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Motivation

Dynamical system: continuous evolution of the state over time
Time model:
continuous ⇝ t ∈ R
discrete ⇝ k ∈ Z
hybrid ⇝ continuous time, but there are also discrete

“instants” where something “special” happens
State model:
continuous ⇝ evolution described by ordinary differential

equations (ODEs) ẋ = f(x, u)
discrete ⇝ evolution described by

difference equations xk+1 = f(xk, uk)
hybrid ⇝ continuous space, but there are also discrete

“instants” for that something “special” holds
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Example: Vending machine

insert coin
choose beverage
(coffee/tee)
wait for cup
take cup

Coin

Coffee

Tee

⇝ Discrete
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Example: Bouncing ball

vertical position of the ball x1
velocity x2

continuous changes of position between bounces
discrete changes at bounce time

⇝ Hybrid
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Example: Thermostat

Temperature x is controlled by switching a heater on and off
x is regulated by a thermostat:

17◦≤ x ≤ 18◦ ⇝ “heater on”
22◦≤ x ≤ 23◦ ⇝ “heater off”
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⇝ Hybrid
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Example: Water tank system

two constantly leaking tanks v1 and v2

hose w refills exactly one tank at one point in time
w can switch between tanks instantaneously

⇝ Hybrid
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There are much more complex examples of hybrid systems...
automobils, trains, etc.
automated highway systems
collision-avoidance and free flight for aircrafts
biological cell growth and division
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Labeled state transition systems

Definition
A labeled state transition system (LSTS) is a tuple
LST S = (Σ,Lab,Edge, Init) with

a (probably infinite) state set Σ,
a label set Lab,
a transition relation Edge ⊆ Σ× Lab × Σ,
non-empty set of initial states Init ⊆ Σ.
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Semantics of LSTS

Operational semantics

(σ, a, σ′) ∈ Edge

σ
a→ σ′

system run (execution): σ0
a0→ σ1

a1→ σ2 . . . with σ0 ∈ Init

a state is called reachable iff there is a run leading to it
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Pedestrian light

..red.. green.
go

.
stop
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Parallel composition

Larger or more complex systems are often modeled compositionally.
The global system is given by the parallel composition of the
components.
Component-local, non-synchronizing transitions, having labels
belonging to one components’s label set only, are executed in an
interleaved manner.
Synchronizing transitions of the components, agreeing on the label,
are executed synchronously.
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Parallel composition of LSTSs

Definition
Let

LST S1 = (Σ1,Lab1,Edge1, Init1) and
LST S2 = (Σ2,Lab2,Edge2, Init2)

be two LSTSs. The parallel composition LST S1||LST S2 is the LSTS
(Σ,Lab,Edge, Init) with

Σ = Σ1 × Σ2,
Lab = Lab1 ∪ Lab2,
((s1, s2) , a, (s

′
1, s

′
2)) ∈ Edge iff

1 a ∈ Lab1 ∩ Lab2, (s1, a, s′1) ∈ Edge1, and (s2, a, s
′
2) ∈ Edge2, or

2 a ∈ Lab1\Lab2, (s1, a, s′1) ∈ Edge1, and s2 = s′2, or
3 a ∈ Lab2\Lab1, (s2, a, s′2) ∈ Edge2, and s1 = s′1,

Init = (Init1 × Init2).
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Two traffic lights

..red1.. green1.

go1

.
go2

.

green2

..

red2

.

go2

.

go1
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Two traffic lights

..(red1, green2).. (green1, red2).

go1

.

go2

.

(red1, red2)

.

(green1, green2)
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Labeling

To be able to formalize properties of LSTSs, it is common to define
a set of atomic propositions AP and
a labeling function L : Σ → 2AP assigning a set of atomic
propositions to each state.

The set L(σ) consists of all propositions that are defined to hold in σ.

Two kinds of labels:
propositional labels on states
synchronization labels on edges
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Two traffic lights

..(red1, green2)..∅ . (green1, red2). ∅.

go1

.

go2

.

(red1, red2)

.

∅

.

