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Cyber-Physical Systems (CPS)

networked
computational resources
interacting with physical systems



CPS vs. Embedded Systems

embedded systems view:

software on small computers => limited resources

technical problem: extract performance

CPS view:

computation and networking integrated with physical processes

technical problem: manage dynamics, time, and concurrency



Fundamental problems

time matters
“as fast as possible” is not good enough

concurrency is intrinsic

it's not an illusion (as in time sharing), and
it's not (necessarily) about exploiting parallelism

environment is physical
behavior obeys physical laws

depends on continuous variables
(force, acceleration, speed, position)



CPS is Multidisciplinary

Computer Science:

deals with
physical quantities

Computational +
Physical




First Challenge

Models for the physical world and for computation diverge.

physical: time continuum, differential equations, dynamics
computational: algorithm, procedure, state transitions, logic

bridge the gap:
- use physical world models to specify behavior of systems
- use computational view to study dynamics of physical system



Model

artifact that imitates the system

mathematical model.

- definitions in terms of mathematical formulas
- mathematical correctness statement

- formal, automatic correctness proof

formal: mathematical, logical, machine checkable
automatic: push-button, scalable



Model = abstraction of system dynamics

o physical phenomena:
differential equations

o computation / discrete mode change:
finite-state automata

o combination:
hybrid automata



Discrete System (FSM)
‘/

Continuous System

Hybrid System

jump

flow
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Next:

The Hybrid Automaton Model
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Thermostat
State has both discrete and continuous components:

r e R temperature
h € {on, off} heating mode

Flow in each mode is:

h=o0onAzx < 82 T
h =off Az > 68 T

K (100 — x)
—Kx

Jumps between modes: (happen instantaneously)

h = off
h := o0n

h=onAx > 80
h=off Ao <70

e
e
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Dynamics of Thermostat

X

82
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Hybrid Automaton for Thermostat

Automaton not deterministic: for some values of x,
non-deterministic choice between continuous evolution and jump
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Hybrid Automata

o Digital controller of physical “plant”
thermostat
controller for power plant
Intelligent cruise control in cars
aircraft auto pilot

o Phased operation of natural phenomena
bouncing ball
biological cell growth

o Multi-agent systems

ground and air transportation systems
interacting robots (e.g., RoboSoccer)
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Another example

Nuclear reactor example

Without rods N
T=0.1T-50
With rod 1 .
T=01T-566 —
With rod 2 .
T=01T-60

Rod 1 and 2 cannot be used simultaneously
Once a rod is removed, you cannot use it for 10 minutes

Specification : Keep temperature between 510 and 550 degrees.
If T=550 then either a rod is available or we shutdown the plant.

Example due to George Pappas, UPenn
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Nuclear reactor example (contd.)

T=510ay, =10y, =10

T=550Ay,210 T=550AY, 210

T-510-y, =0 T=510-y,=0

T=550Ay, <10y, <10

Analysis : Is shutdown reachable P

Algorithmic verification : NO

Example due to George Pappas, UPenn 17



Hybrid Automaton for Bouncing Ball

U = —CU

r=0Av <0

x — vertical distance from ground (position)
v — velocity
¢ — coefficient of restitution, 0 - ¢ - 1
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Behavior of bouncing ball model
iIn form of hybrid automaton
= expected behavior?

Next:
plot position x as a function of time ¢,
where x starts at height x__.
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Simulation of Bouncing Ball Automaton in
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Zeno Behavior

system makes infinite number of jumps in finite time
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A Run/Execution of a Hybrid Automaton
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Zeno Behavior: Formal Definition

time
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An execution of a hybrid automaton

with time set 7 is zeno
iff (7) = oo but |7] < .
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Analysis of Zeno Behavior of Bouncing Ball

If ¢ < 1 all infinite executions are Zeno. The first
bounce occurs at time:

(70) +\/z 0) + 2gx(70)
q

T

1=To+

The second bounce occurs at time:

2('(7'1)

9

To =To+ 71+

where v(71) = —co(7)) = Vv2(70) + 292(70).

More generally, the Nth bounce occurs at time:

.'\n'
20(71) ~—
TN =70+ 11+ (II)Z(TZ_l

Force [0,1), we have Y °° ¢t = L.

Thus limy —oc ™87 < 0.
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Why does Zeno Behavior Arise?

Our model is a mathematical artifact

Zeno behavior is possible mathematically

but impossible in real (in physical world).

