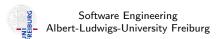
Decision Procedures

Jochen Hoenicke



Summer 2012

Nelson-Oppen Theory Combination

Motivation: How do we show that

$$F: 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$$

is $(T_E \cup T_{\mathbb{Z}})$ -unsatisfiable?

Combining Decision Procedures: Nelson-Oppen Method

Motivation: How do we show that

$$F: 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$$

is $(T_E \cup T_{\mathbb{Z}})$ -unsatisfiable?

Given

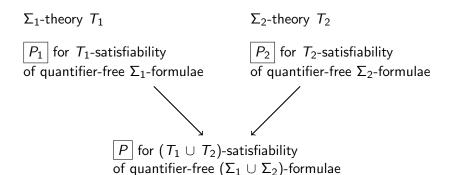
Multiple Theories T_i over signatures Σ_i (constants, functions, predicates) with corresponding decision procedures P_i for T_i -satisfiability.

Goal

Decide satisfiability of a sentence in theory $\cup_i T_i$.

Nelson-Oppen Combination Method (N-O Method)

$$\Sigma_1 \cap \Sigma_2 = \{=\}$$



We show how to get Procedure P from Procdures P_1 and P_2 .

Given formula F in theory $T_1 \cup T_2$.

- 1 F must be quantifier-free.
- ② Signatures Σ_i of the combined theory only share =, i.e.,

$$\Sigma_1 \cap \Sigma_2 = \{=\}$$

Theories must be stably infinite.

Given formula F in theory $T_1 \cup T_2$.

- F must be quantifier-free.
- ② Signatures Σ_i of the combined theory only share =, i.e.,

$$\Sigma_1 \cap \Sigma_2 = \{=\}$$

Theories must be stably infinite.

Note:

- Algorithm can be extended to combine arbitrary number of theories T_i combine two, then combine with another, and so on.
- We restrict F to be conjunctive formula otherwise convert to DNF and check each disjunct.

Stably Infinite Theories

Problem: The T_1/T_2 -interpretations must have the same data domain; it turns out same cardinality, e.g. infinite, is enough.

Problem: The T_1/T_2 -interpretations must have the same data domain; it turns out same cardinality, e.g. infinite, is enough.

Definition (stably infinite)

A Σ -theory T is stably infinite iff

for every quantifier-free Σ -formula F:

if F is T-satisfiable

then there exists some infinite *T*-interpretation that satisfies *F* with infinite cardinality.

T_ℤ:

- $T_{\mathbb{Z}}$: stably infinite (all *T*-interpretations are infinite).
- ullet $T_{\mathbb{Q}}$:

- $T_{\mathbb{Z}}$: stably infinite (all T-interpretations are infinite).
- $T_{\mathbb{Q}}$: stably infinite (all T-interpretations are infinite).
- *T*_E:

- $T_{\mathbb{Z}}$: stably infinite (all T-interpretations are infinite).
- $T_{\mathbb{Q}}$: stably infinite (all T-interpretations are infinite).
- T_E: stably infinite (one can add infinitely many fresh and distinct values).

- $T_{\mathbb{Z}}$: stably infinite (all T-interpretations are infinite).
- $T_{\mathbb{Q}}$: stably infinite (all T-interpretations are infinite).
- T_E: stably infinite (one can add infinitely many fresh and distinct values).
- Σ -theory T with Σ : $\{a, b, =\}$ and axiom $\forall x. \ x = a \ \lor \ x = b$:

- $T_{\mathbb{Z}}$: stably infinite (all T-interpretations are infinite).
- $T_{\mathbb{Q}}$: stably infinite (all T-interpretations are infinite).
- T_E: stably infinite (one can add infinitely many fresh and distinct values).
- Σ -theory T with Σ : $\{a, b, =\}$ and axiom $\forall x. \ x = a \lor x = b$: not stable infinite, since every T-interpretation has at most two elements.

Consider quantifier-free conjunctive $(\Sigma_E \cup \Sigma_{\mathbb{Z}})$ -formula

$$F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2).$$

Consider quantifier-free conjunctive $(\Sigma_E \cup \Sigma_{\mathbb{Z}})$ -formula

$$F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2).$$

The signatures of T_E and $T_{\mathbb{Z}}$ only share =. Also, both theories are stably infinite. Hence, the NO combination of the decision procedures for T_E and $T_{\mathbb{Z}}$ decides the $(T_E \cup T_{\mathbb{Z}})$ -satisfiability of F.

Consider quantifier-free conjunctive $(\Sigma_E \cup \Sigma_{\mathbb{Z}})$ -formula

$$F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$$
.

The signatures of T_E and $T_{\mathbb{Z}}$ only share =. Also, both theories are stably infinite. Hence, the NO combination of the decision procedures for T_E and $T_{\mathbb{Z}}$ decides the $(T_E \cup T_{\mathbb{Z}})$ -satisfiability of F.

F is $(T_E \cup T_\mathbb{Z})$ -unsatisfiable: The first two literals imply $x=1 \lor x=2$ so that $f(x)=f(1) \lor f(x)=f(2)$. This contradicts last two literals.