(green1, green2)
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Railroad crossing: Train, controller and gate

..far . near. past..
approach

..
enter

.

exit
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Railroad crossing: Train, controller and gate
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Labeled transition system

Definition

LT S = (Loc,Var ,Lab,Edge, Init)

finite set of locations Loc,
finite set of (typed) variables Var ,
finite set of synchronization labels Lab

finite set of edges Edge ⊆ Loc × Lab × 2V
2 × Loc (l, τ, Id , l) for each

location l ∈ Loc),
initial states Init ⊆ Σ.

where
V is the set of valuations ν : Var → Domain

Σ is the set of state σ = (l, ν) ∈ Loc × V
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Labeled transition system with stuttering

Definition

LT S = (Loc,Var ,Lab,Edge, Init)

finite set of locations Loc,
finite set of (typed) variables Var ,
finite set of synchronization labels Lab
special stutter label τ ∈ Lab

finite set of edges Edge ⊆ Loc × Lab × 2V
2 × Loc

special stutter transition (l, τ, Id , l) for each location l ∈ Loc

initial states Init ⊆ Σ.
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Modeling a simple while-program

method mult(int y, int z){
int x;

ℓ0 x := 0;

ℓ1
while( y > 0 ) {

ℓ2 y := y-1;

ℓ3 x := x+z;

}
ℓ4 }
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Modeling a simple while-program

... ℓ0. ℓ1. ℓ2.

ℓ3

.

ℓ4

. y ≥ 0. x := 0. y > 0.
y
:=

y
−

1

.

x
:=
x
+
z

.

y
≤

0

Podelski (Freiburg University) Hybrid Systems SS 2012 25 / 44



Semantics of LTS

Operational semantics

(l, a, µ, l′) ∈ Edge (ν, ν ′) ∈ µ

(l, ν)
a→ (l′, ν ′)

system run (execution): σ0
a0→ σ1

a1→ σ2 . . . with σ0 ∈ Init

a state is called reachable iff there is a run leading to it
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Semantics of the simple while-program

... ℓ0. ℓ1. ℓ2.

ℓ3

.

ℓ4

. y ≥ 0. x := 0. y > 0.

y
:=

y
−

1

.

x
:=
x
+
z

.

y
≤

0
(l, a, µ, l′) ∈ Edge (ν, ν ′) ∈ µ

(l, ν)
a→ (l′, ν ′)
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Parallel composition of LTSs

Definition
Let

LT S1 = (Loc1,Var ,Lab1,Edge1, Init1) and
LT S2 = (Loc2,Var ,Lab2,Edge2, Init2)

be two LTSs. The parallel composition or product LT S1||LT S2 is
LT S = (Loc,Var ,Lab,Edge, Init)

with
Loc = Loc1 × Loc2,
Lab = Lab1 ∪ Lab2,
Init = {((l1, l2), ν) | (l1, ν) ∈ Init1 ∧ (l2, ν) ∈ Init2},
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Parallel composition of LTSs

Definition ((Cont.))

and
((l1, l2), a, µ, (l

′
1, l

′
2)) ∈ Edge iff

there exist (l1, a1, µ1, l
′
1) ∈ Edge1 and (l2, a2, µ2, l

′
2) ∈ Edge2 such that

either a1 = a2 = a or
a1 = a ∈ Lab1\Lab2 and a2 = τ , or
a1 = τ and a2 = a ∈ Lab2\Lab1, and
µ = µ1 ∩ µ2.
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Hybrid automata
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Hybrid automata

Definition
A hybrid automaton is a tuple H = (Loc,Var ,Lab,Edge,Act , Inv , Init) with

a finite set of locations Loc,
a finite set of real-valued variables Var ,
a finite set of synchronization labels Lab, τ ∈ Lab (stutter label)
a finite set of edges Edge ⊆ Loc × Lab × 2V

2 × Loc (including stutter
transitions (l, τ, Id, l) for each location l ∈ Loc),
Act is a function assigning a set of activities f : R+ → V to each location;
the activity sets are time-invariant, i.e., f ∈ Act(l) implies (f + t) ∈ Act(l),
where (f + t)(t′) = f(t+ t′) f.a. t′ ∈ R+,
a function Inv assigning an invariant Inv(l) ⊆ V to each location l ∈ Loc,
initial states Init ⊆ Σ.

with

valuations ν : Var → R, V is the set of valuations
state (l, ν) ∈ Loc × V , Σ is the set of states
transitions: discrete and time
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Semantics of hybrid automata

