Decision Procedures

Jochen Hoenicke



Summer 2012

Introduction

Given an unsatisfiable formula of the form:

$$F \wedge G$$

Can we find a "smaller" formula that explains the conflict?

I.e., a formula implied by F that is inconsistent with G?

Under certain conditions, there is an interpolant I with

- $F \Rightarrow I$.
- I ∧ G is unsatisfiable.
- I contains only symbols common to F and G.

Craig Interpolation

A craig interpolant I for an unsatisfiable formula $F \wedge G$ is

- $F \Rightarrow I$.
- $I \wedge G$ is unsatisfiable.
- I contains only symbols common to F and G.

Craig interpolants exists in many theories and fragments:

- First-order logic.
- Quantifier-free FOL.
- Quantifier-free fragment of T_E.
- Quantifier-free fragment of $T_{\mathbb{Q}}$.
- ullet Quantifier-free fragment of $\widehat{\mathcal{T}_{\mathbb{Z}}}$ (augmented with divisibility).

However, QF fragment of $T_{\mathbb{Z}}$ does not allow Craig interpolation.

Consider this path through LINEARSEARCH:

$$\begin{aligned} & \text{Opre } 0 \leq \ell \wedge u < |a| \\ & i := \ell \\ & \text{assume } i \leq u \\ & \text{assume } a[i] \neq e \\ & i := i+1 \\ & \text{assume } i \leq u \\ & \text{O} 0 \leq i \wedge i < |a| \end{aligned}$$

Single Static Assingment (SSA) replaces assignments by assumes:

$$\begin{array}{l} \texttt{Opre 0} \leq \ell \wedge u < |a| \\ \texttt{assume } i_1 = \ell \\ \texttt{assume } i_1 \leq u \\ \texttt{assume } a[i_1] \neq e \\ \texttt{assume } i_2 = i_1 + 1 \\ \texttt{assume } i_2 \leq u \\ \texttt{O 0} \leq i_2 \wedge i_2 < |a| \end{array}$$

If program contains only assumes, the VC looks like

$$VC\,:\,P\rightarrow (F_1\rightarrow (F_2\rightarrow (F_3\rightarrow \ldots (F_n\rightarrow Q)\ldots)))$$

Using $\neg(F \rightarrow G) \Leftrightarrow F \land \neg G$ compute negation:

$$\neg VC : P \wedge F_1 \wedge F_2 \wedge F_3 \wedge \cdots \wedge F_n \wedge Q$$

If verification condition is valid $\neg VC$ is unsatisfiable. We can compute interpolants for any program point, e.g. for

$$P \wedge F_1 \wedge F_2 \wedge F_3 \wedge \cdots \wedge F_n \wedge \neg Q$$

Verification Condition and interpolants

REIBUR

Consider the path through LINEARSEARCH:

$$\begin{array}{l} \texttt{Opre 0} \leq \ell \wedge u < |a| \\ \texttt{assume } i_1 = \ell \\ \texttt{assume } i_1 \leq u \\ \texttt{assume } a[i_1] \neq e \\ \texttt{assume } i_2 = i_1 + 1 \\ \texttt{assume } i_2 \leq u \\ \texttt{O 0} \leq i_2 \wedge i_2 < |a| \end{array}$$

The negated VC is unsatisfiable:

$$\begin{array}{l} 0 \leq \ell \wedge u < |a| \wedge i_1 = \ell \\ \wedge i_1 \leq u \wedge a[i_1] \neq e \wedge i_2 = i_1 + 1 \\ \wedge i_2 \leq u \wedge (0 > i_2 \vee i_2 \geq |a|) \end{array}$$

The interpolant *I* for the red and blue part is

$$i_1 \geq 0 \wedge u < |a|$$

This is actually the loop invariant needed to prove the assertion.

Suppose $F_1 \wedge ... \wedge F_m \wedge G_1 \wedge ... \wedge G_n$ is unsat. How can we compute an interpolant?

- The algorithm is dependent on the theory and the fragment.
- We will show an algorithm for
 - Quantifier-free conjunctive fragment of T_E .
 - \bullet Quantifier-free conjunctive fragment of $\mathit{T}_{\mathbb{Q}}.$

Computing Interpolants for T_{E}

$$F_1 \wedge \cdots \wedge F_m \wedge G_1 \wedge \cdots \wedge G_n$$
 is unsat.