Phase 1: Variable Abstraction

- Given conjunction Γ in theory $T_1 \cup T_2$.
- Convert to conjunction $\Gamma_1 \cup \Gamma_2$ s.t.
 - Γ_i in theory T_i
 - $\Gamma_1 \cup \Gamma_2$ satisfiable iff Γ satisfiable.

Phase 1: Variable Abstraction

- Given conjunction Γ in theory $T_1 \cup T_2$.
- Convert to conjunction $\Gamma_1 \cup \Gamma_2$ s.t.
 - Γ_i in theory T_i
 - $\Gamma_1 \cup \Gamma_2$ satisfiable iff Γ satisfiable.

Phase 2: Check

- If there is some set S of equalities and disequalities between the shared variables of Γ_1 and Γ_2 shared $(\Gamma_1, \Gamma_2) = \text{free}(\Gamma_1) \cap \text{free}(\Gamma_2)$ s.t. $S \cup \Gamma_i$ are T_i -satisfiable for all i, then Γ is **satisfiable**.
- Otherwise, unsatisfiable.

Consider quantifier-free conjunctive $(\Sigma_1 \cup \Sigma_2)$ -formula F.

Two versions:

- nondeterministic simple to present, but high complexity
- deterministic efficient

Nelson-Oppen (N-O) method proceeds in two steps:

- Phase 1 (variable abstraction)
 same for both versions
- Phase 2
 - nondeterministic: guess equalities/disequalities and check deterministic: generate equalities/disequalities by equality propagation

```
Given quantifier-free conjunctive (\Sigma_1 \cup \Sigma_2)-formula F.
 Transform F into two quantifier-free conjunctive formulae \Sigma_1-formula F_1 and \Sigma_2-formula F_2
 s.t. F is (T_1 \cup T_2)-satisfiable iff F_1 \wedge F_2 is (T_1 \cup T_2)-satisfiable
```

Given quantifier-free conjunctive $(\Sigma_1 \cup \Sigma_2)$ -formula F. Transform F into two quantifier-free conjunctive formulae Σ_1 -formula F_1 and Σ_2 -formula F_2 s.t. F is $(T_1 \cup T_2)$ -satisfiable iff $F_1 \wedge F_2$ is $(T_1 \cup T_2)$ -satisfiable F_1 and F_2 are linked via a set of shared variables.

Given quantifier-free conjunctive $(\Sigma_1 \cup \Sigma_2)$ -formula F. Transform F into two quantifier-free conjunctive formulae Σ_1 -formula F_1 and Σ_2 -formula F_2 s.t. F is $(T_1 \cup T_2)$ -satisfiable iff $F_1 \wedge F_2$ is $(T_1 \cup T_2)$ -satisfiable F_1 and F_2 are linked via a set of shared variables.

For term t, let hd(t) be the root symbol, e.g. hd(f(x)) = f.

Generation of F_1 and F_2

For $i, j \in \{1, 2\}$ and $i \neq j$, repeat the transformations

- if function $f \in \Sigma_i$ and $\operatorname{hd}(t) \in \Sigma_j$, $F[f(t_1,\ldots,t,\ldots,t_n)]$ egsat.
- ② if predicate $p \in \Sigma_i$ and $\mathsf{hd}(t) \in \Sigma_j$, $F[p(t_1, \dots, t, \dots, t_n)]$ eqsat.
- ullet if $\mathsf{hd}(s) \in \Sigma_i$ and $\mathsf{hd}(t) \in \Sigma_j$, F[s=t] eqsat.
- ullet if $\mathsf{hd}(s) \in \Sigma_i$ and $\mathsf{hd}(t) \in \Sigma_j$, $F[s
 eq t] \quad \textit{eqsat}.$

where w_1 , w_1 , and w_2 are fresh variables.

Generation of F_1 and F_2

For $i, j \in \{1, 2\}$ and $i \neq j$, repeat the transformations

- if function $f \in \Sigma_i$ and $\mathsf{hd}(t) \in \Sigma_j$, $F[f(t_1, \dots, t, \dots, t_n)] \quad \textit{eqsat}. \quad F[f(t_1, \dots, w, \dots, t_n)] \land w = t$
- ② if predicate $p \in \Sigma_i$ and $\mathsf{hd}(t) \in \Sigma_j$, $F[p(t_1,\ldots,t,\ldots,t_n)] \quad \textit{eqsat.} \quad F[p(t_1,\ldots,w,\ldots,t_n)] \land w = t$
- ullet if $\mathsf{hd}(s)\in \Sigma_i$ and $\mathsf{hd}(t)\in \Sigma_j$, $F[s=t] \quad ext{\it eqsat.} \quad F[op]\wedge w=s\wedge w=t$
- ullet if $\mathsf{hd}(s)\in\Sigma_i$ and $\mathsf{hd}(t)\in\Sigma_j$, $F[s
 eq t] \quad eqsat.\quad F[w_1
 eq w_2]\wedge w_1=s\wedge w_2=t$

where w_1 , w_1 , and w_2 are fresh variables.

Consider $(\Sigma_E \cup \Sigma_{\mathbb{Z}})$ -formula

$$F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$$
.