(l, a, µ, l′) ∈ Edge (ν, ν ′) ∈ µ ν ′ ∈ Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

f ∈ Act(l) f(0) = ν f(t) = ν ′

t ≥ 0 ∀0 ≤ t′ ≤ t.f(t′) ∈ Inv(l)
Rule Time

(l, ν)
t→ (l, ν ′)

execution step: → =
a→ ∪ t→

run: σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) ∈ Init and ν0 ∈ Inv(l0)

reachability of a state: exists run leading to the state
activities are represented in form of differential equations
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Example: Timed automata

..

q1
ẋ = 1
true

..

x ≥ 2 x := 0

.. t.

x

..

2

..

3
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Example: Timed automata

..

q2
ẋ = 1
x ≤ 3

..

x ≥ 2 x := 0

.. t.

x

..

2

..

3
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Example: Timed automata

..

q3
ẋ = 1
true

..

2 ≤ x ≤ 3 x := 0

.. t.

x

..

2

..

3
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Example revisited: Bouncing ball

vertical position of the ball x1
velocity x2
continuous changes of position between bounces
discrete changes at bounce time

..

l0

ẋ1 = x2
ẋ2 = −g
x1 ≥ 0

..x1 ≥ 0 ∧ x2 > 0 .

x1 = 0 ∧ x2 < 0
x2 := −cx2
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Example revisited: Thermostat

17◦≤ x ≤ 18◦ ⇝ “heater on”
22◦≤ x ≤ 23◦ ⇝ “heater off”

..
ℓon

ẋ = K(h− x)
x ≤ 23

.
ℓoff

ẋ = −Kx
x ≥ 17

..x = 20 .

x ≥ 22

.

x ≤ 18
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Example revisited: Water tank system

two constantly leaking tanks v1 and v2

hose w refills exactly one tank at one point in time
w can switch between tanks instantaneously

..

q1
ẋ1 = w − v1
ẋ2 = −v2
x2 ≥ r2

.

x1 > r1 ∧ x2 > r2

.

q2
ẋ1 = −v1

ẋ2 = w − v2
x1 ≥ r1

.

x1 > r1 ∧ x2 > r2

...

x2 ≤ r2

.

x1 ≤ r1
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Parallel composition

Definition
Let H1 = (Loc1,Var ,Lab1,Edge1,Act1, Inv1, Init1) and

H2 = (Loc2,Var ,Lab2,Edge2,Act2, Inv2, Init2)
be two hybrid automata. The product
H1||H2 = (Loc1 × Loc2,Var ,Lab1 ∪ Lab2,Edge,Act , Inv , Init) is the
hybrid automaton with

Act(l1, l2) = Act1(l1) ∩Act2(l2) for all (l1, l2) ∈ Loc,
Inv(l1, l2) = Inv1(l1) ∩ Inv2(l2) for all (l1, l2) ∈ Loc,
Init = {((l1, l2), ν)|(l1, ν) ∈ Init1, (l2, ν) ∈ Init2}, and
((l1, l2), a, µ, (l

′
1, l

′
2)) ∈ Edge iff

(l1, a1, µ1, l
′
1) ∈ Edge1 and (l2, a2, µ2, l

′
2) ∈ Edge2, and

either a1 = a2 = a, or a1 = a /∈ Lab2 and a2 = τ , or a1 = τ and
a2 = a /∈ Lab1, and
µ = µ1 ∩ µ2.
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Simplified railroad crossing with time component

...

Gate

. up.

coming down

ẋ = 1
x ≤ 1

.

down

.

going up

ẋ = 1
x ≤ 2

. x := 0.
lower

.

x := 0

.

raise

.

x
≥

1

.{up}. ∅.

{down}

.

∅
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Simplified railroad crossing with time component

...

Train

.far .

near

ẏ = 1
y ≤ 5

. past. y := 0.
approach

. y > 2.
enter

.

exit
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Simplified railroad crossing with time component

...

Controller

.0 .

1

ż = 1
z ≤ 1

.

2

.

3

ż = 1
z ≤ 1

. z := 0.
approach

.

z
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low
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exit

.

z := 0

.

ra
is
e
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..far . near
y ≤ 5

. past. y := 0.
approach

. y > 2.
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.
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