Decision Procedures

Jochen Hoenicke

Software Engineering Albert-Ludwigs-University Freiburg

Summer 2012

Nelson-Oppen Theory Combination

Combining Decision Procedures: Nelson-Oppen Method

Motivation: How do we show that

 $F: 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$

is $(T_E \cup T_{\mathbb{Z}})$ -unsatisfiable?

Given

Multiple Theories T_i over signatures Σ_i (constants, functions, predicates) with corresponding decision procedures P_i for T_i -satisfiability.

Goal

Decide satisfiability of a sentence in theory $\cup_i T_i$.

Jochen Hoenicke (Software Engineering)

Nelson-Oppen Combination Method (N-O Method)

We show how to get Procedure P from Procdures P_1 and P_2 .

Decision Procedures

Nelson-Oppen: Limitations

Given formula F in theory $T_1 \cup T_2$.

- F must be quantifier-free.
- **2** Signatures Σ_i of the combined theory only share =, i.e.,

$$\Sigma_1 \cap \Sigma_2 = \{=\}$$

Theories must be stably infinite.

Note:

- Algorithm can be extended to combine arbitrary number of theories T_i combine two, then combine with another, and so on.
- We restrict *F* to be conjunctive formula otherwise convert to DNF and check each disjunct.

Problem: The T_1/T_2 -interpretations must have the same data domain; it turns out same cardinality, e.g. infinite, is enough.

Definition (stably infinite)

A Σ -theory T is stably infinite iff for every quantifier-free Σ -formula F: if F is T-satisfiable then there exists some infinite T-interpretation that satisfies Fwith infinite cardinality.

- $T_{\mathbb{Z}}$: stably infinite (all *T*-interpretations are infinite).
- $T_{\mathbb{Q}}$: stably infinite (all *T*-interpretations are infinite).
- *T*_E: stably infinite (one can add infinitely many fresh and distinct values).
- Σ-theory T with Σ : {a, b, =} and axiom ∀x. x = a ∨ x = b: not stable infinite, since every T-interpretation has at most two elements.

Consider quantifier-free conjunctive ($\Sigma_{\textit{E}} \, \cup \, \Sigma_{\mathbb{Z}})\text{-formula}$

$$F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2).$$

The signatures of T_E and $T_{\mathbb{Z}}$ only share =. Also, both theories are stably infinite. Hence, the NO combination of the decision procedures for T_E and $T_{\mathbb{Z}}$ decides the $(T_E \cup T_{\mathbb{Z}})$ -satisfiability of F.

F is $(T_E \cup T_{\mathbb{Z}})$ -unsatisfiable: The first two literals imply $x = 1 \lor x = 2$ so that $f(x) = f(1) \lor f(x) = f(2)$. This contradicts last two literals.

N-O Overview

UNI

Phase 1: Variable Abstraction

- Given conjunction Γ in theory $T_1 \cup T_2$.
- Convert to conjunction $\Gamma_1 \cup \Gamma_2$ s.t.
 - Γ_i in theory T_i
 - $\Gamma_1 \cup \Gamma_2$ satisfiable iff Γ satisfiable.

Phase 2: Check

- If there is some set S of equalities and disequalities between the shared variables of Γ₁ and Γ₂
 shared(Γ₁, Γ₂) = free(Γ₁) ∩ free(Γ₂)
 s.t. S ∪ Γ_i are T_i-satisfiable for all i, then Γ is satisfiable.
- Otherwise, **unsatisfiable**.

Consider quantifier-free conjunctive ($\Sigma_1 \cup \Sigma_2$)-formula F.

Two versions:

- nondeterministic simple to present, but high complexity
- deterministic efficient

Nelson-Oppen (N-O) method proceeds in two steps:

- Phase 1 (variable abstraction)
 - same for both versions

• Phase 2

nondeterministic: guess equalities/disequalities and check deterministic: generate equalities/disequalities by equality propagation

Given quantifier-free conjunctive $(\Sigma_1 \cup \Sigma_2)$ -formula F. Transform F into two quantifier-free conjunctive formulae

 Σ_1 -formula F_1 and Σ_2 -formula F_2 s.t. F is $(T_1 \cup T_2)$ -satisfiable iff $F_1 \wedge F_2$ is $(T_1 \cup T_2)$ -satisfiable F_1 and F_2 are linked via a set of shared variables.

