Decision Procedures

Jochen Hoenicke

Software Engineering
- - 峌- Albert-Ludwigs-University Freiburg

Summer 2012

Craig Interpolation

Introduction

Given an unsatisfiable formula of the form:

$$
F \wedge G
$$

Can we find a "smaller" formula that explains the conflict?
I.e., a formula implied by F that is inconsistent with G ?

Under certain conditions, there is an interpolant I with

- $F \Rightarrow I$.
- $I \wedge G$ is unsatisfiable.
- I contains only symbols common to F and G.

Craig Interpolation

A craig interpolant $/$ for an unsatisfiable formula $F \wedge G$ is

- $F \Rightarrow I$.
- $I \wedge G$ is unsatisfiable.
- I contains only symbols common to F and G.

Craig interpolants exists in many theories and fragments:

- First-order logic.
- Quantifier-free FOL.
- Quantifier-free fragment of T_{E}.
- Quantifier-free fragment of $T_{\mathbb{Q}}$.
- Quantifier-free fragment of $\widehat{T_{\mathbb{Z}}}$ (augmented with divisibility). However, QF fragment of $T_{\mathbb{Z}}$ does not allow Craig interpolation.

Program correctness

Consider this path through LinearSearch:

Single Static Assingment (SSA) replaces assignments by assumes:

$$
\begin{aligned}
& \text { @pre } 0 \leq \ell \wedge u<|a| \\
& i:=\ell \\
& \text { assume } i \leq u \\
& \text { assume } a[i] \neq e \\
& i:=i+1 \\
& \text { assume } i \leq u \\
& \text { @ } 0 \leq i \wedge i<|a|
\end{aligned}
$$

$$
\begin{aligned}
& \text { @pre } 0 \leq \ell \wedge u<|a| \\
& \text { assume } i_{1}=\ell \\
& \text { assume } i_{1} \leq u \\
& \text { assume } a\left[i_{1}\right] \neq e \\
& \text { assume } i_{2}=i_{1}+1 \\
& \text { assume } i_{2} \leq u \\
& \text { @ } 0 \leq i_{2} \wedge i_{2}<|a|
\end{aligned}
$$

Program correctness and Interpolants

If program contains only assumes, the VC looks like

$$
V C: P \rightarrow\left(F_{1} \rightarrow\left(F_{2} \rightarrow\left(F_{3} \rightarrow \ldots\left(F_{n} \rightarrow Q\right) \ldots\right)\right)\right)
$$

Using $\neg(F \rightarrow G) \Leftrightarrow F \wedge \neg G$ compute negation:

$$
\neg V C: P \wedge F_{1} \wedge F_{2} \wedge F_{3} \wedge \cdots \wedge F_{n} \wedge Q
$$

If verification condition is valid $\neg V C$ is unsatisfiable. We can compute interpolants for any program point, e.g. for

$$
P \wedge F_{1} \wedge F_{2} \wedge F_{3} \wedge \cdots \wedge F_{n} \wedge \neg Q
$$

Verification Condition and interpolants

Consider the path through LinearSearch:

$$
\begin{aligned}
& \text { @pre } 0 \leq \ell \wedge u<|a| \\
& \text { assume } i_{1}=\ell \\
& \text { assume } i_{1} \leq u \\
& \text { assume } a\left[i_{1}\right] \neq e \\
& \text { assume } i_{2}=i_{1}+1 \\
& \text { assume } i_{2} \leq u \\
& \text { @ } 0 \leq i_{2} \wedge i_{2}<|a|
\end{aligned}
$$

The negated VC is unsatisfiable: 諼

$$
\begin{aligned}
& 0 \leq \ell \wedge u<|a| \wedge i_{1}=\ell \\
& \wedge i_{1} \leq u \wedge a\left[i_{1}\right] \neq e \wedge i_{2}=i_{1}+1 \\
& \wedge i_{2} \leq u \wedge\left(0>i_{2} \vee i_{2} \geq|a|\right)
\end{aligned}
$$

The interpolant I for the red and blue part is

$$
i_{1} \geq 0 \wedge u<|a|
$$

This is actually the loop invariant needed to prove the assertion.

Computing Interpolants

Suppose $F_{1} \wedge \ldots \wedge F_{m} \wedge G_{1} \wedge \ldots \wedge G_{n}$ is unsat.
How can we compute an interpolant?

- The algorithm is dependent on the theory and the fragment.
- We will show an algorithm for
- Quantifier-free conjunctive fragment of T_{E}.
- Quantifier-free conjunctive fragment of $T_{\mathbb{Q}}$.

Computing Interpolants for T_{E}

$$
F_{1} \wedge \cdots \wedge F_{m} \wedge G_{1} \wedge \cdots \wedge G_{n} \text { is unsat. }
$$

Let us first consider the case without function symbols.
The congruence closure algorithm returns unsat. Hence,

- there is a disequality $v \neq w$ and
- v, w have the same representative.

