Decision Procedures

Jochen Hoenicke

Software Engineering Albert-Ludwigs-University Freiburg

Summer 2012

Suppose we have a $T_{\mathbb{Q}}$ -formulae that is not conjunctive:

 $(x \ge 0 \rightarrow y > z) \land (x + y \ge z \rightarrow y \le z) \land (y \ge 0 \rightarrow x \ge 0) \land x + y \ge z$

Suppose we have a $T_{\mathbb{Q}}$ -formulae that is not conjunctive:

$$(x \ge 0 \rightarrow y > z) \land (x + y \ge z \rightarrow y \le z) \land (y \ge 0 \rightarrow x \ge 0) \land x + y \ge z$$

Our approach so far: Converting to DNF. Yields in 8 conjuncts that have to be checked separately.

Suppose we have a $T_{\mathbb{Q}}$ -formulae that is not conjunctive:

$$(x \ge 0 \rightarrow y > z) \land (x + y \ge z \rightarrow y \le z) \land (y \ge 0 \rightarrow x \ge 0) \land x + y \ge z$$

Our approach so far: Converting to DNF. Yields in 8 conjuncts that have to be checked separately.

Is there a more efficient way to prove unsatisfiability?

CNF and Propositional Core

Suppose we have the following $T_{\mathbb{Q}}$ -formulae:

 $(x \ge 0 \rightarrow y > z) \land (x + y \ge z \rightarrow y \le z) \land (y \ge 0 \rightarrow x \ge 0) \land x + y \ge z$

UNI FREIBURG

CNF and Propositional Core

Suppose we have the following $T_{\mathbb{Q}}$ -formulae:

$$(x \ge 0 \rightarrow y > z) \land (x + y \ge z \rightarrow y \le z) \land (y \ge 0 \rightarrow x \ge 0) \land x + y \ge z$$

Converting to CNF and restricting to \leq :

$$(\neg (0 \le x) \lor \neg (y \le z)) \land (\neg (z \le x + y) \lor (y \le z)) \land (\neg (0 \le y) \lor (0 \le x)) \land (z \le x + y)$$

UNI FREIBURG

CNF and Propositional Core

Suppose we have the following $T_{\mathbb{Q}}$ -formulae:

$$(x \ge 0 \rightarrow y > z) \land (x + y \ge z \rightarrow y \le z) \land (y \ge 0 \rightarrow x \ge 0) \land x + y \ge z$$

Converting to CNF and restricting to \leq :

$$(\neg (0 \le x) \lor \neg (y \le z)) \land (\neg (z \le x + y) \lor (y \le z)) \land (\neg (0 \le y) \lor (0 \le x)) \land (z \le x + y)$$

Now, introduce boolean variables for each atom:

 $P_1: 0 \le x$ $P_2: y \le z$
 $P_3: z \le x + y$ $P_4: 0 \le y$

Gives a propositional formula:

$$(\neg P_1 \lor \neg P_2) \land (\neg P_3 \lor P_2) \land (\neg P_4 \lor P_1) \land P_3$$

$$(\neg P_1 \lor \neg P_2) \land (\neg P_3 \lor P_2) \land (\neg P_4 \lor P_1) \land P_3$$

$$(\neg P_1 \lor \neg P_2) \land (\neg P_3 \lor P_2) \land (\neg P_4 \lor P_1) \land P_3$$

The clause P_3 is a unit clause; set P_3 to \top .

$$(\neg P_1 \lor \neg P_2) \land (\neg P_3 \lor P_2) \land (\neg P_4 \lor P_1) \land P_3$$

The clause P_3 is a unit clause; set P_3 to \top . Then $\neg P_3 \lor P_2$ is a unit clause; set P_2 to \top .

$$(\neg P_1 \lor \neg P_2) \land (\neg P_3 \lor P_2) \land (\neg P_4 \lor P_1) \land P_3$$

The clause P_3 is a unit clause; set P_3 to \top . Then $\neg P_3 \lor P_2$ is a unit clause; set P_2 to \top . Then $\neg P_1 \lor \neg P_2$ is a unit clause; set P_1 to \bot .

$$(\neg P_1 \lor \neg P_2) \land (\neg P_3 \lor P_2) \land (\neg P_4 \lor P_1) \land P_3$$

The clause P_3 is a unit clause; set P_3 to \top . Then $\neg P_3 \lor P_2$ is a unit clause; set P_2 to \top . Then $\neg P_1 \lor \neg P_2$ is a unit clause; set P_1 to \bot . Then $\neg P_4 \lor P_1$ is a unit clause; set P_4 to \bot .

$$(\neg P_1 \lor \neg P_2) \land (\neg P_3 \lor P_2) \land (\neg P_4 \lor P_1) \land P_3$$

The clause P_3 is a unit clause; set P_3 to \top . Then $\neg P_3 \lor P_2$ is a unit clause; set P_2 to \top . Then $\neg P_1 \lor \neg P_2$ is a unit clause; set P_1 to \bot . Then $\neg P_4 \lor P_1$ is a unit clause; set P_4 to \bot .