For term t, let hd(t) be the root symbol, e.g. hd(f(x)) = f.

Generation of F_1 and F_2

Generation of
$$F_1$$
 and F_2
For $i, j \in \{1, 2\}$ and $i \neq j$, repeat the transformations
(a) if function $f \in \Sigma_i$ and $hd(t) \in \Sigma_j$,
 $F[f(t_1, \dots, t, \dots, t_n)]$ eqsat. $F[f(t_1, \dots, w, \dots, t_n)] \land w = t$

2) if predicate
$$p \in \Sigma_i$$
 and $hd(t) \in \Sigma_j$,
 $F[p(t_1, \ldots, t, \ldots, t_n)] \quad eqsat. \quad F[p(t_1, \ldots, w, \ldots, t_n)] \land w = t$

(a) if
$$hd(s) \in \Sigma_i$$
 and $hd(t) \in \Sigma_j$,
 $F[s = t] \quad eqsat. \quad F[\top] \land w = s \land w = t$

• if
$$hd(s) \in \Sigma_i$$
 and $hd(t) \in \Sigma_j$,
 $F[s \neq t] \quad eqsat. \quad F[w_1 \neq w_2] \land w_1 = s \land w_2 = t$

where w, w_1 , and w_2 are fresh variables.

Jochen Hoenicke (Software Engineering)

Decision Procedures

Example: Phase 1

Consider ($\Sigma_E \cup \Sigma_Z$)-formula

 $F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2).$

According to transformation 1, since $f \in \Sigma_E$ and $1 \in \Sigma_{\mathbb{Z}}$, replace f(1) by $f(w_1)$ and add $w_1 = 1$. Similarly, replace f(2) by $f(w_2)$ and add $w_2 = 2$. Now, the literals

 $\Gamma_{\mathbb{Z}} : \{ 1 \le x, \ x \le 2, \ w_1 = 1, \ w_2 = 2 \}$

are $T_{\mathbb{Z}}$ -literals, while the literals

 Γ_E : { $f(x) \neq f(w_1), f(x) \neq f(w_2)$ }

are T_E -literals. Hence, construct the $\Sigma_{\mathbb{Z}}$ -formula

 $F_1: 1 \leq x \land x \leq 2 \land w_1 = 1 \land w_2 = 2$

and the Σ_E -formula

$$F_2: f(x) \neq f(w_1) \wedge f(x) \neq f(w_2).$$

 F_1 and F_2 share the variables $\{x, w_1, w_2\}$. $F_1 \land F_2$ is $(T_E \cup T_{\mathbb{Z}})$ -equisatisfiable to F.

Example: Phase 1

Consider ($\Sigma_E \cup \Sigma_{\mathbb{Z}}$)-formula

 $F: f(x) = x + y \land x \leq y + z \land x + z \leq y \land y = 1 \land f(x) \neq f(2).$

In the first literal, $hd(f(x)) = f \in \Sigma_E$ and $hd(x + y) = + \in \Sigma_{\mathbb{Z}}$; thus, by (3), replace the literal with

 $w_1 = f(x) \wedge w_1 = x + y$.

In the final literal, $f \in \Sigma_E$ but $2 \in \Sigma_{\mathbb{Z}}$, so by (1), replace it with

$$f(x) \neq f(w_2) \wedge w_2 = 2 .$$

Now, separating the literals results in two formulae:

 $F_1: \ w_1=x+y \wedge x \leq y+z \wedge x+z \leq y \wedge y=1 \wedge w_2=2$ is a $\Sigma_{\mathbb{Z}}$ -formula, and

$$F_2: w_1 = f(x) \wedge f(x) \neq f(w_2)$$

is a Σ_E -formula.

The conjunction $F_1 \wedge F_2$ is $(T_E \cup T_{\mathbb{Z}})$ -equisatisfiable to F.

