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DPLL(T)



Satisfiability and Conjunctive Theories

Suppose we have a TQ-formulae that is not conjunctive:

(x ≥ 0→y > z)∧ (x + y ≥ z→y ≤ z)∧ (y ≥ 0→x ≥ 0)∧x + y ≥ z

Our approach so far: Converting to DNF.
Yields in 8 conjuncts that have to be checked separately.

Is there a more efficient way to prove unsatisfiability?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 3 / 20



Satisfiability and Conjunctive Theories

Suppose we have a TQ-formulae that is not conjunctive:

(x ≥ 0→y > z)∧ (x + y ≥ z→y ≤ z)∧ (y ≥ 0→x ≥ 0)∧x + y ≥ z

Our approach so far: Converting to DNF.
Yields in 8 conjuncts that have to be checked separately.

Is there a more efficient way to prove unsatisfiability?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 3 / 20



Satisfiability and Conjunctive Theories

Suppose we have a TQ-formulae that is not conjunctive:

(x ≥ 0→y > z)∧ (x + y ≥ z→y ≤ z)∧ (y ≥ 0→x ≥ 0)∧x + y ≥ z

Our approach so far: Converting to DNF.
Yields in 8 conjuncts that have to be checked separately.

Is there a more efficient way to prove unsatisfiability?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 3 / 20



CNF and Propositional Core

Suppose we have the following TQ-formulae:

(x ≥ 0→y > z)∧ (x + y ≥ z→y ≤ z)∧ (y ≥ 0→x ≥ 0)∧x + y ≥ z

Converting to CNF and restricting to ≤:

(¬(0 ≤ x) ∨ ¬(y ≤ z)) ∧ (¬(z ≤ x + y) ∨ (y ≤ z))

∧(¬(0 ≤ y) ∨ (0 ≤ x)) ∧ (z ≤ x + y)

Now, introduce boolean variables for each atom:

P1 : 0 ≤ x P2 : y ≤ z

P3 : z ≤ x + y P4 : 0 ≤ y

Gives a propositional formula:

(¬P1 ∨ ¬P2) ∧ (¬P3 ∨ P2) ∧ (¬P4 ∨ P1) ∧ P3
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DPLL-Algorithm

The core feature of the DPLL-algorithm is Unit Propagation.

(¬P1 ∨ ¬P2) ∧ (¬P3 ∨ P2) ∧ (¬P4 ∨ P1) ∧ P3

The clause P3 is a unit clause; set P3 to >.
Then ¬P3 ∨ P2 is a unit clause; set P2 to >.
Then ¬P1 ∨ ¬P2 is a unit clause; set P1 to ⊥.
Then ¬P4 ∨ P1 is a unit clause; set P4 to ⊥.

Only solution is P3 ∧ P2 ∧ ¬P1 ∧ ¬P4.
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DPLL-Algorithm

Only solution is P3 ∧ P2 ∧ ¬P1 ∧ ¬P4.

P1 : 0 ≤ x P2 : y ≤ z

P3 : z ≤ x + y P4 : 0 ≤ y

This gives the conjunctive TQ-formula

z ≤ x + y ∧ y ≤ z ∧ x < 0 ∧ y < 0.
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DPLL(T) with Learning (CDCL)

We describe DPLL(T) by a set of rules modifying a configuration.
A configuration is a triple

〈M,F ,C 〉 ,

where

M (model) is a sequence of literals (that are currently set to true)
interspersed with backtracking points denoted by �.

F (formula) is a formula in CNF,
i. e., a set of clauses where each clause is a set of literals.

C (conflict) is either > or a conflict clause (a set of literals).
A conflict clause C is a clause with F ⇒ C and M 6|= C .
Thus, a conflict clause shows M 6|= F .
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Rule Based Description

We describe the algorithm by a set of rules, which each describe a set of
transitions between configurations, e. g.,

Explain
〈M,F ,C ∪ {`}〉

〈M,F ,C ∪ {`1, . . . , `k}〉
where ` /∈ C , {`1, . . . , `k , ¯̀} ∈ F ,
and ¯̀

1, . . . , ¯̀
k ≺ ¯̀ in M.