Only solution is $P_3 \wedge P_2 \wedge \neg P_1 \wedge \neg P_4$.

DPLL-Algorithm

UNI FREIBURG

Only solution is $P_3 \wedge P_2 \wedge \neg P_1 \wedge \neg P_4$.

$$\begin{array}{ll} P_1: 0 \leq x & P_2: y \leq z \\ P_3: z \leq x+y & P_4: 0 \leq y \end{array}$$

This gives the conjunctive $T_{\mathbb{Q}}$ -formula

$$z \leq x + y \wedge y \leq z \wedge x < 0 \wedge y < 0.$$

We describe DPLL(T) by a set of rules modifying a configuration. A configuration is a triple

$$\langle M, F, C \rangle$$
,

where

- *M* (model) is a sequence of literals (that are currently set to true) interspersed with backtracking points denoted by □.
- *F* (formula) is a formula in CNF, i. e., a set of clauses where each clause is a set of literals.
- C (conflict) is either \top or a conflict clause (a set of literals). A conflict clause C is a clause with $F \Rightarrow C$ and $M \not\models C$. Thus, a conflict clause shows $M \not\models F$.

We describe the algorithm by a set of rules, which each describe a set of transitions between configurations, e.g.,

Explain
$$\frac{\langle M, F, C \cup \{\ell\} \rangle}{\langle M, F, C \cup \{\ell_1, \dots, \ell_k\} \rangle} \quad \text{where } \ell \notin C, \{\ell_1, \dots, \ell_k, \bar{\ell}\} \in F,$$

and $\bar{\ell_1}, \dots, \bar{\ell_k} \prec \bar{\ell}$ in M .

Here, $\bar{\ell_1}, \ldots, \bar{\ell_k} \prec \ell$ in M means the literals $\bar{\ell_1}, \ldots, \bar{\ell_k}$ occur in the sequence M before the literal ℓ (and all literals appear in M).

We describe the algorithm by a set of rules, which each describe a set of transitions between configurations, e.g.,

Explain $\frac{\langle M, F, C \cup \{\ell\} \rangle}{\langle M, F, C \cup \{\ell_1, \dots, \ell_k\} \rangle} \quad \text{where } \ell \notin C, \ \{\ell_1, \dots, \ell_k, \bar{\ell}\} \in F,$ and $\bar{\ell_1}, \dots, \bar{\ell_k} \prec \bar{\ell} \text{ in } M.$

Here, $\bar{\ell_1}, \ldots, \bar{\ell_k} \prec \ell$ in M means the literals $\bar{\ell_1}, \ldots, \bar{\ell_k}$ occur in the sequence M before the literal ℓ (and all literals appear in M).

Example: for $M = P_1 \overline{P_3} \overline{P_2} \overline{P_4}$, $F = \{\{P_1\}, \{P_3, \overline{P_4}\}\}$, and $C = \{P_2\}$ the transition

$$\langle M, F, \{P_2, P_4\} \rangle \longrightarrow \langle M, F, \{P_2, P_3\} \rangle$$

is possible.

Decide

	$\langle M, F, \top \rangle$
$\langle M$	$\cdot \Box \cdot \ell, F, \top \rangle$

where $\ell \in lit(F)$, $\ell, \overline{\ell}$ in M

Decide $\frac{\langle M, F, \top \rangle}{\langle M \cdot \Box \cdot \ell, F, \top \rangle}$ Propagate $\frac{\langle M, F, \top \rangle}{\langle M \cdot \ell, F, \top \rangle}$

where $\ell \in \mathit{lit}(F)$, $\ell, \bar{\ell}$ in M

where $\{\ell_1, \ldots, \ell_k, \ell\} \in F$ and $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in $M, \ell, \overline{\ell}$ in M.