Phase 2: Guess and Check (Nondeterministic)

- Phase 1 separated $(\Sigma_1 \cup \Sigma_2)$ -formula F into two formulae: Σ_1 -formula F_1 and Σ_2 -formula F_2
- F_1 and F_2 are linked by a set of shared variables: $V = \text{shared}(F_1, F_2) = \text{free}(F_1) \cap \text{free}(F_2)$
- Let E be an equivalence relation over V.
- The arrangement $\alpha(V, E)$ of V induced by E is:

$$\alpha(V,E) : \bigwedge_{u,v \in V.} \bigcup_{u \in v} u = v \land \bigwedge_{u,v \in V. \neg(u \in v)} u \neq v$$

Lemma

The original formula F is $(T_1 \cup T_2)$ -satisfiable iff there exists an equivalence relation E of V s.t. (1) $F_1 \wedge \alpha(V, E)$ is T_1 -satisfiable, and (2) $F_2 \wedge \alpha(V, E)$ is T_2 -satisfiable.

Proof:

⇒ If F is $(T_1 \cup T_2)$ -satisfiable, then $F_1 \wedge F_2$ is $(T_1 \cup T_2)$ -satisfiable, hence there is a $T_1 \cup T_2$ -Interpretation I with $I \models F_1 \wedge F_2$.

Define $E \subseteq V \times V$ with $u \in v$ iff $I \models u = v$. Then E is a equivalence relation. By definition of E and $\alpha(V, E)$, $I \models \alpha(V, E)$. Hence $I \models F_1 \land \alpha(V, E)$ and $I \models F_2 \land \alpha(V, E)$. Thus, these formulae are T_1 - and T_2 -satisfiable, respectively. \leftarrow Let I_1 and I_2 be T_1 - and T_2 -interpretations, respectively, with

 $I_1 \models F_1 \land \alpha(V, E) \text{ and } I_2 \models F_2 \land \alpha(V, E).$

W.l.o.g. assume that $\alpha_{l_1}[=](v, w)$ iff v = w iff $\alpha_{l_2}[=](v, w)$. (Otherwise, replace D_{l_i} with $D_{l_i}/\alpha_{l_i}[=]$)

Since T_1 and T_2 are stably infinite, we can assume that D_{l_1} and D_{l_2} are of the same cardinality.

Since
$$l_1 \models \alpha(V, E)$$
 and $l_2 \models \alpha(V, E)$, for $x, y \in V$:
 $\alpha_{l_1}[x] = \alpha_{l_1}[y]$ iff $\alpha_{l_2}[x] = \alpha_{l_2}[y]$.

Construct bijective function $g : D_{l_1} \to D_{l_2}$ with $g(\alpha_{l_1}[x]) = \alpha_{l_2}[x]$ for all $x \in V$. Define *I* as follows: $D_I = D_{l_2}$, $\alpha_I[x] = \alpha_{l_2}[x](= g(\alpha_{l_1}[x]))$ for $x \in V$, $\alpha_I[=](v,w)$ iff v = w, $\alpha_I[f_2] = \alpha_{l_2}[f_2]$ for $f_2 \in \Sigma_2$, $\alpha_I[f_1](v_1, \ldots, v_n) = g(\alpha_{l_1}[f_1](g^{-1}(v_1), \ldots, g^{-1}(v_n)))$ for $f_1 \in \Sigma_1$. Then *I* is a $T_1 \cup T_2$ -interpretation, and satisfies $F_1 \wedge F_2$. Hence *F* is $T_1 \cup T_2$ -satisfiable.

Jochen Hoenicke (Software Engineering)

Decision Procedures

Example: Phase 2

FREIBURG

Consider ($\Sigma_E \cup \Sigma_{\mathbb{Z}}$)-formula

 $F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$

Phase 1 separates this formula into the $\Sigma_{\mathbb{Z}}\text{-formula}$

 $F_1: 1 \leq x \land x \leq 2 \land w_1 = 1 \land w_2 = 2$

and the Σ_E -formula

$$F_2: f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

with

$$V = \text{shared}(F_1, F_2) = \{x, w_1, w_2\}$$

There are 5 equivalence relations to consider, which we list by stating the partitions:

Example: Phase 2 (cont)

Hence, F is $(T_E \cup T_{\mathbb{Z}})$ -unsatisfiable.

UNI FREIBURG

Example: Phase 2 (cont)

Consider the ($\Sigma_{\mathsf{cons}} \cup \Sigma_{\mathbb{Z}})\text{-formula}$

$$F$$
 : $\operatorname{car}(x) + \operatorname{car}(y) = z \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z)$.

