
Cyber Physical Systems - Hybrid Control

Lecture 1: Introduction

Andreas Podelski

with material from
Edward A. Lee & Sanjit A. Seshia,
Introduction to Embedded Systems
leeseshia.org

2 Courtesy of Kuka Robotics Corp.!

Cyber-Physical Systems

Power
generation and
distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation
(Air traffic
control at
SFO) Avionics

Telecommunications

Factory automation

Instrumentation
(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

3

Cyber-Physical Systems (CPS)

traffic control and safety
financial networks
medical devices and systems
assisted living
advanced automotive systems
energy conservation
environmental control
aviation systems
critical infrastructure (power, water)
distributed robotics
military systems
smart structures
biosystems (morphogenesis,…)

safe/efficient transportation
fair financial networks
integrated medical systems
distributed micro power generation
military dominance
economic dominance
disaster recovery
energy efficient buildings
alternative energy
pervasive adaptive communications
distributed service delivery

4

Cyber-Physical Systems (CPS)

networked computational resources interacting with physical systems

  Automotive controllers
  Avionics
  Medical devices
  Industrial control
  Energy management and conservation
  . . .

5

US Research Council Report

“Driven by the increasing capabilities and ever declining costs of
computing and communications devices, IT is being embedded into a
growing range of physical devices linked together through networks
and will become ever more pervasive as the component technologies
become smaller, faster, and cheaper... These networked systems of
embedded computers ... have the potential to change radically the way
people interact with their environment by linking together a range of
devices and sensors that will allow information to be collected, shared, and
processed in unprecedented ways.”

6

Automotive electronics today

About 80 computers (ECUs) in a car:
 engine control, transmission, anti-lock brakes, electronic

suspension, parking assistance, climate control, audio
system, “body electronics” (seat belt, etc.), display and
instrument panel, etc.

  linked together by CAN bus (today), FlexRay (tomorrow)
with up to 2km of wiring.

 growing fraction of development costs

7

Toyota autonomous vehicle technology roadmap

Source: Toyota Web site

8 AVACS Review
Freiburg

8

Copyright Prevent Project

Intelligent Crossing System

Source: Aramis Project

9

An engineer’s responsibility

  Korean Air 747 in Guam, 200 deaths (1997)
  30,000 deaths and 600,000 injuries from medical devices (1985-2005)

  perhaps 8% due to software?

source: D. Jackson, M. Thomas, L. I. Millett, and the Committee on Certifiably
Dependable Software Systems, "Software for Dependable Systems: Sufficient
Evidence?," National Academies Press, May 9 2007.

10

Good Engineering?

A “fly by wire” aircraft, expected to be made for
50 years, requires a 50-year stockpile of the
hardware components that execute the software.

All must be made from the same mask set on the
same production line. Even a slight change or
“improvement” might affect timing and require the
software to be re-certified.

11

A Key Challenge: Real Time

basic premise for programming (in C, C#, Java, etc.):
correctness of a program does not depend on real time.

useful programming abstraction:
ignore timing behavior

12

Abstraction of time
exploited everywhere

Programming languages
Virtual memory
Caches
Dynamic dispatch
Speculative execution
Power management (voltage scaling)
Memory management (garbage collection)
Just-in-time (JIT) compilation
Multitasking (threads and processes)
Component technologies (OO design)
Networking (TCP)
…

13

Real time

Make it faster!

What if you need “absolutely positively on time”?

Practice in the past: write code, build your system, and test for timing

Model-based design: specify model and analyze dynamic behavior / timing

14

CPS vs. Embedded Systems

embedded systems view:

software on small computers => limited resources

technical problem: extract performance

CPS view:

computation and networking integrated with physical processes

technical problem: manage dynamics, time, and concurrency

15

Cyber-Physical Systems are . . .

Computational
  but not first-and-foremost a computer

Integral with physical processes
  sensors, actuators, physical dynamics

Reactive
  at speed of environment (timing!)

Networked
 concurrent, distributed, dynamic

16

Focus of traditional embedded systems vs. CPS

Traditional embedded:
• Hardware interfacing
•  Interrupts
• Memory systems
• C programming
• Assembly language
• FPGA design
• RTOS design
• …

CPS:
•  Modeling
•  Timing
•  Dynamics
•  Imperative logic
•  Concurrency
•  Verification
•  …

17

Embedded systems problem: resource limitation

  small memory
  small data word sizes
  relatively slow clocks

Engineering emphasizes efficiency:
  write software at a low level (in assembly code or C)
  avoid operating systems with a rich suite of services
  develop specialized computer architectures:

  programmable DSPs
  network processors

  develop specialized networks
  Can, FlexRay, TTP/C, MOST, etc.

This is how embedded SW has been designed for 30 years

18

Fundamental problems

time matters
  “as fast as possible” is not good enough

concurrency is intrinsic
  it’s not an illusion (as in time sharing), and
  it’s not (necessarily) about exploiting parallelism

environment is physical
  behavior obeys physical laws
  depends on continuous variables

(force, acceleration, speed, position)

19

Cyber Physical Systems:
Computational +

Physical

CPS is Multidisciplinary

Computer Science:

abstracts physical world
(e.g., real time)

Control Theory:

deals with
physical quantities

20

First Challenge

Models for the physical world and for computation diverge.

  physical: time continuum, differential equations, dynamics
  computational: algorithm, procedure, state transitions, logic

bridge the gap:
•  use physical world models to specify behavior of systems
•  use computational view to study dynamics of physical system

21

Models in Model-Based Design & Verification

  Models describe physical dynamics.
  Specifications are executable models.
  Models are composed to form designs.
  Models evolve during design.
  Deployed code may be (partially) generated from models.
  Modeling languages have semantics.
  Modeling languages themselves may be modeled (meta models).

For cyber-physical systems, the model accounts for:
  Time
  Concurrency
  Dynamics

22

Modeling, Design, Analysis

Model
specifies what a system does.

Design
specifies how a system does what it does.

Analysis
specifies why a system does what it does
(or fails to do what it should do).

23

Model

artifact that imitates the system

mathematical model:
•  definitions in terms of mathematical formulas
•  mathematical correctness statement
•  formal, automatic correctness proof

formal: mathematical, logical, machine checkable
automatic: push-button, scalable

24

Modeling Techniques

Model = abstraction of system dynamics
(how things change over time)

  physical phenomena: differential equations
  mode behavior: finite-state automata
  combination: hybrid automata

25

Modeling Helicopter Dynamics

26

Modeling Physical Motion

Six degrees of freedom:
  Position: x, y, z
  Orientation: pitch, yaw, roll

27

Notation

28

Notation

29

Orientation

30

Feedback Control Problem

A helicopter without a tail rotor, like the one
below, will spin uncontrollably due to the
torque induced by friction in the rotor shaft.

Control system problem:
Apply torque using the tail
rotor to counterbalance
the torque of the top rotor.

31

Next: Description of behavior by traces

Model = abstraction of system dynamics

  physical phenomena:
 differential equations

  computation / discrete mode change:
 finite-state automata

  combination:
 hybrid automata

32

Discrete System (FSM)

Continuous System

Hybrid System
jump

flow

33

Next:

  Examples of Hybrid Systems

  The Hybrid Automaton Model

34

Thermostat

(happen instantaneously)

35

Dynamics of Thermostat

t

x

82

80

70

68

on

off

36

Hybrid Automaton for Thermostat

Is this automaton deterministic?