FREIBURG

Decide $\frac{\langle M, F, \top \rangle}{\langle M \cdot \Box \cdot \ell, F, \top \rangle}$ Propagate $\frac{\langle M, F, \top \rangle}{\langle M \cdot \ell, F, \top \rangle}$ Conflict $\frac{\langle M, F, \top \rangle}{\langle M, F, \{\ell_1, \dots, \ell_k\} \rangle}$

where $\ell \in lit(F)$, $\ell, \overline{\ell}$ in M

where $\{\ell_1, \ldots, \ell_k, \ell\} \in F$ and $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in M, $\ell, \overline{\ell}$ in M.

where $\{\ell_1, \ldots, \ell_k\} \in F$ and $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in M. -REIBURG

Decide $\frac{\langle M, F, \top \rangle}{\langle M \cdot \Box \cdot \ell F \top \rangle}$ Propagate $\frac{\langle M, F, \top \rangle}{\langle M \cdot \ell, F, \top \rangle}$ Conflict $\frac{\langle M, F, \top \rangle}{\langle M, F, \{\ell_1, \dots, \ell_k\} \rangle}$

where
$$\ell \in lit(F)$$
, $\ell, \overline{\ell}$ in M

where $\{\ell_1, \ldots, \ell_k, \ell\} \in F$ and $\bar{\ell_1}, \ldots, \bar{\ell_k}$ in $M, \ell, \bar{\ell}$ in M.

where $\{\ell_1, \ldots, \ell_k\} \in F$ and $\bar{\ell_1}, \ldots, \bar{\ell_k}$ in M.

Explain $\frac{\langle M, F, C \cup \{\ell\} \rangle}{\langle M, F, C \cup \{\ell_1, \dots, \ell_k\} \rangle}$ where $\ell \notin C$, $\{\ell_1, \dots, \ell_k$ and $\overline{\ell_1}, \dots, \overline{\ell_k} \prec \overline{\ell}$ in M. where $\ell \notin C$, $\{\ell_1, \ldots, \ell_k, \overline{\ell}\} \in F$,

REIBURG

Decide $\frac{\langle M, F, \top \rangle}{\langle M \cdot \Box \cdot \ell F \top \rangle}$ Propagate $\frac{\langle M, F, \top \rangle}{\langle M \cdot \ell, F, \top \rangle}$ Conflict $\frac{\langle M, F, \top \rangle}{\langle M, F, \{\ell_1, \dots, \ell_k\} \rangle}$ Explain

 $\frac{\langle M, F, C \cup \{\ell\} \rangle}{\langle M, F, C \cup \{\ell_1, \dots, \ell_k\} \rangle}$ Learn $\frac{\langle M, F, C \rangle}{\langle M, F + \downarrow \{C\}, C \rangle}$

where $\ell \in lit(F)$, $\ell, \bar{\ell}$ in M

where $\{\ell_1, \ldots, \ell_k, \ell\} \in F$ and $\bar{\ell_1}, \ldots, \bar{\ell_k}$ in $M, \ell, \bar{\ell}$ in M.

where $\{\ell_1, \ldots, \ell_k\} \in F$ and $\bar{\ell_1}, \ldots, \bar{\ell_k}$ in M.

where $\ell \notin C$, $\{\ell_1, \ldots, \ell_k, \bar{\ell}\} \in F$, and $\bar{\ell_1}, \ldots, \bar{\ell_k} \prec \bar{\ell}$ in M.

where $C \neq \top$, $C \notin F$.

JNI FREIBURG

Decide $\frac{\langle M, F, \top \rangle}{\langle M \cdot \Box \cdot \ell, F, \top \rangle}$ Propagate $\frac{\langle M, F, \top \rangle}{\langle M \cdot \ell, F, \top \rangle}$ Conflict $\frac{\langle M, F, \top \rangle}{\langle M, F, \{\ell_1, \dots, \ell_k\} \rangle}$ Explain $\frac{\langle M, F, C \cup \{\ell\} \rangle}{\langle M, F, C \cup \{\ell_1, \dots, \ell_k\} \rangle}$ Learn $\frac{\langle M, F, C \rangle}{\langle M, F \cup \{C\}, C \rangle}$ Back $\frac{\langle M, F, \{\ell_1, \dots, \ell_k, \ell\} \rangle}{\langle M' \cdot \ell | F | \top \rangle}$

where $\ell \in \mathit{lit}(F)$, $\ell, \bar{\ell}$ in M

where $\{\ell_1, \ldots, \ell_k, \ell\} \in F$ and $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in $M, \ell, \overline{\ell}$ in M.

where $\{\ell_1, \ldots, \ell_k\} \in F$ and $\bar{\ell_1}, \ldots, \bar{\ell_k}$ in M.

where $\ell \notin C$, $\{\ell_1, \ldots, \ell_k, \overline{\ell}\} \in F$, and $\overline{\ell_1}, \ldots, \overline{\ell_k} \prec \overline{\ell}$ in M.

where $C \neq \top$, $C \notin F$.

where $\{\ell_1, \ldots, \ell_k, \ell\} \in F$, $M = M' \cdot \Box \cdots \overline{\ell} \cdots$, and $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in M'.