After two applications of (1), Phase 1 separates F into the Σ_{cons} -formula

$$F_1: w_1 = \operatorname{car}(x) \wedge w_2 = \operatorname{car}(y) \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z)$$

and the $\Sigma_{\mathbb{Z}}\text{-formula}$

$$F_2$$
: $w_1 + w_2 = z$,

with

$$V = \text{shared}(F_1, F_2) = \{z, w_1, w_2\}$$
.

Consider the equivalence relation E given by the partition

$$\{\{z\}, \{w_1\}, \{w_2\}\}$$
.

The arrangement

$$\alpha(V,E): z \neq w_1 \land z \neq w_2 \land w_1 \neq w_2$$

satisfies both F_1 and F_2 : $F_1 \land \alpha(V, E)$ is T_{cons} -satisfiable, and $F_2 \land \alpha(V, E)$ is $T_{\mathbb{Z}}$ -satisfiable. Hence, F is $(T_{cons} \cup T_{\mathbb{Z}})$ -satisfiable.

Jochen Hoenicke (Software Engineering)

Phase 2 was formulated as "guess and check": First, guess an equivalence relation E, then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the # of shared variables. It is given by Bell numbers.

e.g., 12 shared variables \Rightarrow over four million equivalence relations.

Solution: Deterministic Version

Phase 1 as before Phase 2 asks the decision procedures P_1 and P_2 to propagate new equalities.

Example 1:

 $F: \quad f(f(x)-f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$

$$F : f(f(x) - f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$$

$$f(x) \Rightarrow u \quad f(y) \Rightarrow v \quad u - v \Rightarrow w$$

$$\begin{split} \Gamma_E : & \{f(w) \neq f(z), \ u = f(x), \ v = f(y)\} \\ \Gamma_{\mathbb{R}} : & \{x \leq y, \ y + z \leq x, \ 0 \leq z, \ w = u - v\} \\ & \dots T_{\mathbb{R}} \text{-formula} \\ & \text{shared}(\Gamma_{\mathbb{R}}, \Gamma_E) = \{x, y, z, u, v, w\} \end{split}$$

Nondeterministic version — over 200 *Es*! Let's try the deterministic version.

FREIBURG

Phase 2: Equality Propagation

 $P_{\mathbb{R}}$ P_E^{\perp} s_0 : $\langle \Gamma_{\mathbb{R}}, \Gamma_F, \{\} \rangle$ $\Gamma_{\mathbb{R}} \models x = y$ s_1 : $\langle \Gamma_{\mathbb{R}}, \Gamma_F, \{x = y\} \rangle$ $\Gamma_F \cup \{x = y\} \models u = v$ s_2 : $\langle \Gamma_{\mathbb{R}}, \Gamma_F, \{x = y, u = v\} \rangle$ $\Gamma_{\mathbb{R}} \cup \{u = v\} \models z = w$ s_3 : $\langle \Gamma_{\mathbb{R}}, \Gamma_F, \{x = y, u = v, z = w\} \rangle$ $\Gamma_F \cup \{z = w\} \models \mathsf{false}$ s₁ : false

Contradiction. Thus, F is $(T_{\mathbb{R}} \cup T_{E})$ -unsatisfiable.

If there were no contradiction, F would be $(T_{\mathbb{R}} \cup T_{E})$ -satisfiable.

Convex Theories

Definition (convex theory)

A Σ -theory T is convex iff for every quantifier-free conjunction Σ -formula Fand for every disjunction $\bigvee_{i=1}^{n} (u_i = v_i)$ if $F \models \bigvee_{i=1}^{n} (u_i = v_i)$ then $F \models u_i = v_i$, for some $i \in \{1, ..., n\}$

Claim

Equality propagation is a decision procedure for convex theories.

Jochen Hoenicke (Software Engineering)

Decision Procedures

Convex Theories

- T_E , $T_{\mathbb{R}}$, $T_{\mathbb{Q}}$, T_{cons} are convex
- $T_{\mathbb{Z}}, T_{\mathsf{A}}$ are not convex

Example: $T_{\mathbb{Z}}$ is not convex Consider quantifier-free conjunctive

 $F: \quad 1 \le z \land z \le 2 \land u = 1 \land v = 2$ $F \models z = u \lor z = v$

but

Then

$$\begin{array}{cccc} F & \not\models & z = u \\ F & \not\models & z = v \end{array}$$

UNI FREIBURG

Example:

The theory of arrays T_A is not convex. Consider the quantifier-free conjunctive Σ_A -formula

$$F : a\langle i \triangleleft v \rangle [j] = v$$
.

