
Decision Procedures

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Summer 2012

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 1 / 43

Theory of Arrays

Arrays: Quantifier-free Fragment of TA

ΣA : {·[·], ·〈· / ·〉, =} ,
where

a[i] is a binary function representing
read of array a at index i ;

a〈i / v〉 is a ternary function representing
write of value v to index i of array a;

= is a binary predicate. It is not used on arrays.

Axioms of TA:

1 axioms of (reflexivity), (symmetry), and (transitivity) of TE

2 ∀a, i , j . i = j → a[i] = a[j] (array congruence)

3 ∀a, v , i , j . i = j → a〈i / v〉[j] = v (read-over-write 1)

4 ∀a, v , i , j . i 6= j → a〈i / v〉[j] = a[j] (read-over-write 2)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 3 / 43

Decision Procedure for TA

Given quantifier-free conjunctive ΣA-formula F .
To decide the TA-satisfiability of F :

Step 1
For every read-over-write term a〈i / v〉[j] in F , replace F with the formula

(i = j ∧ F{a〈i / v〉[j] 7→ v}) ∨
(i 6= j ∧ F{a〈i / v〉[j] 7→ a[j]})

Repeat until there are no more read-over-write terms.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 4 / 43

Decision Procedure for TA (cont)

Step 2

Associate array variables a with fresh function symbol fa.
Replace read terms a[i] with fa(i).

Step 3

Now F is a TE -Formula. Decide TE-satisfiability using the
congruence-closure algorithm for each of the disjuncts produced in Step 1.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 5 / 43

Example: Consider ΣA-formula

F : i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ a〈i1 / v1〉〈i2 / v2〉[j] 6= a[j] .

F contains a read-over-write term,

a〈i1 / v1〉〈i2 / v2〉[j] 6= a[j] .

Rewrite it to F1 ∨ F2 with:

F1 : i2 = j ∧ i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ v2 6= a[j] ,

F2 : i2 6= j ∧ i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ a〈i1 / v1〉[j] 6= a[j] .

F1 does not contain any write terms, so rewrite it to

F ′
1 : i2 = j ∧ i1 = j ∧ i1 6= i2 ∧ fa(j) = v1 ∧ v2 6= fa(j) .

The first two literals imply that i1 = i2, contradicting the third literal, so
F ′
1 is TE-unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 6 / 43

Now, we try the second case (F2):
F2 contains the read-over-write term a〈i1 / v1〉[j]. Rewrite it to F3 ∨ F4

with

F3 : i1 = j ∧ i2 6= j ∧ i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ v1 6= a[j] ,

F4 : i1 6= j ∧ i2 6= j ∧ i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ a[j] 6= a[j] .

Rewrite the array reads to

F ′
3 : i1 = j ∧ i2 6= j ∧ i1 = j ∧ i1 6= i2 ∧ fa(j) = v1 ∧ v1 6= fa(j) ,

F ′
4 : i1 6= j ∧ i2 6= j ∧ i1 = j ∧ i1 6= i2 ∧ fa(j) = v1 ∧ fa(j) 6= fa(j) .

In F ′
3 there is a contradiction because of the final two terms. In F ′

4, there
are two contradictions: the first and third literals contradict each other,
and the final literal is contradictory. Since F is equisatisfiable to
F ′
1 ∨ F ′

3 ∨ F ′
4, F is TA-unsatisfiable.

Suppose instead that F does not contain the literal i1 6= i2. Is this new
formula TA-satisfiable?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 7 / 43

Complexity of Decision Procedure for TA

Our algorithm has a big disadvantage. Step 1 doubles the size of the
formula:

(i = j ∧ F{a〈i / v〉[j] 7→ v}) ∨
(i 6= j ∧ F{a〈i / v〉[j] 7→ a[j]})

This can be avoided by introducing fresh variables xaijv :

F{a〈i / v〉[j] 7→ xaijv}∧
((i = j ∧ xaijv = v) ∨ (i 6= j ∧ xaijv = a[j]))

However, this is not in the conjunctive fragment of TE.

There is no way around:

The conjunctive fragment of TA is NP-complete.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 8 / 43

Arrays and Quantifiers

In programming languages, one often needs to express the following
concepts:

Containment contains(a, `, u, e): the array a contains element e at
some index between ` and u.

∃i .` ≤ i ≤ u ∧ a[i] = e

Sortedness sorted(a, `, u): the array a is sorted between index ` and
index u.