Consider $(\Sigma_E \cup \Sigma_{\mathbb{Z}})$ -formula

$$F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2).$$

According to transformation 1, since $f \in \Sigma_E$ and $1 \in \Sigma_{\mathbb{Z}}$, replace f(1) by $f(w_1)$ and add $w_1 = 1$. Similarly, replace f(2) by $f(w_2)$ and add $w_2 = 2$.

Consider $(\Sigma_E \cup \Sigma_{\mathbb{Z}})$ -formula

$$F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$$
.

According to transformation 1, since $f\in \Sigma_E$ and $1\in \Sigma_{\mathbb{Z}}$, replace f(1) by $f(w_1)$ and add $w_1=1$. Similarly, replace f(2) by $f(w_2)$ and add $w_2=2$. Now, the literals

$$\Gamma_{\mathbb{Z}}: \{1 \leq x, \ x \leq 2, \ w_1 = 1, \ w_2 = 2\}$$

are $T_{\mathbb{Z}}$ -literals, while the literals

$$\Gamma_E : \{ f(x) \neq f(w_1), f(x) \neq f(w_2) \}$$

are T_E -literals. Hence, construct the $\Sigma_{\mathbb{Z}}$ -formula

$$F_1: 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

and the Σ_E -formula

$$F_2: f(x) \neq f(w_1) \land f(x) \neq f(w_2).$$

 F_1 and F_2 share the variables $\{x, w_1, w_2\}$.

$$F_1 \wedge F_2$$
 is $(T_E \cup T_{\mathbb{Z}})$ -equisatisfiable to F .

Example: Phase 1

Consider $(\Sigma_E \cup \Sigma_{\mathbb{Z}})$ -formula

$$F: f(x) = x + y \wedge x \leq y + z \wedge x + z \leq y \wedge y = 1 \wedge f(x) \neq f(2).$$

Example: Phase 1

Consider $(\Sigma_E \cup \Sigma_{\mathbb{Z}})$ -formula

$$F: f(x) = x + y \wedge x \leq y + z \wedge x + z \leq y \wedge y = 1 \wedge f(x) \neq f(2).$$

In the first literal, $hd(f(x)) = f \in \Sigma_E$ and $hd(x + y) = + \in \Sigma_{\mathbb{Z}}$; thus, by (3), replace the literal with

$$w_1 = f(x) \wedge w_1 = x + y.$$

In the final literal, $f \in \Sigma_{\mathcal{E}}$ but $2 \in \Sigma_{\mathbb{Z}}$, so by (1), replace it with

$$f(x) \neq f(w_2) \wedge w_2 = 2.$$

Now, separating the literals results in two formulae:

$$F_1: w_1 = x + y \land x \le y + z \land x + z \le y \land y = 1 \land w_2 = 2$$

is a $\Sigma_{\mathbb{Z}}$ -formula, and

$$F_2: w_1 = f(x) \wedge f(x) \neq f(w_2)$$

is a Σ_E -formula.

The conjunction $F_1 \wedge F_2$ is $(T_E \cup T_{\mathbb{Z}})$ -equisatisfiable to F.

- Phase 1 separated $(\Sigma_1 \cup \Sigma_2)$ -formula F into two formulae: Σ_1 -formula F_1 and Σ_2 -formula F_2
- F_1 and F_2 are linked by a set of shared variables: $V = \text{shared}(F_1, F_2) = \text{free}(F_1) \cap \text{free}(F_2)$
- Let E be an equivalence relation over V.
- The arrangement $\alpha(V, E)$ of V induced by E is:

$$\alpha(V, E) : \bigwedge_{u,v \in V. \ uEv} u = v \land \bigwedge_{u,v \in V. \ \neg(uEv)} u \neq v$$

Lemma

The original formula F is $(T_1 \cup T_2)$ -satisfiable iff there exists an equivalence relation E of V s.t.

- (1) $F_1 \wedge \alpha(V, E)$ is T_1 -satisfiable, and
- (2) $F_2 \wedge \alpha(V, E)$ is T_2 -satisfiable.

Lemma

The original formula F is $(T_1 \cup T_2)$ -satisfiable iff there exists an equivalence relation E of V s.t.

- (1) $F_1 \wedge \alpha(V, E)$ is T_1 -satisfiable, and
- (2) $F_2 \wedge \alpha(V, E)$ is T_2 -satisfiable.

Proof:

 \Rightarrow If F is $(T_1 \cup T_2)$ -satisfiable, then $F_1 \wedge F_2$ is $(T_1 \cup T_2)$ -satisfiable, hence there is a $T_1 \cup T_2$ -Interpretation I with $I \models F_1 \wedge F_2$.

Define $E \subseteq V \times V$ with $u \in V$ iff $I \models u = V$.

Then E is a equivalence relation.

By definition of E and $\alpha(V, E)$, $I \models \alpha(V, E)$.

Hence $I \models F_1 \land \alpha(V, E)$ and $I \models F_2 \land \alpha(V, E)$.

Thus, these formulae are T_1 - and T_2 -satisfiable, respectively.

 \leftarrow Let I_1 and I_2 be T_1 - and T_2 -interpretations, respectively, with $I_1 \models F_1 \land \alpha(V, E)$ and $I_2 \models F_2 \land \alpha(V, E)$.

