \ \ell \leq i \leq u \rightarrow \textit{a}[i] = \textit{b}[i]) \\ \land (\exists i. \ \ell \leq i \leq u + 1 \land \textit{a}\langle u + 1 \triangleleft \textit{b}[u + 1]\rangle[i] \neq \textit{b}[i]) \end{array}$$

Step 2 produces

$$F_2: \begin{array}{l} (\forall i. \ \ell \leq i \leq u \rightarrow a[i] = b[i]) \\ \wedge (\exists i. \ \ell \leq i \leq u + 1 \wedge a'[i] \neq b[i]) \\ \wedge a'[u+1] = b[u+1] \\ \wedge (\forall j. \ j \leq u + 1 - 1 \lor u + 1 + 1 \leq j \rightarrow a[j] = a'[j]) \end{array}$$

Step 3 removes the existential quantifier by introducing a fresh constant k:

$$F_3: \begin{array}{ll} (\forall i. \ \ell \leq i \leq u \rightarrow a[i] = b[i]) \\ \wedge \ \ell \leq k \leq u + 1 \wedge a'[k] \neq b[k] \\ \wedge \ a'[u+1] = b[u+1] \\ \wedge \ (\forall j. \ j \leq u + 1 - 1 \lor u + 1 + 1 \leq j \rightarrow a[j] = a'[j]) \end{array}$$

Simplifying,

$$F'_{3}: \begin{array}{l} (\forall i. \ \ell \leq i \leq u \rightarrow a[i] = b[i]) \\ \wedge \ \ell \leq k \leq u + 1 \wedge a'[k] \neq b[k] \\ \wedge \ a'[u+1] = b[u+1] \\ \wedge \ (\forall j. \ j \leq u \lor u + 2 \leq j \rightarrow a[j] = a'[j]) \end{array}$$

The index set is

$$\mathcal{I} = \{k, u+1\} \cup \{\ell, u, u+2\},\$$

which includes the read terms k and u + 1 and the terms ℓ , u, and u + 2 that occur as pexprs in the index guards.

Jochen Hoenicke (Software Engineering)

Decision Procedures

Step 5 rewrites universal quantification to finite conjunction over this set:

$$F_{5}: \bigwedge_{\substack{i \in \mathcal{I} \\ \wedge \ell \leq k \leq u+1 \wedge a'[k] \neq b[k] \\ \wedge a'[u+1] = b[u+1] \\ \wedge \bigwedge_{j \in \mathcal{I}} (j \leq u \lor u+2 \leq j \rightarrow a[j] = a'[j])}$$

Expanding the conjunctions according to the index set \mathcal{I} and simplifying according to trivially true or false antecedents (e.g., $\ell \leq u + 1 \leq u$ simplifies to \bot , while $u \leq u \lor u + 2 \leq u$ simplifies to \top) produces:

$$\begin{array}{ll} (\ell \leq k \leq u \to a[k] = b[k]) & (1) \\ & \land (\ell \leq u \to a[\ell] = b[\ell] \land a[u] = b[u]) & (2) \\ & \land \ell \leq k \leq u+1 & (3) \\ & \land a'[k] \neq b[k] & (4) \\ & \land a'[u+1] = b[u+1] & (5) \\ & \land (k \leq u \lor u+2 \leq k \to a[k] = a'[k]) & (6) \\ & \land (\ell \leq u \lor u+2 \leq \ell \to a[\ell] = a'[\ell]) & (7) \\ & \land a[u] = a'[u] \land a[u+2] = a'[u+2] & (8) \end{array}$$

 $(T_A \cup T_Z)$ -unsatisfiability of this quantifier-free $(\Sigma_A \cup \Sigma_Z)$ -formula can be decided using the techniques of Combination of Theories. Informally, $\ell \leq k \leq u + 1$ (3)

- If $k \in [\ell, u]$ then a[k] = b[k] (1). Since $k \leq u$ then a[k] = a'[k] (6), contradicting $a'[k] \neq b[k]$ (4).
- if k = u + 1, $a'[k] \neq b[k] = b[u + 1] = a'[u + 1] = a'[k]$ by (4) and (5), a contradiction.