Example: DPLL with Learning

 $P_1 \land (\neg P_2 \lor P_3) \land (\neg P_4 \lor P_3) \land (P_2 \lor P_4) \land (\neg P_1 \lor \neg P_4 \lor \neg P_3) \land (P_4 \lor \neg P_3)$

The algorithm starts with $M = \epsilon$, $C = \top$ and $F = \{\{P_1\}, \{\bar{P_2}, P_3\}, \{\bar{P_4}, P_3\}, \{P_2, P_4\}, \{\bar{P_1}, \bar{P_4}, \bar{P_3}\}, \{P_4, \bar{P_3}\}\}$.

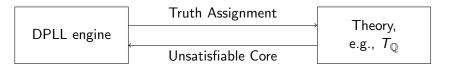
UNI FREIBURG

$$P_1 \land (\neg P_2 \lor P_3) \land (\neg P_4 \lor P_3) \land (P_2 \lor P_4) \land (\neg P_1 \lor \neg P_4 \lor \neg P_3) \land (P_4 \lor \neg P_3)$$

The algorithm starts with
$$M = \epsilon$$
, $C = \top$ and $F = \{\{P_1\}, \{\bar{P}_2, P_3\}, \{\bar{P}_4, P_3\}, \{P_2, P_4\}, \{\bar{P}_1, \bar{P}_4, \bar{P}_3\}, \{P_4, \bar{P}_3\}\}.$

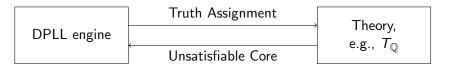
 $\langle \epsilon, F, \top \rangle \xrightarrow{\text{Propagate}} \langle P_1, F, \top \rangle \xrightarrow{\text{Decide}} \langle P_1 \Box \overline{P_2}, F, \top \rangle \xrightarrow{\text{Propagate}}$ $\langle P_1 \Box \bar{P}_2 P_4, F, \top \rangle \xrightarrow{\text{Propagate}} \langle P_1 \Box \bar{P}_2 P_4 P_3, F, \top \rangle \xrightarrow{\text{Conflict}}$ $\langle P_1 \Box \bar{P}_2 P_4 P_3, F, \{\bar{P}_1, \bar{P}_4, \bar{P}_3\} \rangle \xrightarrow{\text{Explain}} \langle P_1 \Box \bar{P}_2 P_4 P_3, F, \{\bar{P}_1, \bar{P}_4\} \rangle \xrightarrow{\text{Learn}}$ $\langle P_1 \Box \bar{P}_2 P_4 P_3, F', \{\bar{P}_1, \bar{P}_4\} \rangle \xrightarrow{\text{Back}} \langle P_1 \bar{P}_4, F', \top \rangle \xrightarrow{\text{Propagate}}$ $\langle P_1 \bar{P}_4 P_2 P_3, F', \top \rangle \xrightarrow{\text{Conflict}} \langle P_1 \bar{P}_4 P_2 P_3, F', \{P_4, \bar{P}_3\} \rangle \xrightarrow{\text{Explain}}$ $\langle P_1 \bar{P}_4 P_2 P_3, F', \{P_4, \bar{P}_2\} \rangle \xrightarrow{\text{Explain}} \langle P_1 \bar{P}_4 P_2 P_3, F', \{P_4\} \rangle \xrightarrow{\text{Explain}}$ $\langle P_1 \bar{P}_4 P_2 P_3, F', \{\bar{P}_1\} \rangle \xrightarrow{\text{Explain}} \langle P_1 \bar{P}_4 P_2 P_3, F', \emptyset \rangle \xrightarrow{\text{Learn}}$ $\langle P_1 P_4 P_2 P_3, F' \cup \{\emptyset\}, \emptyset \rangle$ where $F' = F \cup \{\{\bar{P}_1, \bar{P}_4\}\}$.

The DPLL/CDCL algorithm is combined with a Decision Procedures for a Theory



FREIBURG

The DPLL/CDCL algorithm is combined with a Decision Procedures for a Theory



DPLL takes the propositional core of a formula, assigns truth-values to atoms.

Theory takes a conjunctive formula (conjunction of literals), returns a minimal unsatisfiable core.

Suppose we have a decision procedure for a conjunctive theory, e.g., Simplex Algorithm for $T_{\mathbb{Q}}$.

Given an unsatisfiable conjunction of literals $\ell_1 \wedge \cdots \wedge \ell_n$.

Suppose we have a decision procedure for a conjunctive theory, e.g., Simplex Algorithm for $T_{\mathbb{Q}}$.