Here, ¯̀
1, . . . , ¯̀

k ≺ ` in M means the literals ¯̀
1, . . . , ¯̀

k occur in the
sequence M before the literal ` (and all literals appear in M).

Example: for M = P1P̄3P̄2P̄4, F = {{P1}, {P3, P̄4}}, and C = {P2}
the transition

〈M,F , {P2,P4}〉 −→ 〈M,F , {P2,P3}〉

is possible.
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Rules for CDCL (Conflict Driven Clause Learning)

Decide
〈M,F ,>〉

〈M · � · `,F ,>〉
where ` ∈ lit(F ), `, ¯̀ 6in M

Propagate
〈M,F ,>〉
〈M · `,F ,>〉

where {`1, . . . , `k , `} ∈ F
and ¯̀

1, . . . , ¯̀
k in M, `, ¯̀ 6in M.

Conflict
〈M,F ,>〉

〈M,F , {`1, . . . , `k}〉
where {`1, . . . , `k} ∈ F
and ¯̀

1, . . . , ¯̀
k in M.

Explain
〈M,F ,C ∪ {`}〉

〈M,F ,C ∪ {`1, . . . , `k}〉
where ` /∈ C , {`1, . . . , `k , ¯̀} ∈ F ,
and ¯̀

1, . . . , ¯̀
k ≺ ¯̀ in M.

Learn
〈M,F ,C 〉

〈M,F ∪ {C},C 〉
where C 6= >, C /∈ F .

Back
〈M,F , {`1, . . . , `k , `}〉
〈M ′ · `,F ,>〉

where {`1, . . . , `k , `} ∈ F ,
M = M ′ · � · · · ¯̀· · · ,
and ¯̀

1, . . . , ¯̀
k in M ′.
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Example: DPLL with Learning

P1∧ (¬P2∨P3)∧ (¬P4∨P3)∧ (P2∨P4)∧ (¬P1∨¬P4∨¬P3)∧ (P4∨¬P3)

The algorithm starts with M = ε, C = > and
F = {{P1}, {P̄2,P3}, {P̄4,P3}, {P2,P4}, {P̄1, P̄4, P̄3}, {P4, P̄3}}.

〈ε,F ,>〉 Propagate−→ 〈P1,F ,>〉
Decide−→ 〈P1�P̄2,F ,>〉

Propagate−→
〈P1�P̄2P4,F ,>〉

Propagate−→ 〈P1�P̄2P4P3,F ,>〉
Conflict−→

〈P1�P̄2P4P3,F , {P̄1, P̄4, P̄3}〉
Explain−→ 〈P1�P̄2P4P3,F , {P̄1, P̄4}〉

Learn−→
〈P1�P̄2P4P3,F

′, {P̄1, P̄4}〉
Back−→ 〈P1P̄4,F

′,>〉 Propagate−→
〈P1P̄4P2P3,F

′,>〉 Conflict−→ 〈P1P̄4P2P3,F
′, {P4, P̄3}〉

Explain−→
〈P1P̄4P2P3,F

′, {P4, P̄2}〉
Explain−→ 〈P1P̄4P2P3,F

′, {P4}〉
Explain−→

〈P1P̄4P2P3,F
′, {P̄1}〉

Explain−→ 〈P1P̄4P2P3,F
′, ∅〉 Learn−→

〈P1P̄4P2P3,F
′ ∪ {∅}, ∅〉

where F ′ = F ∪ {{P̄1, P̄4}}.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 20



Example: DPLL with Learning

P1∧ (¬P2∨P3)∧ (¬P4∨P3)∧ (P2∨P4)∧ (¬P1∨¬P4∨¬P3)∧ (P4∨¬P3)

The algorithm starts with M = ε, C = > and
F = {{P1}, {P̄2,P3}, {P̄4,P3}, {P2,P4}, {P̄1, P̄4, P̄3}, {P4, P̄3}}.