 \Leftarrow Let I_1 and I_2 be T_1 - and T_2 -interpretations, respectively, with $I_1 \models F_1 \land \alpha(V, E)$ and $I_2 \models F_2 \land \alpha(V, E)$.

W.l.o.g. assume that $\alpha_{I_1}[=](v, w)$ iff v = w iff $\alpha_{I_2}[=](v, w)$. (Otherwise, replace D_{I_i} with $D_{I_i}/\alpha_{I_i}[=]$)

 \leftarrow Let I_1 and I_2 be T_1 - and T_2 -interpretations, respectively, with $I_1 \models F_1 \land \alpha(V, E)$ and $I_2 \models F_2 \land \alpha(V, E)$.

W.l.o.g. assume that $\alpha_{I_1}[=](v, w)$ iff v = w iff $\alpha_{I_2}[=](v, w)$. (Otherwise, replace D_{I_i} with $D_{I_i}/\alpha_{I_i}[=]$)

Since T_1 and T_2 are stably infinite, we can assume that D_{l_1} and D_{l_2} are of the same cardinality.

 \leftarrow Let I_1 and I_2 be T_1 - and T_2 -interpretations, respectively, with $I_1 \models F_1 \land \alpha(V, E)$ and $I_2 \models F_2 \land \alpha(V, E)$.

W.l.o.g. assume that $\alpha_{I_1}[=](v,w)$ iff v=w iff $\alpha_{I_2}[=](v,w)$. (Otherwise, replace D_{I_i} with $D_{I_i}/\alpha_{I_i}[=]$)

Since T_1 and T_2 are stably infinite, we can assume that D_{l_1} and D_{l_2} are of the same cardinality.

Since
$$I_1 \models \alpha(V, E)$$
 and $I_2 \models \alpha(V, E)$, for $x, y \in V$:

$$\alpha_{I_1}[x] = \alpha_{I_1}[y] \text{ iff } \alpha_{I_2}[x] = \alpha_{I_2}[y].$$

 \leftarrow Let I_1 and I_2 be T_1 - and T_2 -interpretations, respectively, with

$$I_1 \models F_1 \wedge \alpha(V, E)$$
 and $I_2 \models F_2 \wedge \alpha(V, E)$.

W.l.o.g. assume that $\alpha_{I_1}[=](v,w)$ iff v=w iff $\alpha_{I_2}[=](v,w)$. (Otherwise, replace D_{I_i} with $D_{I_i}/\alpha_{I_i}[=]$)

Since T_1 and T_2 are stably infinite, we can assume that D_{l_1} and D_{l_2} are of the same cardinality.

Since
$$I_1 \models \alpha(V, E)$$
 and $I_2 \models \alpha(V, E)$, for $x, y \in V$:

$$\alpha_{I_1}[x] = \alpha_{I_1}[y] \text{ iff } \alpha_{I_2}[x] = \alpha_{I_2}[y].$$

Construct bijective function $g:D_{I_1}\to D_{I_2}$ with $g(\alpha_{I_1}[x])=\alpha_{I_2}[x]$ for all $x\in V$. Define I as follows: $D_I=D_{I_2}$, $\alpha_I[x]=\alpha_{I_2}[x](=g(\alpha_{I_1}[x]))$ for $x\in V$, $\alpha_I[=](v,w)$ iff v=w, $\alpha_I[f_2]=\alpha_{I_2}[f_2]$ for $f_2\in \Sigma_2$, $\alpha_I[f_1](v_1,\ldots,v_n)=g(\alpha_{I_1}[f_1](g^{-1}(v_1),\ldots,g^{-1}(v_n)))$ for $f_1\in \Sigma_1$.

 \leftarrow Let I_1 and I_2 be T_1 - and T_2 -interpretations, respectively, with

$$I_1 \models F_1 \wedge \alpha(V, E)$$
 and $I_2 \models F_2 \wedge \alpha(V, E)$.

W.l.o.g. assume that $\alpha_{I_1}[=](v,w)$ iff v=w iff $\alpha_{I_2}[=](v,w)$. (Otherwise, replace D_{I_i} with $D_{I_i}/\alpha_{I_i}[=]$)

Since T_1 and T_2 are stably infinite, we can assume that D_{l_1} and D_{l_2} are of the same cardinality.

Since
$$I_1 \models \alpha(V, E)$$
 and $I_2 \models \alpha(V, E)$, for $x, y \in V$:

$$\alpha_{I_1}[x] = \alpha_{I_1}[y] \text{ iff } \alpha_{I_2}[x] = \alpha_{I_2}[y].$$

Construct bijective function $g:D_{I_1}\to D_{I_2}$ with $g(\alpha_{I_1}[x])=\alpha_{I_2}[x]$ for all $x\in V$. Define I as follows: $D_I=D_{I_2}$, $\alpha_I[x]=\alpha_{I_2}[x](=g(\alpha_{I_1}[x]))$ for $x\in V$, $\alpha_I[=](v,w)$ iff v=w, $\alpha_I[f_2]=\alpha_{I_2}[f_2]$ for $f_2\in \Sigma_2$, $\alpha_I[f_1](v_1,\ldots,v_n)=g(\alpha_{I_1}[f_1](g^{-1}(v_1),\ldots,g^{-1}(v_n)))$ for $f_1\in \Sigma_1$.