Hence, F is $T_A^{\mathbb{Z}}$ -unsatisfiable.

Correctness of Decision Procedure

Theorem

Consider a $\Sigma_A^{\mathbb{Z}} \cup \Sigma$ -formula F from the array property fragment of $T_A^{\mathbb{Z}} \cup T$. The output F_5 of Step 5 of the algorithm is $T_A^{\mathbb{Z}} \cup T$ -equisatisfiable to F.

Proof: The proof proceeds using the same strategy as for T_A . It is easy to see that steps 1–3 do not change the satisfiability of formula. For step 4–5 we need to show:

(1)
$$H[\forall \overline{i}. (F[\overline{i}] \rightarrow G[\overline{i}])]$$
 is satisfiable
iff.
(2) $H[\bigwedge_{\overline{i} \in \mathcal{I}^n} (F[\overline{i}] \rightarrow G[\overline{i}])]$ is satisfiable.

 \Rightarrow : Obviously formula (1) implies formula (2).

If the formula (2) holds in some interpretation $I = (D_I, \alpha_I)$, we construct an interpretation $J = (D_J, \alpha_J)$ with $D_I := D_I$ and

$$proj_{\mathcal{I}}(j) = \begin{cases} \max\{\alpha_{I}[i]|i \in \mathcal{I} \land \alpha_{I}[i] \leq \alpha_{I}[j]\} & \text{if for some } i \in \mathcal{I}: \\ \alpha_{I}[i] \leq \alpha_{I}[j] \\ \min\{\alpha_{I}[i]|i \in \mathcal{I} \land \alpha_{I}[i] \geq \alpha_{I}[j]\} & \text{otherwise} \end{cases}$$
$$\alpha_{J}[a[j]] = \alpha_{I}[a[proj_{\mathcal{I}}(j)]]$$
$$\alpha_{J}[x] = \alpha_{I}[x] \text{ for every non-array variable and constant} \end{cases}$$

J interprets the symbols occurring in formula (2) in the same way as I. Therefore, (2) holds in J.

To prove that formula (1) holds in J, it suffices to show:

$$J \models \bigwedge_{\overline{i} \in \mathcal{I}^n} (F[\overline{i}] \to G[\overline{i}]) \text{ implies } J \models \forall \overline{i}. \ (F[\overline{i}] \to G[\overline{i}])$$

Proof of Theorem (cont)

Assume $J \models \bigwedge_{\overline{i} \in \mathcal{I}^n} (F[\overline{i}] \to G[\overline{i}])$. Show:

$$\mathsf{F}[\overline{i}] o \mathsf{F}[\mathit{proj}_{\mathcal{I}}(\overline{i})] o \mathsf{G}[\mathit{proj}_{\mathcal{I}}(\overline{i})] o \mathsf{G}[\overline{i}]$$

The first implication $F[\overline{i}] \rightarrow F[proj_{\mathcal{I}}(\overline{i})]$ can be shown by structural induction over F. Base cases:

• $expr_1 \leq expr_2$: see exercise.

• $expr_1 = expr_2$: follows from first case since it is equivalent to

$$expr_1 \leq expr_2 \wedge expr_2 \leq expr_1$$
.

The induction step is trivial.

The second implication $F[proj_{\mathcal{I}}(\bar{i})] \rightarrow G[proj_{\mathcal{I}}(\bar{i})]$ holds by assumption. The third implication $G[proj_{\mathcal{I}}(\bar{i})] \implies G[\bar{i}]$ holds because G contains variables i only in array reads a[i]. By definition of J: $\alpha_J[a[i]] = \alpha_J[a[proj_{\mathcal{I}}(i)]].$