∀i , j .` ≤ i ≤ j ≤ u =⇒ a[i] ≤ a[j]

Partitioning partition(a, `1, u1, `2, u2): The array elements between `1
and u1 are smaller than all elements between `2 and u2.

∀i , j .`1 ≤ i ≤ u1 ∧ `2 ≤ j ≤ u2 =⇒ a[i] ≤ a[j]

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9 / 43

Decision Procedure for Arrays

These concepts can only be expressed as first-order formulae with
quantifiers.

However: the general theory of arrays TA with quantifier is not decidable.

Is there a decidable fragment of TA that contains the above formulae?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 43

Example

We want to prove validity for a formula, such as:

¬contains(a, `, u, e) ∧ e 6= f → ¬contains(a〈j / f 〉, `, u, e)

¬(∃i .` ≤ i ≤ u ∧ a[i] = e) ∧ e 6= f

→ ¬(∃i .` ≤ i ≤ u ∧ a〈j / f 〉[i] 6= e).

Check satisfiability of negated formula:

¬(∃i .` ≤ i ≤ u ∧ a[i] = e) ∧ e 6= f ∧ (∃i .` ≤ i ≤ u ∧ a〈j / f 〉[i] 6= e).

Negation Normal Form:

(∀i .` > i ∨ i > u∨a[i] 6= e)∧e 6= f ∧(∃i .` ≤ i ∧ i ≤ u∧a〈j / f 〉[i] = e).

or the equisatisfiable formula

∀i .` > i ∨ i > u ∨ a[i] 6= e ∧ e 6= f ∧ ` ≤ i2 ∧ i2 ≤ u ∧ a〈j / f 〉[i2] = e.

We need to handle satisfiability for universal quantifiers.
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 11 / 43

Array Property Fragment of TA

Decidable fragment of TA that includes ∀ quantifiers

Array property

ΣA-formula of form
∀i . F [i] → G [i] ,

where i is a list of variables.

index guard F [i]:

iguard → iguard ∧ iguard | iguard ∨ iguard | atom
atom → var = var | evar 6= var | var 6= evar | >

var → evar | uvar

where uvar is any universally quantified index variable,
and evar is any constant or unquantified variable.
value constraint G [i]: a universally quantified index can occur in a
value constraint G [i] only in a read a[i], where a is an array term.
The read cannot be nested; for example, a[b[i]] is not allowed.

Array property Fragment: Boolean combinations of quantifier-free
TA-formulae and array properties

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 12 / 43

Example: Array Property Fragment

Is this formula in the array property fragment?

F : ∀i . i 6= a[k] → a[i] = a[k]

The antecedent is not a legal index guard since a[k] is not a variable
(neither a uvar nor an evar); however, by simple manipulation

F ′ : v = a[k] ∧ ∀i . i 6= v → a[i] = a[k]

Here, i 6= v is a legal index guard, and a[i] = a[k] is a legal value
constraint. F and F ′ are equisatisfiable.
This trick works for every term that does not contain a uvar.
However, no manipulation works for:

G : ∀i . i 6= a[i] → a[i] = a[k] .

Thus, G is not in the array property fragment.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 13 / 43

Example: Array Property Fragment (cont)

Is this formula in the array property fragment?

F ′ : ∀ij . i 6= j → a[i] 6= a[j]

No, the term uvar 6= uvar is not allowed in the index guard. There is no
workaround.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 14 / 43

Array property fragment and extensionality

Remark: Array property fragment allows expressing equality between
arrays (extensionality): two arrays are equal precisely when their
corresponding elements are equal.

For given formula
F : · · · ∧ a = b ∧ · · ·

with array terms a and b, rewrite F as

F ′ : · · · ∧ (∀i . > → a[i] = b[i]) ∧ · · · .

F and F ′ are equisatisfiable.
F ′ is in array property fragment of TA.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 15 / 43

Decision Procedure for Array Property Fragment

Basic Idea: Similar to quantifier elimination.

Replace universal quantification

∀i .F [i]

by finite conjunction
F [t1] ∧ . . . ∧ F [tn].

We call t1, . . . , tn the index terms and they depend on the formula.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 16 / 43

Example

Consider
F : a〈i / v〉 = a ∧ a[i] 6= v ,

which expands to

F ′ : ∀j . a〈i / v〉[j] = a[j] ∧ a[i] 6= v .