Then I is a $T_1 \cup T_2$ -interpretation, and satisfies $F_1 \wedge F_2$. Hence F is $T_1 \cup T_2$ -satisfiable.

Consider
$$(\Sigma_E \cup \Sigma_{\mathbb{Z}})$$
-formula

$$F \ : \ 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$$

Consider $(\Sigma_E \cup \Sigma_{\mathbb{Z}})$ -formula

$$F : 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$$

Phase 1 separates this formula into the $\Sigma_{\mathbb{Z}}$ -formula

$$F_1: 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

and the Σ_E -formula

$$F_2: f(x) \neq f(w_1) \wedge f(x) \neq f(w_2)$$

with

$$V = \text{shared}(F_1, F_2) = \{x, w_1, w_2\}$$

Consider $(\Sigma_E \cup \Sigma_{\mathbb{Z}})$ -formula

$$F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$$

Phase 1 separates this formula into the $\Sigma_{\mathbb{Z}}$ -formula

$$F_1: 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$

and the Σ_E -formula

$$F_2: f(x) \neq f(w_1) \wedge f(x) \neq f(w_2)$$

with

$$V = \text{shared}(F_1, F_2) = \{x, w_1, w_2\}$$

There are 5 equivalence relations to consider, which we list by stating the partitions:

- $\{\{x, w_1, w_2\}\}$, i.e., $x = w_1 = w_2$: $x = w_1$ and $f(x) \neq f(w_1) \Rightarrow F_2 \land \alpha(V, E)$ is T_E -unsatisfiable.
- ② $\{\{x, w_1\}, \{w_2\}\}\$, *i.e.*, $x = w_1$, $x \neq w_2$: $x = w_1$ and $f(x) \neq f(w_1) \Rightarrow F_2 \land \alpha(V, E)$ is T_E -unsatisfiable.
- **③** {{ x, w_2 }, { w_1 }}, *i.e.*, $x = w_2$, $x \neq w_1$: $x = w_2$ and $f(x) \neq f(w_2) \Rightarrow F_2 \land \alpha(V, E)$ is T_E -unsatisfiable.
- **●** {{x}, { w_1 , w_2 }}, *i.e.*, $x \neq w_1$, $w_1 = w_2$: $w_1 = w_2$ and $w_1 = 1 \land w_2 = 2$ $\Rightarrow F_1 \land \alpha(V, E)$ is $T_{\mathbb{Z}}$ -unsatisfiable.
- **⑤** {{x}, {w₁}, {w₂}}, *i.e.*, $x \neq w_1$, $x \neq w_2$, $w_1 \neq w_2$: $x \neq w_1 \land x \neq w_2$ and $x = w_1 = 1 \lor x = w_2 = 2$ (since $1 \leq x \leq 2$ implies that $x = 1 \lor x = 2$ in $T_{\mathbb{Z}}$) $\Rightarrow F_1 \land \alpha(V, E)$ is $T_{\mathbb{Z}}$ -unsatisfiable.

Hence, F is $(T_E \cup T_{\mathbb{Z}})$ -unsatisfiable.

Consider the $(\Sigma_{\mathsf{cons}} \cup \Sigma_{\mathbb{Z}})$ -formula

$$F: \operatorname{car}(x) + \operatorname{car}(y) = z \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z)$$
.

Consider the $(\Sigma_{\mathsf{cons}} \cup \Sigma_{\mathbb{Z}})$ -formula

$$F: \operatorname{car}(x) + \operatorname{car}(y) = z \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z).$$

After two applications of (1), Phase 1 separates F into the Σ_{cons} -formula

$$F_1: w_1 = \operatorname{car}(x) \wedge w_2 = \operatorname{car}(y) \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z)$$

and the $\Sigma_{\mathbb{Z}}\text{-formula}$

$$F_2: w_1 + w_2 = z,$$

with

$$V = \text{shared}(F_1, F_2) = \{z, w_1, w_2\}$$
.

Consider the $(\Sigma_{\mathsf{cons}} \cup \Sigma_{\mathbb{Z}})$ -formula

$$F: \operatorname{car}(x) + \operatorname{car}(y) = z \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z).$$

After two applications of (1), Phase 1 separates F into the Σ_{cons} -formula

$$F_1: w_1 = \operatorname{car}(x) \wedge w_2 = \operatorname{car}(y) \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z)$$

and the $\Sigma_{\mathbb{Z}}$ -formula

$$F_2: w_1 + w_2 = z,$$

with

$$V = \text{shared}(F_1, F_2) = \{z, w_1, w_2\}$$
.

Consider the equivalence relation E given by the partition

$$\{\{z\},\{w_1\},\{w_2\}\}$$
 .