Given an unsatisfiable conjunction of literals $\ell_1 \wedge \cdots \wedge \ell_n$. Find a subset UnsatCore = $\{\ell_{i_1}, \ldots, \ell_{i_m}\}$, such that

Suppose we have a decision procedure for a conjunctive theory, e.g., Simplex Algorithm for $T_{\mathbb{Q}}$.

Given an unsatisfiable conjunction of literals $\ell_1 \wedge \cdots \wedge \ell_n$. Find a subset UnsatCore = $\{\ell_{i_1}, \ldots, \ell_{i_m}\}$, such that

• $\ell_{i_1} \wedge \ldots \wedge \ell_{i_m}$ is unsatisfiable.

Suppose we have a decision procedure for a conjunctive theory, e.g., Simplex Algorithm for T_Q .

Given an unsatisfiable conjunction of literals $\ell_1 \wedge \cdots \wedge \ell_n$. Find a subset UnsatCore = $\{\ell_{i_1}, \ldots, \ell_{i_m}\}$, such that

- $\ell_{i_1} \wedge \ldots \wedge \ell_{i_m}$ is unsatisfiable.
- For each subset of UnsatCore the conjunction is satisfiable.

Suppose we have a decision procedure for a conjunctive theory, e.g., Simplex Algorithm for $T_{\mathbb{Q}}$.

Given an unsatisfiable conjunction of literals $\ell_1 \wedge \cdots \wedge \ell_n$. Find a subset UnsatCore = $\{\ell_{i_1}, \ldots, \ell_{i_m}\}$, such that

- $\ell_{i_1} \wedge \ldots \wedge \ell_{i_m}$ is unsatisfiable.
- For each subset of UnsatCore the conjunction is satisfiable.

Possible approach: check for each literal whether it can be omitted. $\longrightarrow n$ calls to decision procedure.

Most decision procedures can give small unsatisfiable cores for free.

Theory returns an unsatisfiable core:

- a conjunction of literals from current truth assignment
- that is unsatisfible.

UNI FREIBURG Theory returns an unsatisfiable core:

- a conjunction of literals from current truth assignment
- that is unsatisfible.

DPLL learns conflict clauses, a disjunction of literals

- that are implied by the formula
- and in conflict to current truth assignment.

Theory returns an unsatisfiable core:

- a conjunction of literals from current truth assignment
- that is unsatisfible.

DPLL learns conflict clauses, a disjunction of literals

- that are implied by the formula
- and in conflict to current truth assignment.

Thus the negation of an unsatisfiable core is a conflict clause.

The DPLL part only needs one new rule:

TConflict $\frac{\langle M, F, \top \rangle}{\langle M, F, C \rangle}$ where *M* is unsatisfiable in the theory and $\neg C$ an unsatisfiable core of *M*.

Example: DPLL(T)

$F : y \ge 1 \land (x \ge 0 \rightarrow y \le 0) \land (x \le 1 \rightarrow y \le 0)$

Jochen Hoenicke (Software Engineering)

Decision Procedures

Summer 2012 15 / 20

$$F: y \ge 1 \land (x \ge 0 \rightarrow y \le 0) \land (x \le 1 \rightarrow y \le 0)$$

Atomic propositions:

$$\begin{array}{ll} P_1 : y \ge 1 & P_2 : x \ge 0 \\ P_3 : y \le 0 & P_4 : x \le 1 \end{array}$$

$$F : y \ge 1 \land (x \ge 0 \rightarrow y \le 0) \land (x \le 1 \rightarrow y \le 0)$$

Atomic propositions:

$P_1: y \geq 1$	$P_2: x \ge 0$
$P_3: y \leq 0$	$P_4: x \leq 1$

Propositional core of F in CNF:

$$F_0 : (P_1) \land (\neg P_2 \lor P_3) \land (\neg P_4 \lor P_3)$$

Running DPLL(T)

 $\begin{array}{ll} F_0: \ \{\{P_1\},\{\bar{P_2},P_3\},\{\bar{P_4},P_3\}\}\\ P_1: \ y \ge 1 \quad P_2: \ x \ge 0 \quad P_3: \ y \le 0 \quad P_4: \ x \le 1 \end{array}$

UNI FREIBURG

Running DPLL(T)