Intuitively, only the index i is important:

F ′′ :

 ∧
j∈{i}

a〈i / v〉[j] = a[j]

 ∧ a[i] 6= v ,

or simply
a〈i / v〉[i] = a[i] ∧ a[i] 6= v .

Simplifying,
v = a[i] ∧ a[i] 6= v ,

it is clear that this formula, and thus F , is TA-unsatisfiable.
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 17 / 43

Decision Procedure for Array Property Fragment

Given array property formula F , decide its TA-satisfiability by the following
steps:

Step 1
Put F in NNF, but do not rewrite inside a quantifier.

Step 2
Apply the following rule exhaustively to remove writes:

F [a〈i / v〉]
F [a′] ∧ a′[i] = v ∧ (∀j . j 6= i → a[j] = a′[j])

for fresh a′ (write)

After an application of the rule, the resulting formula contains at least one
fewer write terms than the given formula.

Step 3
Apply the following rule exhaustively to remove existential quantification:

F [∃i . G [i]]

F [G [j]]
for fresh j (exists)

Existential quantification can arise during Step 1 if the given formula has a
negated array property.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 18 / 43

Steps 4-6 accomplish the reduction of universal quantification to finite
conjunction.
Main idea: select a set of symbolic index terms on which to instantiate all
universal quantifiers. The set is sufficient for correctness.

Step 4
From the output F3 of Step 3, construct the index set I:

I =
{λ}
∪ {t : ·[t] ∈ F3 such that t is not a universally quantified variable}
∪ {t : t occurs as an evar in the parsing of index guards}

This index set is the finite set of indices that need to be examined. It includes

all terms t that occur in some read a[t] anywhere in F (unless it is a
universally quantified variable)
all terms t (constant or unquantified variable) that are compared to a
universally quantified variable in some index guard.
λ is a fresh constant that represents all other index positions that are not
explicitly in I.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 19 / 43

Step 5 (Key step)
Apply the following rule exhaustively to remove universal quantification:

H[∀i . F [i] → G [i]]

H

∧
i∈In

(
F [i] → G [i]

) (forall)

where n is the number of quantified variables i .

Step 6
From the output F5 of Step 5, construct

F6 : F5 ∧
∧

i ∈ I\{λ}

λ 6= i .

The new conjuncts assert that the variable λ introduced in Step 4 is
indeed unique.

Step 7
Decide the TA-satisfiability of F6 using the decision procedure for the
quantifier-free fragment.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 20 / 43

Example

Is this T=
A -formula valid?

F : (∀i . i 6= k → a[i] = b[i]) ∧ b[k] = v → a〈k / v〉 = b

Check satisfiability of:

¬((∀i . i 6= k → a[i] = b[i]) ∧ b[k] = v → (∀i . a〈k / v〉[i] = b[i]))

Step 1: NNF

F1 : (∀i . i 6= k → a[i] = b[i]) ∧ b[k] = v ∧ (∃i . a〈k / v〉[i] 6= b[i])

Step 2: Remove array writes

F2 : (∀i . i 6= k → a[i] = b[i]) ∧ b[k] = v ∧ (∃i . a′[i] 6= b[i])

∧ a′[k] = v ∧ (∀i . i 6= k → a′[i] = a[i])

Step 3: Remove existential quantifier

F3 : (∀i . i 6= k → a[i] = b[i]) ∧ b[k] = v ∧ a′[j] 6= b[j]

∧ a′[k] = v ∧ (∀i . i 6= k → a′[i] = a[i])
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 21 / 43

Example (cont)

Step 4: Compute index set I = {λ, k, j}
Step 5+6: Replace universal quantifier:

F6 : (λ 6= k → a[λ] = b[λ])

∧ (k 6= k → a[k] = b[k])

∧ (j 6= k → a[j] = b[j])

∧ b[k] = v ∧ a′[j] 6= b[j] ∧ a′[k] = v

∧ (λ 6= k → a′[λ] = a[λ])

∧ (k 6= k → a′[k] = a[k])

∧ (j 6= k → a′[j] = a[j])

∧ λ 6= k ∧ λ 6= j

Case distinction on j = k proves unsatisfiability of F6.
Therefore F is valid

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 22 / 43

The importance of λ

Is this formula satisfiable?