Some assumption in the model is unrealistic ...
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Hybrid Automaton for Bouncing Ball
What’s Unrealistic about this model?

x — vertical distance
v — velocity
¢ — coefficient of restitution, 0 <c¢ <1
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Eliminating Zeno Behavior: Regularization

What happens as ¢ goes to 0?
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Simulation for ¢ = 0.3
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Simulation for ¢ = 0.15
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Next: Timed Automata

sub-class of hybrid automata
models of real-time systems
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Capturing a “Double-Click” of a Mouse
with a Finite-State Machine (FSM)

absent

A click click

true
<€

\ true
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Capturing a “Double-Click” of a Mouse
with a Timed Automaton

absent
‘ click / x:=0 click A x<100
/x:=0
true A
x>100

<€

(\

true A
x> 200
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Timed Automata

o RHS of all differential equationsis 1 (“x=1")
o Single-speed clocks that precisely tracks real time
o Reset of a clock is possible in jump (“x:=07)
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Systems modeled as Timed Automata:

o Real-time controllers
o Self-timed circuits (clock-less circuits)
o Network protocols with timing-dependent behavior

o Scheduling of jobs
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A ‘Tick’ Generator

x=2/ x=1/
tick, x:=0 tick, x:=0

What does x(¢) look like?
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A ‘Tick’ Generator

mode(t)

0 1
x=2/ x=1/ x(?)
tick, x:=0 tick, x:=0
out(t)
A
tick T

absent




Timed Traces and Time-Abstract (Untimed) Traces

70 ((IO, Xo)
T(S ~ ((IOaXé)) ) — —+- ( ’
= |
1 (QL Xl)
/ / A time-abstract
M ~ (q1,%1) (untimed) trace
l of M is a sequence
Qo> 91, 2, ---
GE’ . that can be extended
= . to a timed trace of M
N (gn, XN )
!/ /
TN ~ (N, X))
|
; (think of g;'s as also including
v input and output symbols)
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Untimed vs. Timed Automata

a, x:=0

O

Do these automata have the same untimed traces?
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Two Problems

Verification

o Does the system do what it's supposed to do?
Does the system satisfy its specifications?

Synthesis/Control

o Construct a system that satisfies its specifications
e.g. by synthesizing a controller

In both cases: we need to specify the objective
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Untimed Specifications

specifications that do not mention time
“parking meter reaches ‘safe’ state when coins are added”

u(t) € {coin?,
coin23, absent)

—>

parkingMeter

s(0) =0

quarter | absent
s(t) :=25

mnckel | absent
s(f) =5

L . \
fimeout | expired

quarter | absent
s(t) := min(s(t) + 25, 60)

;liqke’/ / absent
s(f) :== min(s(r) + 5. 60)

Y

v(t) € {expired,
absent}

—
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Next: Finite-State Machines (FSM)
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Discrete System: Counter

count number of cars that enter or leave parking garage

ArrivalDetector
arrival

Counter

Display

count

DepartureDetector

departure

Pure signal: up: R — {absent,present}
Discrete actor:

Counter: (R — {absent,present})’ — (R — {absent} UN)
P ={up,down}



Reaction

For any r € R where up(t) # absent or down(t) # absent the
Counter reacts. It produces an output value in N and
changes its internal state.

ArrivalDetector

arrival

Counter D|Sp|ay

Up count
I
DepartureDetector
down

departure

p————

Counter: (R — {absent,present})’ — (R — {absent} UN)
P ={up,down}
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Input and Output Valuations at a Reaction

Fort € R a port p has a valuation, which is an assignment
of a value in V, (the type of port p). A valuation of the
input ports P = {up, down} assigns to each port a value in
{absent,present}.

A reaction gives a valuation to the output port count
in the set {absent} UN.

ArrivalDetector

arrival

Counter :
up ‘ Display
| count
y
DepartureDetector
down
departure

p————
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State Space

A practical parking garage has a finite number M of spaces,
so the state space for the counter is

States = {0,1,2,--- M} .

ArrivalDetector

arrival

Counter D|Sp|ay

Up count
I
DepartureDetector
down

departure

p————/




Finite State Machine (FSM)

up \N—down / 1 upN\—down /2 up/N\—down /3 upA\—down | M

/N

A "

down \N—up /0 downAN—-up /1 downAN—-up /2 downA\—-up /M —1

Guard g is specified using the predicate
up A ~down

which means that up has value present and down has value
absent.
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Garage Counter Mathematical Model

up \A—down / 1 up AN—down /2 upN\—down /3 upA\-down | M

/N

I "

down h—up | 0 downh—up /1 downh—up /2 downA—up | M—1
Formally: (States, Inputs, Outputs, update, initialState), where
o States={0,1,--- M}
e Inputs is a set of input valuations

e Outputs IS a set of output valuations

update function
defined by
labeled edges

47

e update : States X Inputs — States X Qutputs

o initialState =0



FSM Notation

state

guard / action

State?

initial state
Statel transition
initial
state CState 3)

indicator

self loop
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Guards for Pure Signals

true

P1
—P1
P1APp2
p1Vp2
P1ATp2

Transition is always enabled.

Transition is enabled if p; is present.

Transition is enabled if p; Is absent.

Transition is enabled if both p; and p, are present.
Transition is enabled if either p; or p; Is present.
Transition is enabled if p; is present and p; is absent.
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Guards for Signals with Numerical Values

D3 Transition is enabled if p3 is present (not absent).
p3 = Transition is enabled if ps3 is present and has value 1.
p3 =1Ap; Transition is enabled if p3 has value 1 and p; is present.
p3 >35S Transition is enabled if p3 is present with value greater than 5.
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Example: Thermostat

input: temperature : R
outputs: heatOn, heatOff : pure

temperature < 18 / heatOn

temperature > 22 | heatOff

From this picture, one can construct the formal
mathematical model.
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