 F_0 : {{ P_1 }, { P_2 , P_3 }, { P_4 , P_3 }} $P_1: v > 1$ $P_2: x > 0$ $P_3: v < 0$ $P_4: x < 1$ $\langle \epsilon, F_0, \top \rangle \xrightarrow{\text{Propagate}} \langle P_1, F_0, \top \rangle \xrightarrow{\text{Decide}} \langle P_1 \Box P_3, F_0, \top \rangle \xrightarrow{\text{TConflict}}$ $\langle P_1 \Box P_3, F_0, \{\bar{P}_1, \bar{P}_3\} \rangle \xrightarrow{\text{Learn}} \langle P_1 \Box P_3, F_1, \{\bar{P}_1, \bar{P}_3\} \rangle \xrightarrow{\text{Back}}$ $\langle P_1 \bar{P}_3, F_1, \top \rangle \xrightarrow{\text{Propagate}} \langle P_1 \bar{P}_3 \bar{P}_2, F_1, \top \rangle \xrightarrow{\text{Propagate}}$ $\langle P_1 \bar{P}_3 \bar{P}_2 \bar{P}_4, F_1, \top \rangle \xrightarrow{\text{TConflict}} \langle P_1 \bar{P}_3 \bar{P}_2 \bar{P}_4, F_1, \{P_2, P_4\} \rangle \xrightarrow{\text{Explain}}$ $\langle P_1 \bar{P}_3 \bar{P}_2 \bar{P}_4, F_1, \{P_2, P_3\} \rangle \xrightarrow{\text{Explain}} \langle P_1 \bar{P}_3 \bar{P}_2 \bar{P}_4, F_1, \{P_3\} \rangle \xrightarrow{\text{Explain}}$ $\langle P_1 \bar{P}_3 \bar{P}_2 \bar{P}_4, F_1, \{\bar{P}_1\} \rangle \xrightarrow{\text{Explain}} \langle P_1 \bar{P}_3 \bar{P}_2 \bar{P}_4, F_1, \emptyset \rangle \xrightarrow{\text{Learn}}$ $\langle P_1 \overline{P}_3 \overline{P}_2 \overline{P}_4, F_1 \cup \{\emptyset\}, \emptyset \rangle$ where $F_1 := F_0 \cup \{\{\bar{P}_1, \bar{P}_3\}\}$

No further step is possible; the formula F is unsatisfiable.

Let F be a Σ -formula and F' its propositional core. Let

$$\langle \epsilon, F', \top \rangle = \langle M_0, F_0, C_0 \rangle \longrightarrow \ldots \longrightarrow \langle M_n, F_n, C_n \rangle$$

be a maximal sequence of rule application of DPLL(T). Then F is T-satisfiable iff C_n is \top .

Let F be a Σ -formula and F' its propositional core. Let

$$\langle \epsilon, F', \top \rangle = \langle M_0, F_0, C_0 \rangle \longrightarrow \ldots \longrightarrow \langle M_n, F_n, C_n \rangle$$

be a maximal sequence of rule application of DPLL(T). Then F is T-satisfiable iff C_n is \top .

Let F be a Σ -formula and F' its propositional core. Let

$$\langle \epsilon, F', \top \rangle = \langle M_0, F_0, C_0 \rangle \longrightarrow \ldots \longrightarrow \langle M_n, F_n, C_n \rangle$$

be a maximal sequence of rule application of DPLL(T). Then F is T-satisfiable iff C_n is \top .

- M_i never contains a literal more than once.
- M_i never contains ℓ and $\overline{\ell}$.

Let F be a Σ -formula and F' its propositional core. Let

$$\langle \epsilon, F', \top \rangle = \langle M_0, F_0, C_0 \rangle \longrightarrow \ldots \longrightarrow \langle M_n, F_n, C_n \rangle$$

be a maximal sequence of rule application of DPLL(T). Then F is T-satisfiable iff C_n is \top .

- M_i never contains a literal more than once.
- M_i never contains ℓ and $\overline{\ell}$.
- Every \Box in M_i is followed immediately by a literal.

Let F be a Σ -formula and F' its propositional core. Let

$$\langle \epsilon, F', \top \rangle = \langle M_0, F_0, C_0 \rangle \longrightarrow \ldots \longrightarrow \langle M_n, F_n, C_n \rangle$$

be a maximal sequence of rule application of DPLL(T). Then F is T-satisfiable iff C_n is \top .

- M_i never contains a literal more than once.
- M_i never contains ℓ and $\overline{\ell}$.
- Every \Box in M_i is followed immediately by a literal.
- If $C_i = \{\ell_1, \ldots, \ell_k\}$ then $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in M.

Let F be a Σ -formula and F' its propositional core. Let

$$\langle \epsilon, F', \top \rangle = \langle M_0, F_0, C_0 \rangle \longrightarrow \ldots \longrightarrow \langle M_n, F_n, C_n \rangle$$

be a maximal sequence of rule application of DPLL(T). Then F is T-satisfiable iff C_n is \top .