〈ε,F ,>〉 Propagate−→ 〈P1,F ,>〉
Decide−→ 〈P1�P̄2,F ,>〉

Propagate−→
〈P1�P̄2P4,F ,>〉

Propagate−→ 〈P1�P̄2P4P3,F ,>〉
Conflict−→

〈P1�P̄2P4P3,F , {P̄1, P̄4, P̄3}〉
Explain−→ 〈P1�P̄2P4P3,F , {P̄1, P̄4}〉

Learn−→
〈P1�P̄2P4P3,F

′, {P̄1, P̄4}〉
Back−→ 〈P1P̄4,F

′,>〉 Propagate−→
〈P1P̄4P2P3,F

′,>〉 Conflict−→ 〈P1P̄4P2P3,F
′, {P4, P̄3}〉

Explain−→
〈P1P̄4P2P3,F

′, {P4, P̄2}〉
Explain−→ 〈P1P̄4P2P3,F

′, {P4}〉
Explain−→

〈P1P̄4P2P3,F
′, {P̄1}〉

Explain−→ 〈P1P̄4P2P3,F
′, ∅〉 Learn−→

〈P1P̄4P2P3,F
′ ∪ {∅}, ∅〉

where F ′ = F ∪ {{P̄1, P̄4}}.
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 20



DPLL(T): DPLL Modulo Theory

The DPLL/CDCL algorithm is combined with a Decision Procedures for a
Theory

DPLL engine
Theory,
e.g., TQ

Truth Assignment

Unsatisfiable Core

DPLL takes the propositional core of a formula,
assigns truth-values to atoms.

Theory takes a conjunctive formula (conjunction of literals),
returns a minimal unsatisfiable core.
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Minimal Unsatisfiable Core

Suppose we have a decision procedure for a conjunctive theory,
e.g., Simplex Algorithm for TQ.

Given an unsatisfiable conjunction of literals `1 ∧ · · · ∧ `n.

Find a subset UnsatCore = {`i1 , . . . , `im}, such that

`i1 ∧ . . . ∧ `im is unsatisfiable.

For each subset of UnsatCore the conjunction is satisfiable.

Possible approach: check for each literal whether it can be omitted.
−→ n calls to decision procedure.

Most decision procedures can give small unsatisfiable cores for free.
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Unsatisfiable Core and Conflict Clause

Theory returns an unsatisfiable core:

a conjunction of literals from current truth assignment

that is unsatisfible.

DPLL learns conflict clauses, a disjunction of literals

that are implied by the formula

and in conflict to current truth assignment.

Thus the negation of an unsatisfiable core is a conflict clause.
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DPLL(T)

The DPLL part only needs one new rule:

TConflict
〈M,F ,>〉
〈M,F ,C 〉

where M is unsatisfiable in the theory
and ¬C an unsatisfiable core of M.
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Example: DPLL(T)

F : y ≥ 1 ∧ (x ≥ 0 → y ≤ 0) ∧ (x ≤ 1 → y ≤ 0)

Atomic propositions:

P1 : y ≥ 1 P2 : x ≥ 0

P3 : y ≤ 0 P4 : x ≤ 1

Propositional core of F in CNF:

F0 : (P1) ∧ (¬P2 ∨ P3) ∧ (¬P4 ∨ P3)
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Running DPLL(T)

F0 : {{P1}, {P̄2,P3}, {P̄4,P3}}
P1 : y ≥ 1 P2 : x ≥ 0 P3 : y ≤ 0 P4 : x ≤ 1

〈ε,F0,>〉
Propagate−→ 〈P1,F0,>〉

Decide−→ 〈P1�P3,F0,>〉
TConflict−→

〈P1�P3,F0, {P̄1, P̄3}〉
Learn−→ 〈P1�P3,F1, {P̄1, P̄3}〉

Back−→
〈P1P̄3,F1,>〉

Propagate−→ 〈P1P̄3P̄2,F1,>〉
Propagate−→

〈P1P̄3P̄2P̄4,F1,>〉
TConflict−→ 〈P1P̄3P̄2P̄4,F1, {P2,P4}〉

Explain−→
〈P1P̄3P̄2P̄4,F1, {P2,P3}〉

Explain−→ 〈P1P̄3P̄2P̄4,F1, {P3}〉
Explain−→

〈P1P̄3P̄2P̄4,F1, {P̄1}〉
Explain−→ 〈P1P̄3P̄2P̄4,F1, ∅〉

Learn−→
〈P1P̄3P̄2P̄4,F1 ∪ {∅}, ∅〉

where F1 := F0 ∪ {{P̄1, P̄3}}

No further step is possible; the formula F is unsatisfiable.
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Correctness of DPLL(T)