Consider the $(\Sigma_{\mathsf{cons}} \cup \Sigma_{\mathbb{Z}})$ -formula

$$F: \operatorname{car}(x) + \operatorname{car}(y) = z \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z).$$

After two applications of (1), Phase 1 separates F into the Σ_{cons} -formula

$$F_1: w_1 = \operatorname{car}(x) \wedge w_2 = \operatorname{car}(y) \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z)$$

and the $\Sigma_{\mathbb{Z}}$ -formula

$$F_2: w_1 + w_2 = z,$$

with

$$V = \text{shared}(F_1, F_2) = \{z, w_1, w_2\}$$
.

Consider the equivalence relation E given by the partition

$$\{\{z\},\{w_1\},\{w_2\}\}$$
.

The arrangement

$$\alpha(V, E)$$
: $z \neq w_1 \land z \neq w_2 \land w_1 \neq w_2$

satisfies both F_1 and F_2 : $F_1 \wedge \alpha(V, E)$ is T_{cons} -satisfiable, and $F_2 \wedge \alpha(V, E)$ is $T_{\mathbb{Z}}$ -satisfiable.

Hence, F is $(T_{cons} \cup T_{\mathbb{Z}})$ -satisfiable.

Phase 2 was formulated as "guess and check": First, guess an equivalence relation E, then check the induced arrangement.

Practical Efficiency

Phase 2 was formulated as "guess and check": First, guess an equivalence relation E, then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the # of shared variables. It is given by Bell numbers.

e.g., 12 shared variables \Rightarrow over four million equivalence relations.

Practical Efficiency

Phase 2 was formulated as "guess and check": First, guess an equivalence relation E, then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the # of shared variables. It is given by Bell numbers.

e.g., 12 shared variables \Rightarrow over four million equivalence relations.

Solution: Deterministic Version

Phase 1 as before

Phase 2 asks the decision procedures P_1 and P_2 to propagate new equalities.

Example 1:

Real linear arithmethic $T_{\mathbb{R}}$ $|P_{\mathbb{R}}|$

Theory of equality T_E P_E

$$F: f(f(x)-f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$$

$$F: f(f(x) - f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$$

$$F: f(f(x) - f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$$

$$f(x) \Rightarrow u \quad f(y) \Rightarrow v \quad u - v \Rightarrow w$$

$$F: f(f(x) - f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$$

$$f(x) \Rightarrow u \quad f(y) \Rightarrow v \quad u - v \Rightarrow w$$

$$\Gamma_E: \{f(w) \neq f(z), u = f(x), v = f(y)\} \dots T_E$$
-formula
 $\Gamma_\mathbb{R}: \{x \leq y, y + z \leq x, 0 \leq z, w = u - v\} \dots T_\mathbb{R}$ -formula
 $\mathsf{shared}(\Gamma_\mathbb{R}, \Gamma_E) = \{x, y, z, u, v, w\}$

$$F: f(f(x) - f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$$

 $f(x) \Rightarrow u \quad f(y) \Rightarrow v \quad u - v \Rightarrow w$

$$\Gamma_{\mathbb{R}}: \quad \{x \leq y, \ y+z \leq x, \ 0 \leq z, \ w=u-v\} \quad \dots T_{\mathbb{R}}$$
-formula
$$\mathsf{shared}(\Gamma_{\mathbb{R}}, \Gamma_{E}) = \{x, y, z, u, v, w\}$$

Nondeterministic version — over 200 *Es!* Let's try the deterministic version.

 $\Gamma_F : \{ f(w) \neq f(z), u = f(x), v = f(y) \}$

 $\dots T_F$ -formula

FREBU

 $P_{\mathbb{R}}$

 s_0 : $\langle \Gamma_{\mathbb{R}}, \Gamma_E, \{\} \rangle$

 P_E

FREIBUR

$$P_{\mathbb{R}}$$

$$\textit{s}_0 \; : \; \left\langle \Gamma_{\mathbb{R}}, \Gamma_{\textit{E}}, \{\} \right\rangle$$

 P_E

$$\Gamma_{\mathbb{R}} \models x = y$$

$$s_1: \langle \Gamma_{\mathbb{R}}, \Gamma_E, \{x=y\} \rangle$$

FREIBUR

$$P_{\mathbb{R}}$$

$$s_0$$
: $\langle \Gamma_{\mathbb{R}}, \Gamma_{E}, \{\} \rangle$

$$P_E$$

$$\Gamma_{\mathbb{R}} \models x = y$$

$$s_1: \langle \Gamma_{\mathbb{R}}, \Gamma_E, \{x=y\} \rangle$$

$$\Gamma_E \cup \{x = y\} \models u = v$$

$$s_2\,:\,\langle \Gamma_{\mathbb{R}}, \Gamma_E, \{x\,=\,y,u\,=\,v\}\rangle$$

FREIBU

$$P_{\mathbb{R}}$$

$$s_0: \langle \Gamma_{\mathbb{R}}, \Gamma_E, \{\} \rangle$$

$$P_E$$

$$\Gamma_{\mathbb{R}} \models x = y$$

$$s_1: \langle \Gamma_{\mathbb{R}}, \Gamma_E, \{x=y\} \rangle$$

$$\Gamma_E \cup \{x = y\} \models u = v$$

$$s_2: \langle \Gamma_{\mathbb{R}}, \Gamma_{\mathcal{E}}, \{x = y, u = v\} \rangle$$