Example:
$v \neq w \wedge x=y \wedge y=z \wedge z=u \wedge w=s \wedge t=z \wedge s=t \wedge v=x$

The Interpolant "summarizes" the red edges: $l: v \neq s \wedge x=t$

Computing Interpolants for T_{E}

Given conjunctive formula:

$$
F_{1} \wedge \cdots \wedge F_{n} \wedge G_{1} \wedge \cdots \wedge G_{m}
$$

The following algorithm can be used unless there is a congruence edge:

- Build the congruence closure graph. Edges F_{i} are colored red, Edges G_{j} are colored blue.
- Add (colored) disequality edge. Find circle and remove all other edges.
- Combine maximal red paths, remove blue paths.
- The F paths start and end at shared symbols. Interpolant is the conjunction of the corresponding equalities.

Handling Congruence Edges (Case 1)

Both sides of the congruence edge belong to G.

$$
i_{3}=i_{2} \wedge e \neq f \wedge a\left(i_{1}\right)=e \wedge a\left(i_{4}\right)=f \wedge i_{1}=i_{2} \wedge i_{3}=i_{4}
$$

- Follow the path that connects the arguments.
- Also add summarized edges for that path.
- Treat the congruence edge as blue edge (ignore it).
- Interpolant is conjunction of all summarized paths.
Interpolant:
$i_{2}=i_{3} \wedge e \neq f$

Handling Congruence Edges (Case 2)

Both side of the congruence edge belong to different formulas.

$$
a\left(i_{1}\right)=e \wedge i_{2}=i_{1} \wedge i_{3}=i_{2} \wedge a\left(i_{3}\right) \neq e
$$

- Function symbol a must be shared.
- Follow the path that connects the arguments.
- Find first change from red to blue.
- Lift function application on that term.
- Summarize $e=a\left(i_{1}\right) \wedge i_{1}=i_{2}$ by $e=a\left(i_{2}\right)$.
- Compute remaining interpolant as usual.

Interpolant: $e=a\left(i_{2}\right)$.

Handling Congruence Edges (Case 3)

Both side of the congruence edge belong to F.

$$
a\left(i_{1}\right)=e \wedge a\left(i_{4}\right)=f \wedge i_{1}=i_{2} \wedge i_{3}=i_{4} \wedge i_{3}=i_{2} \wedge e \neq f
$$

Interpolant:
$i_{2}=i_{3} \rightarrow e=f$

- Follow the path that connects the arguments.
- Find the first and last terms i_{2}, i_{3} where color changes.
- Treat congruence edge as red edge and summarize path.
- The summary only holds under $i_{2}=i_{3}$,i.e., add $i_{2}=i_{3} \rightarrow e=f$ to interpolants.
- Summarize remaining path segments as usual.

Computing Interpolants for $T_{\mathbb{Q}}$

First apply Dutertre/de Moura algorithm.

- Non-basic variables x_{1}, \ldots, x_{n}.
- Basic variables y_{1}, \ldots, y_{m}.
- $y_{i}=\sum a_{i j} x_{j}$
- Conjunctive formula

$$
y_{1} \leq b_{1} \ldots y_{m^{\prime}} \leq b_{m^{\prime}} \wedge y_{m^{\prime}+1} \leq b_{m^{\prime}+1} \ldots y_{m} \leq b_{m}
$$

The algorithm returns unsatisfiable if and only if there is a line:

	x	\cdots	x	y	\cdots	y	y	\cdots	y
\vdots									
y_{i} / y_{i}	0	\cdots	0	-10	\cdots	$-/ 0$	$-/ 0$	\cdots	$-/ 0$
\vdots									
$y_{i}=\sum-a_{k}^{\prime} y_{k}$,	$a_{k}^{\prime} \geq 0$ and $\sum-a_{k}^{\prime} b_{k}>$	b_{i}							
(the constraint $y_{i} \leq b_{i}$ is not satisfied)									

Computing Interpolants for $T_{\mathbb{Q}}$

The conflict is:

$$
b_{i} \geq y_{i}=\sum-a_{k}^{\prime} y_{k} \geq \sum-a_{k}^{\prime} b_{k}>b_{i}
$$

or

$$
0=y_{i}+\sum a_{k}^{\prime} y_{k} \leq b_{i}+\sum a_{k}^{\prime} b_{k}<0
$$

We split the y variables into blue and red ones:

$$
0=\sum_{k=1}^{m^{\prime}} a_{i k} y_{k}+\sum_{k=m^{\prime}+1}^{m} a_{i k} y_{k} \leq \sum_{k=1}^{m^{\prime}} a_{i k} b_{k}+\sum_{k=m^{\prime}+1}^{m} a_{i k} b_{k}<0
$$

where $a_{k}^{\prime} \geq 0,\left(a_{i}^{\prime}=1\right)$. The interpolant l is the red part:

$$
\sum_{k=1}^{m^{\prime}} a_{i k} y_{k} \leq \sum_{k=1}^{m^{\prime}} a_{i k} b_{k}
$$

where the basic variables y_{k} are replaced by their definition.