- M_i never contains a literal more than once.
- M_i never contains ℓ and $\overline{\ell}$.
- Every \Box in M_i is followed immediately by a literal.
- If $C_i = \{\ell_1, \ldots, \ell_k\}$ then $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in M.
- C_i is always implied by F_i (or the theory).

Let F be a Σ -formula and F' its propositional core. Let

$$\langle \epsilon, F', \top \rangle = \langle M_0, F_0, C_0 \rangle \longrightarrow \ldots \longrightarrow \langle M_n, F_n, C_n \rangle$$

be a maximal sequence of rule application of DPLL(T). Then F is T-satisfiable iff C_n is \top .

- M_i never contains a literal more than once.
- M_i never contains ℓ and $\overline{\ell}$.
- Every \Box in M_i is followed immediately by a literal.
- If $C_i = \{\ell_1, \ldots, \ell_k\}$ then $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in M.
- C_i is always implied by F_i (or the theory).
- F is equivalent to F_i for all steps i of the computation.

Let F be a Σ -formula and F' its propositional core. Let

$$\langle \epsilon, F', \top \rangle = \langle M_0, F_0, C_0 \rangle \longrightarrow \ldots \longrightarrow \langle M_n, F_n, C_n \rangle$$

be a maximal sequence of rule application of DPLL(T). Then F is T-satisfiable iff C_n is \top .

- *M_i* never contains a literal more than once.
- M_i never contains ℓ and $\overline{\ell}$.
- Every \Box in M_i is followed immediately by a literal.

• If
$$C_i = \{\ell_1, \ldots, \ell_k\}$$
 then $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in M .

- C_i is always implied by F_i (or the theory).
- F is equivalent to F_i for all steps i of the computation.
- If a literal ℓ in M is not immediately preceded by \Box , then F contains a clause $\{\ell, \ell_1, \ldots, \ell_k\}$ and $\overline{\ell_1}, \ldots, \overline{\ell_k} \prec \ell$ in M.

UNI FREIBURG

Proof: If the sequence ends with $\langle M_n, F_n, \top \rangle$ and there is no rule applicable, then:

• Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.

- Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_n positively.

- Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_n positively.
- Since TConflict is not applicable, the conjunction of truth assignments of M_n is satisfiable by a model I.

- Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_n positively.
- Since TConflict is not applicable, the conjunction of truth assignments of M_n is satisfiable by a model I.
- Thus, I is a model for F_n , which is equivalent to F.

Proof: If the sequence ends with $\langle M_n, F_n, \top \rangle$ and there is no rule applicable, then:

- Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_n positively.
- Since TConflict is not applicable, the conjunction of truth assignments of M_n is satisfiable by a model I.

Thus, I is a model for F_n , which is equivalent to F.

If the sequence ends with $\langle M_n, F_n, C_n \rangle$ with $C_n \neq \top$.

Proof: If the sequence ends with $\langle M_n, F_n, \top \rangle$ and there is no rule applicable, then:

- Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_n positively.
- Since TConflict is not applicable, the conjunction of truth assignments of M_n is satisfiable by a model I.

Thus, I is a model for F_n , which is equivalent to F.

If the sequence ends with $\langle M_n, F_n, C_n \rangle$ with $C_n \neq \top$. Assume $C_n = \{\ell_1, \dots, \ell_k, \ell\} \neq \emptyset$. W.I.o.g., $\bar{\ell_1}, \dots, \bar{\ell_k} \prec \ell$. Then:

Proof: If the sequence ends with $\langle M_n, F_n, \top \rangle$ and there is no rule applicable, then:

- Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_n positively.
- Since TConflict is not applicable, the conjunction of truth assignments of M_n is satisfiable by a model I.

Thus, I is a model for F_n , which is equivalent to F.

If the sequence ends with $\langle M_n, F_n, C_n \rangle$ with $C_n \neq \top$. Assume $C_n = \{\ell_1, \dots, \ell_k, \ell\} \neq \emptyset$. W.I.o.g., $\bar{\ell_1}, \dots, \bar{\ell_k} \prec \ell$. Then:

• Since Learn is not applicable, $C_n \in F_n$.

Proof: If the sequence ends with $\langle M_n, F_n, \top \rangle$ and there is no rule applicable, then:

- Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_n positively.
- Since TConflict is not applicable, the conjunction of truth assignments of M_n is satisfiable by a model I.

Thus, I is a model for F_n , which is equivalent to F.

If the sequence ends with $\langle M_n, F_n, C_n \rangle$ with $C_n \neq \top$. Assume $C_n = \{\ell_1, \dots, \ell_k, \ell\} \neq \emptyset$. W.I.o.g., $\bar{\ell_1}, \dots, \bar{\ell_k} \prec \ell$. Then:

- Since Learn is not applicable, $C_n \in F_n$.
- Since Explain is not applicable $\overline{\ell}$ must be immediately preceded by \Box .