$$\Gamma_{\mathbb{R}} \cup \{u = v\} \models z = w$$

$$s_3: \langle \Gamma_{\mathbb{R}}, \Gamma_E, \{x=y, u=v, z=w\} \rangle$$

FREIBU

$$P_{\mathbb{R}}$$

$$s_0: \langle \Gamma_{\mathbb{R}}, \Gamma_{\mathcal{E}}, \{\} \rangle$$

 P_E

$$\Gamma_{\mathbb{R}} \models x = y$$

$$s_1: \langle \Gamma_{\mathbb{R}}, \Gamma_E, \{x=y\} \rangle$$

$$\Gamma_E \cup \{x = y\} \models u = v$$

$$s_2: \langle \Gamma_{\mathbb{R}}, \Gamma_{\mathcal{E}}, \{x = y, u = v\} \rangle$$

$$\Gamma_{\mathbb{R}} \cup \{u = v\} \models z = w$$

$$s_3: \langle \Gamma_{\mathbb{R}}, \Gamma_E, \{x=y, u=v, z=w\} \rangle$$

$$\Gamma_E \cup \{z = w\} \models \mathsf{false}$$

UNI

$$P_{\mathbb{R}}$$

$$s_0: \langle \Gamma_{\mathbb{R}}, \Gamma_{E}, \{\} \rangle$$

 P_E

$$\Gamma_{\mathbb{R}} \models x = y$$

$$s_1: \langle \Gamma_{\mathbb{R}}, \Gamma_E, \{x=y\} \rangle$$

$$\Gamma_E \cup \{x = y\} \models u = v$$

$$s_2: \langle \Gamma_{\mathbb{R}}, \Gamma_{\mathcal{E}}, \{x = y, u = v\} \rangle$$

$$\Gamma_{\mathbb{R}} \cup \{u = v\} \models z = w$$

$$s_3: \langle \Gamma_{\mathbb{R}}, \Gamma_{E}, \{x=y, u=v, z=w\} \rangle$$

$$\Gamma_E \cup \{z = w\} \models \mathsf{false}$$

 s_4 : false

Contradiction. Thus, F is $(T_{\mathbb{R}} \cup T_E)$ -unsatisfiable.

FREIBUR

$$P_{\mathbb{R}}$$

$$s_0: \langle \Gamma_{\mathbb{R}}, \Gamma_{E}, \{\} \rangle$$

 P_E

$$\Gamma_{\mathbb{R}} \models x = y$$

$$s_1: \langle \Gamma_{\mathbb{R}}, \Gamma_E, \{x=y\} \rangle$$

$$\Gamma_E \cup \{x = y\} \models u = v$$

$$s_2: \langle \Gamma_{\mathbb{R}}, \Gamma_{\mathcal{E}}, \{x = y, u = v\} \rangle$$

$$\Gamma_{\mathbb{R}} \cup \{u = v\} \models z = w$$

$$s_3: \langle \Gamma_{\mathbb{R}}, \Gamma_{E}, \{x=y, u=v, z=w\} \rangle$$

$$\Gamma_E \cup \{z = w\} \models \mathsf{false}$$

 s_4 : false

Contradiction. Thus, F is $(T_{\mathbb{R}} \cup T_E)$ -unsatisfiable.

If there were no contradiction, F would be $(T_{\mathbb{R}} \cup T_E)$ -satisfiable.

Definition (convex theory)

A Σ -theory T is convex iff for every quantifier-free conjunction Σ -formula F and for every disjunction $\bigvee_{i=1}^n (u_i = v_i)$ if $F \models \bigvee_{i=1}^n (u_i = v_i)$ then $F \models u_i = v_i$, for some $i \in \{1, \ldots, n\}$

Claim

Equality propagation is a decision procedure for convex theories.

Convex Theories

ullet T_E , $T_{\mathbb{R}}$, $T_{\mathbb{Q}}$, T_{cons} are convex

Convex Theories

- T_E , $T_{\mathbb{R}}$, $T_{\mathbb{Q}}$, T_{cons} are convex
- ullet $T_{\mathbb{Z}}, T_{\mathsf{A}}$ are not convex

- T_E , $T_{\mathbb{R}}$, $T_{\mathbb{O}}$, T_{cons} are convex
- $T_{\mathbb{Z}}$, T_{A} are not convex

Example: $T_{\mathbb{Z}}$ is not convex

Consider quantifier-free conjunctive

$$F: 1 \leq z \wedge z \leq 2 \wedge u = 1 \wedge v = 2$$

- T_E , $T_{\mathbb{R}}$, $T_{\mathbb{O}}$, T_{cons} are convex
- $T_{\mathbb{Z}}$, T_{A} are not convex

Example: $T_{\mathbb{Z}}$ is not convex

Consider quantifier-free conjunctive

$$F: 1 \leq z \wedge z \leq 2 \wedge u = 1 \wedge v = 2$$

Then

$$F \models z = u \lor z = v$$

$$F \not\models z = u$$

 $F \not\models z = v$

Example:

The theory of arrays T_A is not convex.

Example:

The theory of arrays T_A is not convex. Consider the quantifier-free conjunctive Σ_A -formula

$$F: a\langle i \triangleleft v \rangle [j] = v.$$

Example:

The theory of arrays T_A is not convex.