Theorem (Correctness of DPLL(T))

Let F be a Σ-formula and F ′ its propositional core. Let

〈ε,F ′,>〉 = 〈M0,F0,C0〉 −→ . . . −→ 〈Mn,Fn,Cn〉

be a maximal sequence of rule application of DPLL(T).

Then F is T -satisfiable iff Cn is >.

Before proving the theorem, we note some important invariants:

Mi never contains a literal more than once.
Mi never contains ` and ¯̀.
Every � in Mi is followed immediately by a literal.
If Ci = {`1, . . . , `k} then ¯̀

1, . . . , ¯̀
k in M.

Ci is always implied by Fi (or the theory).
F is equivalent to Fi for all steps i of the computation.
If a literal ` in M is not immediately preceded by �, then F contains
a clause {`, `1, . . . , `k} and ¯̀

1, . . . , ¯̀
k ≺ ` in M.
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Correctness proof

Proof: If the sequence ends with 〈Mn,Fn,>〉 and there is no rule
applicable, then:

Since Decide is not applicable, all literals of Fn appear in Mn either
positively or negatively.
Since Conflict is not applicable, for each clause at least one literal
appears in Mn positively.
Since TConflict is not applicable, the conjunction of truth
assignments of Mn is satisfiable by a model I .

Thus, I is a model for Fn, which is equivalent to F .

If the sequence ends with 〈Mn,Fn,Cn〉 with Cn 6= >.
Assume Cn = {`1, . . . , `k , `} 6= ∅. W.l.o.g., ¯̀

1, . . . , ¯̀
k ≺ `. Then:

Since Learn is not applicable, Cn ∈ Fn.
Since Explain is not applicable ¯̀ must be immediately preceded by �.
However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and Cn = ∅ (= ⊥).
Since F implies Cn, F is not satisfiable.
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Therefore, the assumption was wrong and Cn = ∅ (= ⊥).
Since F implies Cn, F is not satisfiable.
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Total Correctness of DPLL with Learning

Theorem (Termination of DPLL)

Let F be a propositional formula. Then every sequence

〈ε,F ,>〉 = 〈M0,F0,C0〉 −→ 〈M1,F1,C1〉 −→ . . .

terminates.
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Proof of Total Correctness

We define some well-ordering on the domains:

We define M ≺ M ′ if M�� comes lexicographically before M ′��,
where every literal is considered to be smaller than �.
Example: `1`2(��) ≺ `1� ¯̀

2`3(��) ≺ `1� ¯̀
2(��) ≺ `1(��)

For a sequence M = ¯̀
1 . . . ¯̀

n, the conflict clauses are ordered by:
C ≺M C ′, iff C 6= >,C ′ = > or for some k ≤ n:

C ∩ {`k+1, . . . , `n} = C ′ ∩ {`k+1, . . . `n} and `k /∈ C , `k ∈ C ′.
Example: ∅ ≺ ¯̀

1
¯̀
2

¯̀
3
{`2} ≺ ¯̀

1
¯̀
2

¯̀
3
{`1, `3} ≺ ¯̀

1
¯̀
2

¯̀
3
{`2, `3} ≺ ¯̀

1
¯̀
2

¯̀
3
>

These are well-orderings, because the domains are finite.

Termination Proof: Every rule application decreases the value of
〈Mi ,Fi ,Ci 〉 according to the well-ordering:

〈M,F ,C 〉 ≺ 〈M ′,F ′,C ′〉, iff


M ≺ M ′,

or M = M ′,C ≺M C ′,

or M = M ′,C = C ′,C ∈ F ,C /∈ F ′.
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