Proof: If the sequence ends with $\langle M_n, F_n, \top \rangle$ and there is no rule applicable, then:

- Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_n positively.
- Since TConflict is not applicable, the conjunction of truth assignments of M_n is satisfiable by a model I.

Thus, I is a model for F_n , which is equivalent to F.

If the sequence ends with $\langle M_n, F_n, C_n \rangle$ with $C_n \neq \top$. Assume $C_n = \{\ell_1, \dots, \ell_k, \ell\} \neq \emptyset$. W.I.o.g., $\bar{\ell_1}, \dots, \bar{\ell_k} \prec \ell$. Then:

- Since Learn is not applicable, $C_n \in F_n$.
- Since Explain is not applicable $\overline{\ell}$ must be immediately preceded by \Box .
- However, then Back is applicable, contradiction!

Proof: If the sequence ends with $\langle M_n, F_n, \top \rangle$ and there is no rule applicable, then:

- Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_n positively.
- Since TConflict is not applicable, the conjunction of truth assignments of M_n is satisfiable by a model I.

Thus, I is a model for F_n , which is equivalent to F.

If the sequence ends with $\langle M_n, F_n, C_n \rangle$ with $C_n \neq \top$. Assume $C_n = \{\ell_1, \dots, \ell_k, \ell\} \neq \emptyset$. W.I.o.g., $\bar{\ell_1}, \dots, \bar{\ell_k} \prec \ell$. Then:

- Since Learn is not applicable, $C_n \in F_n$.
- Since Explain is not applicable $\overline{\ell}$ must be immediately preceded by \Box .
- However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and $C_n = \emptyset (= \bot)$. Since *F* implies C_n , *F* is not satisfiable.

Jochen Hoenicke (Software Engineering)

Decision Procedures

Total Correctness of DPLL with Learning

Theorem (Termination of DPLL)

Let F be a propositional formula. Then every sequence

$$\langle \epsilon, F, \top \rangle = \langle M_0, F_0, C_0 \rangle \longrightarrow \langle M_1, F_1, C_1 \rangle \longrightarrow \dots$$

terminates.

We define some well-ordering on the domains:

We define some well-ordering on the domains:

• We define $M \prec M'$ if $M \Box \Box$ comes lexicographically before $M' \Box \Box$, where every literal is considered to be smaller than \Box . **Example**: $\ell_1 \ell_2(\Box \Box) \prec \ell_1 \Box \overline{\ell_2} \ell_3(\Box \Box) \prec \ell_1 \Box \overline{\ell_2}(\Box \Box) \prec \ell_1(\Box \Box)$

We define some well-ordering on the domains:

We define M ≺ M' if M□□ comes lexicographically before M'□□, where every literal is considered to be smaller than □.
Example: l₁l₂(□□) ≺ l₁□l₂l₃(□□) ≺ l₁□l₂(□□) ≺ l₁(□□)
For a sequence M = l₁...l_n, the conflict clauses are ordered by: C ≺_M C', iff C ≠ T, C' = T or for some k ≤ n: C ∩ {l_{k+1},...,l_n} = C' ∩ {l_{k+1},...l_n} and l_k ∉ C, l_k ∈ C'.
Example: Ø ≺l₁l₂l₃ {l₂} ≺l₁l₂l₃ {l₁, l₃} ≺l₁l₂l₃ {l₂, l₃} ≺l₁l₂l₃ T

We define some well-ordering on the domains:

We define M ≺ M' if M□□ comes lexicographically before M'□□, where every literal is considered to be smaller than □.
Example: l₁l₂(□□) ≺ l₁□l₂l₃(□□) ≺ l₁□l₂(□□) ≺ l₁(□□)
For a sequence M = l₁...l_n, the conflict clauses are ordered by: C ≺_M C', iff C ≠ T, C' = T or for some k ≤ n: C ∩ {l_{k+1},...,l_n} = C' ∩ {l_{k+1},...l_n} and l_k ∉ C, l_k ∈ C'.
Example: Ø ≺_{l1l2l3} {l₂} ≺_{l1l2l3} {l₁, l₃} ≺_{l1l2l3} {l₂, l₃} {l₂, l₃} ⊤

Termination Proof: Every rule application decreases the value of $\langle M_i, F_i, C_i \rangle$ according to the well-ordering:

$$\langle M, F, C \rangle \prec \langle M', F', C' \rangle$$
, iff
$$\begin{cases} M \prec M', \\ \text{or } M = M', C \prec_M C', \\ \text{or } M = M', C = C', C \in F, C \notin F'. \end{cases}$$