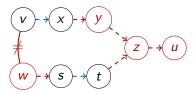
Let us first consider the case without function symbols.

The congruence closure algorithm returns unsat. Hence,

- there is a disequality $v \neq w$ and
- *v*,*w* have the same representative.

Example:

$$v \neq w \land x = y \land y = z \land z = u \land w = s \land t = z \land s = t \land v = x$$



The Interpolant "summarizes" the red edges: $I: v \neq s \land x = t$

Given conjunctive formula:

$$F_1 \wedge \cdots \wedge F_n \wedge G_1 \wedge \cdots \wedge G_m$$

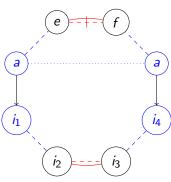
The following algorithm can be used unless there is a congruence edge:

- Build the congruence closure graph. Edges F_i are colored red, Edges G_j are colored blue.
- Add (colored) disequality edge. Find circle and remove all other edges.
- Combine maximal red paths, remove blue paths.
- The F paths start and end at shared symbols.
 Interpolant is the conjunction of the corresponding equalities.

Handling Congruence Edges (Case 1)

Both sides of the congruence edge belong to G.

$$i_3 = i_2 \land e \neq f \land a(i_1) = e \land a(i_4) = f \land i_1 = i_2 \land i_3 = i_4$$



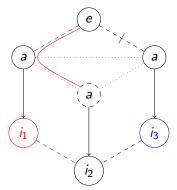
- Follow the path that connects the arguments.
- Also add summarized edges for that path.
- Treat the congruence edge as blue edge (ignore it).
- Interpolant is conjunction of all summarized paths.

Interpolant:

$$i_2 = i_3 \wedge e \neq f$$

Both side of the congruence edge belong to different formulas.

$$a(i_1) = e \wedge i_2 = i_1 \wedge i_3 = i_2 \wedge a(i_3) \neq e$$



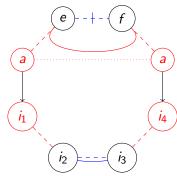
Interpolant: $e = a(i_2)$.

- Function symbol *a* must be shared.
- Follow the path that connects the arguments.
- Find first change from red to blue.
- Lift function application on that term.
- Summarize $e = a(i_1) \wedge i_1 = i_2$ by $e = a(i_2)$.
- Compute remaining interpolant as usual.

Handling Congruence Edges (Case 3)

Both side of the congruence edge belong to F.

$$a(i_1) = e \wedge a(i_4) = f \wedge i_1 = i_2 \wedge i_3 = i_4 \wedge i_3 = i_2 \wedge e \neq f$$



Interpolant:

$$i_2 = i_3 \rightarrow e = f$$

- Follow the path that connects the arguments.
- Find the first and last terms i_2 , i_3 where color changes.
- Treat congruence edge as red edge and summarize path.
- The summary only holds under $i_2 = i_3$, i.e., add $i_2 = i_3 \rightarrow e = f$ to interpolants.
- Summarize remaining path segments as usual.

Computing Interpolants for $T_{\mathbb{Q}}$

First apply Dutertre/de Moura algorithm.

- Non-basic variables x_1, \ldots, x_n .
- Basic variables y_1, \ldots, y_m .
- $y_i = \sum a_{ij}x_j$
- Conjunctive formula

$$y_1 \leq b_1 \dots y_{m'} \leq b_{m'} \wedge y_{m'+1} \leq b_{m'+1} \dots y_m \leq b_m.$$

The algorithm returns unsatisfiable if and only if there is a line:

$$y_i = \sum -a'_k y_k$$
, $a'_k \ge 0$ and $\sum -a'_k b_k > b_i$ (the constraint $y_i \le b_i$ is not satisfied)

Computing Interpolants for $T_{\mathbb{Q}}$

FREIBURG

The conflict is:

$$b_i \geq y_i = \sum -a'_k y_k \geq \sum -a'_k b_k > b_i$$

or

$$0 \, = \, y_i \, + \, \sum a_k' y_k \, \leq \, b_i \, + \, \sum a_k' b_k \, < \, 0$$

We split the y variables into blue and red ones:

$$0 = \sum_{k=1}^{m'} a_{ik} y_k + \sum_{k=m'+1}^{m} a_{ik} y_k \le \sum_{k=1}^{m'} a_{ik} b_k + \sum_{k=m'+1}^{m} a_{ik} b_k < 0$$

where $a'_k \geq 0, (a'_i = 1)$. The interpolant I is the red part:

$$\sum_{k=1}^{m'} a_{ik} y_k \leq \sum_{k=1}^{m'} a_{ik} b_k$$

where the basic variables y_k are replaced by their definition.