Consider the quantifier-free conjunctive $\Sigma_{\mbox{\scriptsize A}}\mbox{-formula}$

$$F: a\langle i \triangleleft v \rangle [j] = v.$$

Then

$$F \Rightarrow i = j \vee a[j] = v ,$$

$$F \not\Rightarrow i = j$$

 $F \not\Rightarrow a[j] = v$.

Case split when:

$$\Gamma \models \bigvee_{i=1}^{n} (u_i = v_i)$$

$$\Gamma \not\models u_i = v_i$$

for all
$$i = 1, \ldots, n$$

Case split when:

$$\Gamma \models \bigvee_{i=1}^n (u_i = v_i)$$

$$\Gamma \not\models u_i = v_i$$
 for all $i = 1, \dots, n$

- For each i = 1, ..., n, construct a branch on which $u_i = v_i$ is assumed.
- If all branches are contradictory, then unsatisfiable.
 Otherwise, satisfiable.

Example 2: Non-Convex Theory

 $T_{\mathbb{Z}}$ not convex!

$$P_{\mathbb{Z}}$$

$$\Gamma: \left\{ \begin{array}{ll} 1 \leq x, & x \leq 2, \\ f(x) \neq f(1), & f(x) \neq f(2) \end{array} \right\} \quad \text{in } T_{\mathbb{Z}} \cup T_{E}$$

$$T_E$$
 convex P_E

in
$$T_{\mathbb{Z}} \cup T_{\mathcal{E}}$$

Example 2: Non-Convex Theory

 $T_{\mathbb{Z}}$ not convex!

$$T_E$$
 convex P_E

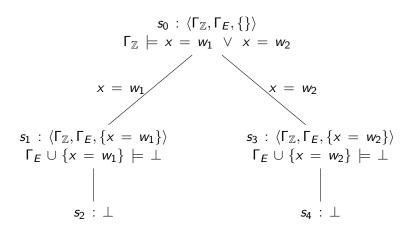
$$\Gamma: \left\{\begin{array}{ll} 1 \leq x, & x \leq 2, \\ f(x) \neq f(1), & f(x) \neq f(2) \end{array}\right\} \quad \text{in } T_{\mathbb{Z}} \cup T_{E}$$

- Replace f(1) by $f(w_1)$, and add $w_1 = 1$.
- Replace f(2) by $f(w_2)$, and add $w_2 = 2$.

Result:

$$\Gamma_{\mathbb{Z}} = \left\{ egin{array}{l} 1 \leq x, \ x \leq 2, \ w_1 = 1, \ w_2 = 2 \end{array}
ight\} \quad ext{and} \quad \Gamma_{E} = \left\{ egin{array}{l} f(x)
eq f(w_1), \ f(x)
eq f(w_2) \end{array}
ight\}$$

$$\operatorname{shared}(\Gamma_{\mathbb{Z}}, \Gamma_{E}) = \{x, w_1, w_2\}$$



All leaves are labeled with $\bot \Rightarrow \Gamma$ is $(T_{\mathbb{Z}} \cup T_{E})$ -unsatisfiable.

Example 3: Non-Convex Theory

$$\Gamma: \left\{\begin{array}{c} 1 \leq x, \quad x \leq 3, \\ f(x) \neq f(1), \ f(x) \neq f(3), \ f(1) \neq f(2) \end{array}\right\} \quad \text{in } T_{\mathbb{Z}} \cup T_{E}$$

Example 3: Non-Convex Theory

$$\Gamma : \left\{ \begin{array}{c} 1 \leq x, \quad x \leq 3, \\ f(x) \neq f(1), \ f(x) \neq f(3), \ f(1) \neq f(2) \end{array} \right\} \quad \text{in } T_{\mathbb{Z}} \cup T_E$$

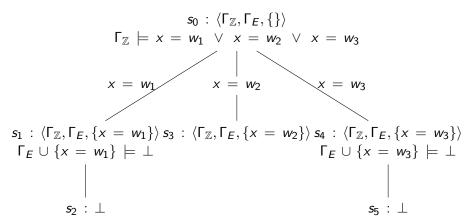
- Replace f(1) by $f(w_1)$, and add $w_1 = 1$.
- Replace f(2) by $f(w_2)$, and add $w_2 = 2$.
- Replace f(3) by $f(w_3)$, and add $w_3 = 3$.

Result:

$$\Gamma_{\mathbb{Z}}=\left\{egin{array}{l} 1\leq x,\ x\leq 3,\ w_1=1,\ w_2=2,\ w_3=3 \end{array}
ight\} \quad ext{and} \quad \Gamma_{E}=\left\{egin{array}{l} f(x)
eq f(w_1),\ f(x)
eq f(w_3),\ f(w_1)
eq f(w_2) \end{array}
ight\}$$

$$\operatorname{shared}(\Gamma_{\mathbb{Z}}, \Gamma_E) = \{x, w_1, w_2, w_3\}$$

Example 3: Non-Convex Theory



No more equations on middle leaf $\Rightarrow \Gamma$ is $(T_{\mathbb{Z}} \cup T_{E})$ -satisfiable.