F : (∀i .i 6= j → a[i] = b[i]) ∧ (∀i .i 6= k → a[i] 6= b[i])

The algorithm produces:

F6 : λ 6= j → a[λ] = b[λ]

∧ j 6= j → a[j] = b[j]

∧ k 6= j → a[k] = b[k]

∧ λ 6= k → a[λ] 6= b[λ]

∧ j 6= k → a[j] 6= b[j]

∧ k 6= k → a[k] 6= b[k]

∧ λ 6= j ∧ λ 6= k

The first, fourth and last line give a contradiction!

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 23 / 43

The importance of λ (cont)

Without λ we had the formula:

F ′
6 : j 6= j → a[j] = b[j]

∧ k 6= j → a[k] = b[k]

∧ j 6= k → a[j] 6= b[j]

∧ k 6= k → a[k] 6= b[k]

which simplifies to:

j 6= k → a[k] = b[k] ∧ a[j] 6= b[j] .

This formula is satisfiable!

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 24 / 43

Correctness of Decision Procedure

Theorem

Consider a ΣA-formula F from the array property fragment of TA. The
output F6 of Step 6 of the algorithm is TA-equisatisfiable to F .

This also works when extending the Logic with an arbitrary theory T with
signature Σ for the elements:

Theorem

Consider a ΣA ∪ Σ-formula F from the array property fragment of TA ∪ T .
The output F6 of Step 6 of the algorithm is TA ∪ T -equisatisfiable to F .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 25 / 43

Proof of Theorem

Proof: It is easy to see that steps 1–3 do not change the satisfiability of
formula.
For step 4–6 we need to show:

(1) H[∀i . (F [i] → G [i])] is satisfiable
iff.

(2) H[
∧

i∈In(F [i] → G [i])] ∧
∧

i∈I\{λ} λ 6= i is satisfiable.

If the formula (1) is satisfied some Interpretation, then (2) holds in the
same interpretation.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 26 / 43

Proof of Theorem (cont)

If the formula (2) holds in some interpretation I , we construct an
interpretation J as follows:

projI(j) =

{
i if i ∈ I ∧ αI [j] = αI [i]

λ otherwise

αJ [a[j]] = αI [a[projI(j)]]

αJ [x] = αI [x] for every non-array variable and constant

J interprets the symbols occuring in formula (2) in the same way as I .
Therefore, (2) holds in J.
To prove that formula (1) holds in J, it suffices to show:

J |=
∧
i∈In

(F [i] → G [i]) implies J |= ∀i . (F [i] → G [i])

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 27 / 43

Proof of Theorem (cont)

Assume J |=
∧

i∈In(F [i] → G [i]). Show:

F [i] → F [projI(i)] → G [projI(i)] → G [i]

The first implication F [i] → F [projI(i)] can be shown by structural
induction over F . Base cases:

var1 = var2 → projI(var1) = projI(var2): trivial.

evar1 6= var2 → projI(evar1) 6= projI(var2):
By definition of I: evar1 ∈ I \ {λ}.
If evar1 = projI(evar1) = projI(var2), then var2 ∈ I \ {λ}, hence
evar1 = projI(var2) = var2
var1 6= evar2 analogously.

The induction step is trivial.
The second implication F [projI(i)] → G [projI(i)] holds by assumption.
The third implication G [projI(i)] =⇒ G [i] holds because G contains
variables i only in array reads a[i]. By definition of J:
αJ [a[i]] = αJ [a[projI(i)]].

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 28 / 43

Theory of Integer-Indexed Arrays

Theory of Integer-Indexed Arrays TZ
A

≤ enables reasoning about subarrays and properties such as subarray is
sorted or partitioned.

signature of TZ
A : ΣZ

A = ΣA ∪ ΣZ

axioms of TZ
A : both axioms of TA and TZ

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 30 / 43

Array Property Fragment of TZ
A

Array property: ΣZ
A-formula of the form

∀i . F [i] → G [i] ,

where i is a list of integer variables.

F [i] index guard:
iguard → iguard ∧ iguard | iguard ∨ iguard | atom
atom → expr ≤ expr | expr = expr
expr → uvar | pexpr

pexpr → pexpr′

pexpr′ → Z | Z · evar | pexpr′ + pexpr′

where uvar is any universally quantified integer variable,
and evar is any existentially quantified or free integer variable.
G [i] value constraint:
Any occurrence of a quantified index variable i must be as a read into
an array, a[i], for array term a. Array reads may not be nested; e.g.,
a[b[i]] is not allowed.