Example

$$x_1 + x_2 \le 3 \land x_1 - x_2 \le 1 \land x_3 - x_1 \le 1 \land x_3 \ge 4$$

$$y_1 := x_1 + x_2$$
 $b_1 := 3$ $y_3 := -x_1 + x_3$ $b_3 := 1$
 $y_2 := x_1 - x_2$ $b_1 := 1$ $y_4 := -x_3$ $b_4 := -4$

Algorithm ends with the tableaux

Conflict is $0 = y_1 + y_2 + 2y_3 + 2y_4 \le 3 + 1 + 2 - 8 = -2$. Interpolant is: $y_1 + y_2 \le 3 + 1$ or (substituting non-basic vars): $2x_1 \le 4$.

Correctness

$$F_k: y_k := \sum_{j=0}^n a_{kj} x_j \le b_k, (k=1,...,m)$$
 $G_k: y_k := \sum_{j=0}^n a_{kj} x_j \le b_k, (k=m',...,m)$

Conflict is
$$0 = \sum_{k=1}^{m'} a'_k y_k + \sum_{k=m'+1}^{m} a'_k y_k \le \sum_{k=1}^{m'} a'_k b_k + \sum_{k=m'+1}^{m} a'_k b_k < 0$$

After substitution the red part $\sum_{k=1}^{m} a'_k y_k \leq \sum_{k=1}^{m} a'_k b_k$ becomes

$$I: \sum_{j=1}^{n} \left(\sum_{k=1}^{m'} a'_k a_{kj}\right) x_j \leq \sum_{k=1}^{m'} a'_k b_k.$$

- $F \Rightarrow I$ (sum up the inequalities in F with factors a'_{ν}).
- $I \wedge G \Rightarrow \bot$ (sum up I and G with factors a'_k to get $0 \le \sum_{k=1}^m a'_k b_k < 0$).
- Only shared symbols in I: $0 = \sum_{k=1}^{m'} a_{kj} a'_k x_j + \sum_{k=m'+1}^{m} a_{kj} a'_k x_j$. If the left sum is not zero, the right sum is not zero and x_j appears in F and G.

Computing Interpolants for DPLL(T)

Key Idea: Compute Interpolants for conflict clauses: Split C into C_F and C_G (if literal appear in F and G put it in C_G).

The conflict clause follows from the original formula:

$$F \wedge G \Rightarrow C_F \vee C_G$$

Hence, the following formula is unsatisfiable.

$$F \wedge \neg C_F \wedge G \wedge \neg C_G$$

An interpolant I_C for C is the interpolant of the above formula. I_C contains only symbols shared between F and G.

Computing Interpolants for Conflict Clauses

There are several points where conflict clauses are returned:

- Conflict clause is returned by TCHECK.
 Then theory must give an interpolant.
- Conflict clause comes from *F*.

Then $F \Rightarrow C_F \vee C_G$.

Hence, $(F \land \neg C_F) \Rightarrow C_G$. Also, $C_G \land G \land \neg C_G$ is unsatisfiable Interpolant is C_G .

• Conflict clause comes from G.

Then $C_G = C$, $G \Rightarrow C_G$.

Hence, $(G \land \neg C_G)$ is unsatisfiable. Interpolant is \top .

- ullet Conflict clause comes from resolution on ℓ .
 - Then there is a unit clause $U = \ell \vee U'$ with interpolant I_U and conflict clause $C = \neg \ell \vee C'$ with interpolant I_C .

If
$$\ell \in F$$
, set $I_{U' \lor C'} = I_U \lor I_C$
If $\ell \in G$, set $I_{U' \lor C'} = I_U \land I_C$

Computing Interpolants for DPLL(T)

The previous algorithm can compute interpolant for each conflict clause.

The final conflict clause returned is \perp .

 I_{\perp} is an interpolant of $F \wedge G$.

Unfortunately, it is not that easy...

... because equalities shared by Nelson-Oppen can contain red and blue symbols simultaneously.

Interpolating in theory combination is still ongoing research.