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Cyber-Physical Systems (CPS) 

traffic control and safety 
financial networks 
medical devices and systems 
assisted living 
advanced automotive systems 
energy conservation 
environmental control 
aviation systems 
critical infrastructure (power, water)  
distributed robotics 
military systems 
smart structures 
biosystems (morphogenesis,…) 

safe/efficient transportation 
fair financial networks 
integrated medical systems 
distributed micro power generation  
military dominance 
economic dominance 
disaster recovery 
energy efficient buildings 
alternative energy 
pervasive adaptive communications 
distributed service delivery 
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Cyber-Physical Systems (CPS) 

networked computational resources interacting with physical systems 

  Automotive controllers 
  Avionics 
  Medical devices 
  Industrial control 
  Energy management and conservation 
   . . . 
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US Research Council Report 

“Driven by the increasing capabilities and ever declining costs of 
computing and communications devices, IT is being embedded into a 
growing range of physical devices linked together through networks 
and will become ever more pervasive as the component technologies 
become smaller, faster, and cheaper... These networked systems of 
embedded computers ... have the potential to change radically the way 
people interact with their environment by linking together a range of 
devices and sensors that will allow information to be collected, shared, and 
processed in unprecedented ways.” 
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Automotive electronics today 

About 80 computers (ECUs) in a car: 
 engine control, transmission, anti-lock brakes, electronic 

suspension, parking assistance, climate control, audio 
system, “body electronics” (seat belt, etc.), display and 
instrument panel, etc. 

  linked together by CAN bus (today), FlexRay (tomorrow) 
with up to 2km of wiring. 

 growing fraction of development costs 
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Toyota autonomous vehicle technology roadmap 

Source: Toyota Web site 
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Copyright Prevent Project 

Intelligent Crossing System 

Source: Aramis Project 
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An engineer’s responsibility 

   Korean Air 747 in Guam, 200 deaths (1997) 
   30,000 deaths and 600,000 injuries from medical devices (1985-2005) 

  perhaps 8% due to software? 

source: D. Jackson, M. Thomas, L. I. Millett, and the Committee on Certifiably 
Dependable Software Systems, "Software for Dependable Systems: Sufficient 
Evidence?," National Academies Press, May 9 2007. 
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Good Engineering? 

A “fly by wire” aircraft, expected to be made for 
50 years, requires a 50-year stockpile of the 
hardware components that execute the software. 

All must be made from the same mask set on the 
same production line. Even a slight change or 
“improvement” might affect timing and require the 
software to be re-certified. 
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A Key Challenge: Real Time 

basic premise for programming (in C, C#, Java, etc.): 
correctness of a program does not depend on real time. 

useful programming abstraction: 
ignore timing behavior 
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Abstraction of time 
exploited everywhere 

Programming languages 
Virtual memory 
Caches 
Dynamic dispatch 
Speculative execution 
Power management (voltage scaling) 
Memory management (garbage collection) 
Just-in-time (JIT) compilation 
Multitasking (threads and processes) 
Component technologies (OO design) 
Networking (TCP) 
… 
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Real time 

Make it faster! 

What if you need “absolutely positively on time”? 

Practice in the past: write code, build your system, and test for timing  

Model-based design:  specify model and analyze dynamic behavior / timing  
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CPS vs. Embedded Systems  

embedded systems view: 

software on small computers => limited resources 

technical problem:  extract performance 

CPS view: 

computation and networking integrated with physical processes 

technical problem: manage dynamics, time, and concurrency  
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Cyber-Physical Systems are . . . 

Computational 
   but not first-and-foremost a computer 

Integral with physical processes 
   sensors, actuators, physical dynamics 

Reactive 
   at speed of environment (timing!) 

Networked 
 concurrent, distributed, dynamic 
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Focus of traditional embedded systems vs. CPS 

Traditional embedded: 
• Hardware interfacing 
•  Interrupts 
• Memory systems 
• C programming 
• Assembly language 
• FPGA design 
• RTOS design 
• … 

CPS: 
•  Modeling 
•  Timing 
•  Dynamics 
•  Imperative logic 
•  Concurrency 
•  Verification 
•  … 
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Embedded systems problem: resource limitation 

   small memory 
   small data word sizes 
   relatively slow clocks 

Engineering emphasizes efficiency: 
   write software at a low level (in assembly code or C) 
   avoid operating systems with a rich suite of services 
   develop specialized computer architectures: 

  programmable DSPs 
  network processors 

   develop specialized networks 
  Can, FlexRay, TTP/C, MOST, etc. 

This is how embedded SW has been designed for 30 years 
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Fundamental problems 

time matters 
  “as fast as possible” is not good enough 

concurrency is intrinsic 
  it’s not an illusion (as in time sharing), and 
  it’s not (necessarily) about exploiting parallelism 

environment is physical 
  behavior obeys physical laws 
  depends on continuous variables 

(force, acceleration, speed, position) 
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Cyber Physical Systems: 
Computational + 

Physical 

CPS is Multidisciplinary  

Computer Science: 

abstracts physical world 
(e.g., real time) 

Control Theory: 

deals with  
physical quantities 
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First Challenge 

Models for the physical world and for computation diverge. 

  physical: time continuum, differential equations, dynamics 
  computational: algorithm, procedure, state transitions, logic 

bridge the gap: 
•  use physical world models to specify behavior of systems 
•  use computational view to study dynamics of physical system 
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Models in Model-Based Design & Verification 

  Models describe physical dynamics. 
  Specifications are executable models. 
  Models are composed to form designs. 
  Models evolve during design. 
  Deployed code may be (partially) generated from models. 
  Modeling languages have semantics. 
  Modeling languages themselves may be modeled (meta models). 

For cyber-physical systems, the model accounts for: 
  Time 
  Concurrency 
  Dynamics 
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Modeling, Design, Analysis 

Model  
specifies what a system does.  

Design 
specifies how a system does what it does.  

Analysis  
specifies why a system does what it does  
(or fails to do what it should do).  
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Model 

artifact that imitates the system 

mathematical model:  
•  definitions in terms of mathematical formulas 
•  mathematical correctness statement 
•  formal, automatic correctness proof 

formal: mathematical, logical, machine checkable 
automatic: push-button, scalable 
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Modeling Techniques 

Model = abstraction of system dynamics 
(how things change over time) 

  physical phenomena: differential equations 
  mode behavior:  finite-state automata 
  combination: hybrid automata  
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Modeling Helicopter Dynamics 
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Modeling Physical Motion 

Six degrees of freedom: 
  Position: x, y, z 
  Orientation: pitch, yaw, roll 



27 

Notation 
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Notation 
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Orientation 
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Feedback Control Problem 

A helicopter without a tail rotor, like the one 
below, will spin uncontrollably due to the 
torque induced by friction in the rotor shaft. 

Control system problem: 
Apply torque using the tail 
rotor to counterbalance 
the torque of the top rotor. 
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Next: Description of behavior by traces 

Model = abstraction of system dynamics 

  physical phenomena: 
 differential equations 

  computation / discrete mode change: 
 finite-state automata 

  combination:  
 hybrid automata  
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Discrete System (FSM) 

Continuous System 

Hybrid System 
jump 

flow 
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Next: 

  Examples of Hybrid Systems 

  The Hybrid Automaton Model  
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Thermostat 

(happen instantaneously) 
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Dynamics of Thermostat 
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Hybrid Automaton for Thermostat 

Is this automaton deterministic? 


