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Cyber-Physical Systems (CPS) 

networked  
computational resources  
interacting with physical systems 
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CPS vs. Embedded Systems  

embedded systems view: 

software on small computers => limited resources 

technical problem:  extract performance 

CPS view: 

computation and networking integrated with physical processes 

technical problem: manage dynamics, time, and concurrency  
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Fundamental problems 

time matters 
  “as fast as possible” is not good enough 

concurrency is intrinsic 
  it’s not an illusion (as in time sharing), and 
  it’s not (necessarily) about exploiting parallelism 

environment is physical 
  behavior obeys physical laws 
  depends on continuous variables 

(force, acceleration, speed, position) 
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Cyber Physical Systems: 
Computational + 

Physical 

CPS is Multidisciplinary  

Computer Science: 

abstracts physical world 
(e.g., real time) 

Control Theory: 

deals with  
physical quantities 
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First Challenge 

Models for the physical world and for computation diverge. 

  physical: time continuum, differential equations, dynamics 
  computational: algorithm, procedure, state transitions, logic 

bridge the gap: 
•  use physical world models to specify behavior of systems 
•  use computational view to study dynamics of physical system 
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Model 

artifact that imitates the system 

mathematical model:  
•  definitions in terms of mathematical formulas 
•  mathematical correctness statement 
•  formal, automatic correctness proof 

formal: mathematical, logical, machine checkable 
automatic: push-button, scalable 
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Model = abstraction of system dynamics 

  physical phenomena: 
 differential equations 

  computation / discrete mode change: 
 finite-state automata 

  combination:  
 hybrid automata  



10 

Discrete System (FSM) 

Continuous System 

Hybrid System 
jump 

flow 
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Next:   The Hybrid Automaton Model  



12 

Thermostat 

(happen instantaneously) 
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Dynamics of Thermostat 
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Hybrid Automaton for Thermostat 

Automaton not deterministic: for some values of x,  
non-deterministic choice between continuous evolution and jump 
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Hybrid Automata 

  Digital controller of physical “plant”  
   thermostat  
   controller for power plant 
   intelligent cruise control in cars  
   aircraft auto pilot 

  Phased operation of natural phenomena 
   bouncing ball 
   biological cell growth 

  Multi-agent systems 
   ground and air transportation systems 
   interacting robots (e.g., RoboSoccer) 
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Another example 

Example due to George Pappas, UPenn 
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Nuclear reactor example (contd.) 

Example due to George Pappas, UPenn 
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Hybrid Automaton for Bouncing Ball 

x – vertical distance from ground (position) 
v – velocity  
c – coefficient of restitution, 0 · c · 1 
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Behavior of bouncing ball model  
in form of hybrid automaton 
= expected behavior?  

Next: 
plot position x as a function of time t ,                       
where x starts at height xmax  
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Simulation of Bouncing Ball Automaton in 
Ptolemy II / HyVisual 
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Zeno Behavior 

system makes infinite number of jumps in finite time 
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A Run/Execution of a Hybrid Automaton 
tim

e 
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Zeno Behavior: Formal Definition 
tim

e 
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Analysis of Zeno Behavior of Bouncing Ball 
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Why does Zeno Behavior Arise? 

Our model is a mathematical artifact 

Zeno behavior is possible mathematically  

but impossible in real (in physical world). 

Some assumption in the model is unrealistic ... 
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Hybrid Automaton for Bouncing Ball  
What’s Unrealistic about this model? 

x – vertical distance 
v – velocity  
c – coefficient of restitution, 0 < c < 1 
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Eliminating Zeno Behavior: Regularization 

What happens as ε goes to 0? 
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Simulation for ε = 0.3 
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Simulation for ε = 0.15 
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Next:  Timed Automata 

   sub-class of hybrid automata  
   models of real-time systems 



31 

Capturing a “Double-Click” of a Mouse  
with a Finite-State Machine (FSM) 

init 1click 2clicks 

click 

absent 

true 

true 

click 
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Capturing a “Double-Click” of a Mouse  
with a Timed Automaton 

init 1click 2clicks 

click / x:=0 

true ⋀ 
x > 100 

absent 

true ⋀ 
 x > 200 

x ≤ 100  
/ x := 0 

click ⋀ 

x = 1 
. 

x = 0 
. 

x = 1 
. 
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Timed Automata 

   RHS of all differential equations is 1 (“ x = 1 ”) 
   Single-speed clocks that precisely tracks real time 
   Reset of a clock is possible in jump (“ x := 0 ”) 

˙ 
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Systems modeled as Timed Automata: 

  Real-time controllers 

  Self-timed circuits (clock-less circuits) 

  Network protocols with timing-dependent behavior 

  Scheduling of jobs 
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A ‘Tick’ Generator 

x := 0 

x = 1 /  
tick, x:=0 

x = 2 /  
tick, x:=0 

x = 1 . 

x = 1 
. 

m1 

m2 

What does x(t) look like? 
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A ‘Tick’ Generator 

x := 0 

x = 1 /  
tick, x:=0 

x = 2 /  
tick, x:=0 

x = 1 . 

x = 1 
. 

m1 

m2 

x(t) 

out(t) 
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Timed Traces and Time-Abstract (Untimed) Traces 
tim

e 

xi’ = xi + (τi’ - τi) 

  A time-abstract 
  (untimed) trace 
 of M is a sequence   
      q0, q1, q2, … 

that can be extended 
to a timed trace of M             

    (think of qi’s as also including 
input and output symbols) 
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Untimed vs. Timed Automata 

a b a, x:=0 b, x ≤ 10 

Do these automata have the same untimed traces? 
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Two Problems 

Verification 
  Does the system do what it’s supposed to do? 

   Does the system satisfy its specifications? 

Synthesis/Control 
  Construct a system that satisfies its specifications 

   e.g. by synthesizing a controller 

In both cases: we need to specify the objective 
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Untimed Specifications 

specifications that do not mention time 
“parking meter reaches ‘safe’ state when coins are added” 
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Next:  Finite-State Machines (FSM) 
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Discrete System:  Counter  

count number of cars that enter or leave parking garage 

Pure signal: 
Discrete actor: 
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Reaction 
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Input and Output Valuations at a Reaction 
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State Space 
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Finite State Machine (FSM)  
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Garage Counter Mathematical Model 

update function 
defined by 
labeled edges 
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FSM Notation 

transition 

self loop 

state 

initial state 
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Guards for Pure Signals 
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Guards for Signals with Numerical Values 
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Example: Thermostat 

From this picture, one can construct the formal 
mathematical model. 