Then

$$F \Rightarrow i = j \lor a[j] = v$$
,

but

$$F \not\Rightarrow i = j$$

 $F \not\Rightarrow a[j] = v$.

What if T is Not Convex?

Case split when:

$$\Gamma \models \bigvee_{i=1}^n (u_i = v_i)$$

but

$$\Gamma \not\models u_i = v_i$$
 for all $i = 1, \ldots, n$

- For each i = 1, ..., n, construct a branch on which $u_i = v_i$ is assumed.
- If all branches are contradictory, then **unsatisfiable**. Otherwise, **satisfiable**.

Example 2: Non-Convex Theory

$T_{\mathbb{Z}}$ not convex!

UNI FREIBURG

$$\Gamma: \left\{ \begin{array}{ll} 1 \leq x, & x \leq 2, \\ f(x) \neq f(1), & f(x) \neq f(2) \end{array} \right\} \quad \text{in } T_{\mathbb{Z}} \cup T_{E}$$

• Replace
$$f(1)$$
 by $f(w_1)$, and add $w_1 = 1$.

• Replace f(2) by $f(w_2)$, and add $w_2 = 2$.

Result:

$$\Gamma_{\mathbb{Z}} = \left\{ \begin{array}{l} 1 \leq x, \\ x \leq 2, \\ w_1 = 1, \\ w_2 = 2 \end{array} \right\} \text{ and } \Gamma_E = \left\{ \begin{array}{l} f(x) \neq f(w_1), \\ f(x) \neq f(w_2) \end{array} \right\}$$

shared($\Gamma_{\mathbb{Z}}, \Gamma_E$) = { x, w_1, w_2 }

Example 2: Non-Convex Theory

All leaves are labeled with $\bot \Rightarrow \Gamma$ is $(T_{\mathbb{Z}} \cup T_E)$ -unsatisfiable.

Example 3: Non-Convex Theory

$$\Gamma : \left\{ \begin{array}{c} 1 \leq x, \ x \leq 3, \\ f(x) \neq f(1), \ f(x) \neq f(3), \ f(1) \neq f(2) \end{array} \right\} \quad \text{in } T_{\mathbb{Z}} \cup T_{E}$$

- Replace f(1) by $f(w_1)$, and add $w_1 = 1$.
- Replace f(2) by $f(w_2)$, and add $w_2 = 2$.
- Replace f(3) by $f(w_3)$, and add $w_3 = 3$.

Result:

$$\Gamma_{\mathbb{Z}} = \begin{cases} 1 \le x, \\ x \le 3, \\ w_1 = 1, \\ w_2 = 2, \\ w_3 = 3 \end{cases} \text{ and } \Gamma_E = \begin{cases} f(x) \ne f(w_1), \\ f(x) \ne f(w_3), \\ f(w_1) \ne f(w_2) \end{cases}$$
shared($\Gamma_{\mathbb{Z}}, \Gamma_E$) = {x, w₁, w₂, w₃}

UNI FREIBURG

Example 3: Non-Convex Theory

$$s_{0} : \langle \Gamma_{\mathbb{Z}}, \Gamma_{E}, \{\} \rangle$$

$$\Gamma_{\mathbb{Z}} \models x = w_{1} \lor x = w_{2} \lor x = w_{3}$$

$$x = w_{1} \qquad x = w_{2}$$

$$s_{1} : \langle \Gamma_{\mathbb{Z}}, \Gamma_{E}, \{x = w_{1}\} \rangle s_{3} : \langle \Gamma_{\mathbb{Z}}, \Gamma_{E}, \{x = w_{2}\} \rangle s_{4} : \langle \Gamma_{\mathbb{Z}}, \Gamma_{E}, \{x = w_{3}\} \rangle$$

$$\Gamma_{E} \cup \{x = w_{1}\} \models \bot \qquad \Gamma_{E} \cup \{x = w_{3}\} \models \bot$$

$$s_{2} : \bot \qquad s_{5} : \bot$$

No more equations on middle leaf $\Rightarrow \Gamma$ is $(T_{\mathbb{Z}} \cup T_E)$ -satisfiable.

UNI FREIBURG