Array property fragment of TZ
A consists of formulae that are Boolean

combinations of quantifier-free ΣZ
A-formulae and array properties.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 31 / 43

Application: array property fragments

Array equality a = b in TA:

∀i . a[i] = b[i]

Bounded array equality beq(a, b, `, u) in TZ
A :

∀i . ` ≤ i ≤ u → a[i] = b[i]

Universal properties F [x] in TA:

∀i . F [a[i]]

Bounded universal properties F [x] in TZ
A :

∀i . ` ≤ i ≤ u → F [a[i]]

Bounded and unbounded sorted arrays sorted(a, `, u) in TZ
A ∪ TZ or

TZ
A ∪ TQ:

∀i , j . ` ≤ i ≤ j ≤ u → a[i] ≤ a[j]

Partitioned arrays partitioned(a, `1, u1, `2, u2) in TZ
A ∪ TZ or

TZ
A ∪ TQ:

∀i , j , `1 ≤ i ≤ u1 < `2 ≤ j ≤ u2 → a[i] ≤ a[j]Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 32 / 43

The Decision Procedure (Step 1–2)

The idea again is to reduce universal quantification to finite conjunction.
Given F from the array property fragment of TZ

A , decide its
TZ
A -satisfiability as follows:

Step 1
Put F in NNF.

Step 2
Apply the following rule exhaustively to remove writes:

F [a〈i / e〉]
F [a′] ∧ a′[i] = e ∧ (∀j . j 6= i → a[j] = a′[j])

for fresh a′ (write)

To meet the syntactic requirements on an index guard, rewrite the third
conjunct as

∀j . j ≤ i − 1 ∨ i + 1 ≤ j → a[j] = a′[j] .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 33 / 43

The Decision Procedure (Step 3–4)

Step 3
Apply the following rule exhaustively to remove existential quantification:

F [∃i . G [i]]

F [G [j]]
for fresh j (exists)

Existential quantification can arise during Step 1 if the given formula has a
negated array property.

Step 4
From the output of Step 3, F3, construct the index set I:

I =
{t : ·[t] ∈ F3 such that t is not a universally quantified variable}
∪ {t : t occurs as a pexpr in the parsing of index guards}

If I = ∅, then let I = {0}. The index set contains all relevant symbolic
indices that occur in F3.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 34 / 43

The Decision Procedure (Step 5–6)

Step 5
Apply the following rule exhaustively to remove universal quantification:

H[∀i . F [i] → G [i]]

H

∧
i∈In

(
F [i] → G [i]

) (forall)

n is the size of the block of universal quantifiers over i .

Step 6
F5 is quantifier-free in the combination theory TA ∪ TZ. Decide the
(TA ∪ TZ)-satisfiability of the resulting formula.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 35 / 43

Example

ΣZ
A-formula:

F :
(∀i . ` ≤ i ≤ u → a[i] = b[i])
∧ ¬(∀i . ` ≤ i ≤ u + 1 → a〈u + 1 / b[u + 1]〉[i] = b[i])

In NNF, we have

F1 :
(∀i . ` ≤ i ≤ u → a[i] = b[i])
∧ (∃i . ` ≤ i ≤ u + 1 ∧ a〈u + 1 / b[u + 1]〉[i] 6= b[i])

Step 2 produces

F2 :

(∀i . ` ≤ i ≤ u → a[i] = b[i])
∧ (∃i . ` ≤ i ≤ u + 1 ∧ a′[i] 6= b[i])
∧ a′[u + 1] = b[u + 1]
∧ (∀j . j ≤ u + 1 − 1 ∨ u + 1 + 1 ≤ j → a[j] = a′[j])

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 36 / 43

Step 3 removes the existential quantifier by introducing a fresh constant k:

F3 :

(∀i . ` ≤ i ≤ u → a[i] = b[i])
∧ ` ≤ k ≤ u + 1 ∧ a′[k] 6= b[k]
∧ a′[u + 1] = b[u + 1]
∧ (∀j . j ≤ u + 1 − 1 ∨ u + 1 + 1 ≤ j → a[j] = a′[j])

Simplifying,

F ′
3 :

(∀i . ` ≤ i ≤ u → a[i] = b[i])
∧ ` ≤ k ≤ u + 1 ∧ a′[k] 6= b[k]
∧ a′[u + 1] = b[u + 1]
∧ (∀j . j ≤ u ∨ u + 2 ≤ j → a[j] = a′[j])