Example

$$
\begin{aligned}
& x_{1}+x_{2} \leq 3 \wedge x_{1}-x_{2} \leq 1 \wedge x_{3}-x_{1} \leq 1 \wedge x_{3} \geq 4 \\
& y_{1}:=x_{1}+x_{2} \quad b_{1}:=3 \quad y_{3}:=-x_{1}+x_{3} \quad b_{3}:=1 \\
& y_{2}:=x_{1}-x_{2} \quad b_{1}:=1 \quad y_{4}:=-x_{3} \quad b_{4}:=-4
\end{aligned}
$$

Algorithm ends with the tableaux | | | 1 | 1 | -4 | |
| :--- | :--- | :---: | :---: | :---: | :---: |
| | | y_{2} | y_{3} | y_{4} | β |
| y_{1} | -1 | -2 | -2 | 5 | |
| x_{1} | 0 | -1 | -1 | 3 | |
| x_{2} | -1 | -1 | -1 | 2 | |
| | x_{3} | 0 | 0 | -1 | 4 |

Conflict is $0=y_{1}+y_{2}+2 y_{3}+2 y_{4} \leq 3+1+2-8=-2$. Interpolant is: $y_{1}+y_{2} \leq 3+1$ or (substituting non-basic vars): $2 x_{1} \leq 4$.

Correctness

$F_{k}: y_{k}:=\sum_{j=0}^{n} a_{k j} x_{j} \leq b_{k},(k=1, \ldots, m) \quad G_{k}: y_{k}:=\sum_{j=0}^{n} a_{k j} x_{j} \leq b_{k},\left(k=m^{\prime}, \ldots, m\right)$
Conflict is $0=\sum_{k=1}^{m^{\prime}} a_{k}^{\prime} y_{k}+\sum_{k=m^{\prime}+1}^{m} a_{k}^{\prime} y_{k} \leq \sum_{k=1}^{m^{\prime}} a_{k}^{\prime} b_{k}+\sum_{k=m^{\prime}+1}^{m} a_{k}^{\prime} b_{k}<0$
After substitution the red part $\sum_{k=1}^{m^{\prime}} a_{k}^{\prime} y_{k} \leq \sum_{k=1}^{m^{\prime}} a_{k}^{\prime} b_{k}$ becomes

$$
\text { I: } \sum_{j=1}^{n}\left(\sum_{k=1}^{m^{\prime}} a_{k}^{\prime} a_{k j}\right) x_{j} \leq \sum_{k=1}^{m^{\prime}} a_{k}^{\prime} b_{k}
$$

- $F \Rightarrow I$ (sum up the inequalities in F with factors a_{k}^{\prime}).
- $I \wedge G \Rightarrow \perp$ (sum up I and G with factors a_{k}^{\prime} to get $\left.0 \leq \sum_{k=1}^{m} a_{k}^{\prime} b_{k}<0\right)$.
- Only shared symbols in I: $0=\sum_{k=1}^{m^{\prime}} a_{k j} a_{k}^{\prime} x_{j}+\sum_{k=m^{\prime}+1}^{m} a_{k j} a_{k}^{\prime} x_{j}$.

If the left sum is not zero, the right sum is not zero and x_{j} appears in F and G.

Computing Interpolants for DPLL(T)

Key Idea: Compute Interpolants for conflict clauses: Split C into C_{F} and C_{G} (if literal appear in F and G put it in C_{G}).

The conflict clause follows from the original formula:

$$
F \wedge G \Rightarrow C_{F} \vee C_{G}
$$

Hence, the following formula is unsatisfiable.

$$
F \wedge \neg C_{F} \wedge G \wedge \neg C_{G}
$$

An interpolant I_{C} for C is the interpolant of the above formula. I_{C} contains only symbols shared between F and G.

Computing Interpolants for Conflict Clauses

There are several points where conflict clauses are returned:

- Conflict clause is returned by TCHECK.

Then theory must give an interpolant.

- Conflict clause comes from F. Then $F \Rightarrow C_{F} \vee C_{G}$. Hence, $\left(F \wedge \neg C_{F}\right) \Rightarrow C_{G}$. Also, $C_{G} \wedge G \wedge \neg C_{G}$ is unsatisfiable Interpolant is C_{G}.
- Conflict clause comes from G.

Then $C_{G}=C, G \Rightarrow C_{G}$. Hence, $\left(G \wedge \neg C_{G}\right)$ is unsatisfiable. Interpolant is T.

- Conflict clause comes from resolution on ℓ.

Then there is a unit clause $U=\ell \vee U^{\prime}$ with interpolant I_{U} and conflict clause $C=\neg \ell \vee C^{\prime}$ with interpolant I_{C}.

If $\ell \in F$, set $I_{U^{\prime} \vee C^{\prime}}=I_{U} \vee I_{C}$
If $\ell \in G$, set $I_{U^{\prime} \vee C^{\prime}}=I_{U} \wedge I_{C}$

Computing Interpolants for DPLL(T)

The previous algorithm can compute interpolant for each conflict clause. The final conflict clause returned is \perp.
I_{\perp} is an interpolant of $F \wedge G$.
Unfortunately, it is not that easy...
... because equalities shared by Nelson-Oppen can contain red and blue symbols simultaneously.

Interpolating in theory combination is still ongoing research.