The index set is

I = {k , u + 1} ∪ {`, u, u + 2} ,

which includes the read terms k and u + 1 and the terms `, u, and u + 2
that occur as pexprs in the index guards.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 37 / 43

Step 5 rewrites universal quantification to finite conjunction over this set:

F5 :

∧
i ∈ I

(` ≤ i ≤ u → a[i] = b[i])

∧ ` ≤ k ≤ u + 1 ∧ a′[k] 6= b[k]
∧ a′[u + 1] = b[u + 1]

∧
∧

j ∈ I
(j ≤ u ∨ u + 2 ≤ j → a[j] = a′[j])

Expanding the conjunctions according to the index set I and simplifying
according to trivially true or false antecedents (e.g., ` ≤ u + 1 ≤ u
simplifies to ⊥, while u ≤ u ∨ u + 2 ≤ u simplifies to >) produces:

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 38 / 43

F ′
5 :

(` ≤ k ≤ u → a[k] = b[k]) (1)
∧ (` ≤ u → a[`] = b[`] ∧ a[u] = b[u]) (2)
∧ ` ≤ k ≤ u + 1 (3)
∧ a′[k] 6= b[k] (4)
∧ a′[u + 1] = b[u + 1] (5)
∧ (k ≤ u ∨ u + 2 ≤ k → a[k] = a′[k]) (6)
∧ (` ≤ u ∨ u + 2 ≤ ` → a[`] = a′[`]) (7)
∧ a[u] = a′[u] ∧ a[u + 2] = a′[u + 2] (8)

(TA ∪ TZ)-unsatisfiability of this quantifier-free (ΣA ∪ ΣZ)-formula can be
decided using the techniques of Combination of Theories.
Informally, ` ≤ k ≤ u + 1 (3)

If k ∈ [`, u] then a[k] = b[k] (1). Since k ≤ u then a[k] = a′[k]
(6), contradicting a′[k] 6= b[k] (4).

if k = u + 1, a′[k] 6= b[k] = b[u + 1] = a′[u + 1] = a′[k] by (4)
and (5), a contradiction.

Hence, F is TZ
A -unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 39 / 43

Correctness of Decision Procedure

Theorem

Consider a ΣZ
A ∪ Σ-formula F from the array property fragment of

TZ
A ∪ T . The output F5 of Step 5 of the algorithm is

TZ
A ∪ T -equisatisfiable to F .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 40 / 43

Proof of Theorem

Proof: The proof proceeds using the same strategy as for TA.
It is easy to see that steps 1–3 do not change the satisfiability of formula.
For step 4–5 we need to show:

(1) H[∀i . (F [i] → G [i])] is satisfiable
iff.

(2) H[
∧

i∈In(F [i] → G [i])] is satisfiable.

⇒: Obviously formula (1) implies formula (2).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 41 / 43

Proof of Theorem (cont)

If the formula (2) holds in some interpretation I = (DI , αI), we construct
an interpretation J = (DJ , αJ) with DJ := DI and

projI(j) =

max{αI [i]|i ∈ I ∧ αI [i] ≤ αI [j]} if for some i ∈ I:

αI [i] ≤ αI [j]

min{αI [i]|i ∈ I ∧ αI [i] ≥ αI [j]} otherwise

αJ [a[j]] = αI [a[projI(j)]]

αJ [x] = αI [x] for every non-array variable and constant

J interprets the symbols occuring in formula (2) in the same way as I .
Therefore, (2) holds in J.
To prove that formula (1) holds in J, it suffices to show:

J |=
∧
i∈In

(F [i] → G [i]) implies J |= ∀i . (F [i] → G [i])

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 42 / 43

Proof of Theorem (cont)

Assume J |=
∧

i∈In(F [i] → G [i]). Show:

F [i] → F [projI(i)] → G [projI(i)] → G [i]

The first implication F [i] → F [projI(i)] can be shown by structural
induction over F . Base cases:

expr1 ≤ expr2: see exercise.

expr1 = expr2: follows from first case since it is equivalent to

expr1 ≤ expr2 ∧ expr2 ≤ expr1 .

The induction step is trivial.
The second implication F [projI(i)] → G [projI(i)] holds by assumption.
The third implication G [projI(i)] =⇒ G [i] holds because G contains
variables i only in array reads a[i]. By definition of J:
αJ [a[i]] = αJ [a[projI(i)]].

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 43 / 43

	Theory of Arrays
	Array Property Fragment

	Theory of Integer-Indexed Arrays

