
May 15, 2012

() May 15, 2012 1 / 56

Timed automata

Measure time: finite set C of clocks x, y, z, . . .
Clocks increase their value implicitely as time progresses
All clocks proceed at rate 1

Limited clock access:

Reading: Clock constraints
g ::= x < c | x ≤ c | x > c | x ≥ c | g ∧ g
with c ∈ N (c ∈ Q) and x ∈ C.
Syntactic sugar: true, x ∈ [c1, c2), c1 ≤ x < c2, x = c, . . .

ACC(C): set of atomic clock constraints over C
CC(C): set of clock constraints over C

Writing: Clock reset sets value to 0

() May 15, 2012 2 / 56

Timed automata

Measure time: finite set C of clocks x, y, z, . . .
Clocks increase their value implicitely as time progresses
All clocks proceed at rate 1
Limited clock access:

Reading: Clock constraints
g ::= x < c | x ≤ c | x > c | x ≥ c | g ∧ g
with c ∈ N (c ∈ Q) and x ∈ C.
Syntactic sugar: true, x ∈ [c1, c2), c1 ≤ x < c2, x = c, . . .

ACC(C): set of atomic clock constraints over C
CC(C): set of clock constraints over C

Writing: Clock reset sets value to 0

() May 15, 2012 2 / 56

Semantics of clock constraints

Given a set C of clocks, a clock valuation ν : C → R≥0 assigns a
non-negative value to each clock. We use VC to denote the set of clock
valuations for the clock set C.

Definition
For a set C of clocks, x ∈ C, ν ∈ VC , c ∈ N, and g, g′ ∈ CC(C), let
|= ⊆ VC × CC(C) be defined by

ν |= x < c iff ν(x) < c
ν |= x ≤ c iff ν(x) ≤ c
ν |= x > c iff ν(x) > c
ν |= x ≥ c iff ν(x) ≥ c
ν |= g ∧ g′ iff ν |= g and ν |= g′

() May 15, 2012 3 / 56

Semantics of clock access

Definition

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock x ∈ C we define reset x in ν to be
the valuation which equals ν except on x whose value is 0:

(reset x in ν)(y) =

{
ν(y) if y 6= x
0 else

What does it mean?
ν + 9

reset x in (ν + 9)

(reset x in ν) + 9

reset x in (reset y in ν)

() May 15, 2012 4 / 56

Semantics of clock access

Definition

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock x ∈ C we define reset x in ν to be
the valuation which equals ν except on x whose value is 0:

(reset x in ν)(y) =

{
ν(y) if y 6= x
0 else

What does it mean?
ν + 9

reset x in (ν + 9)

(reset x in ν) + 9

reset x in (reset y in ν)

() May 15, 2012 4 / 56

Timed automata

A timed automaton is a special hybrid system:
All variables are clocks.
Edges are defined by

source and target locations,
a label,
a guard: clock constraint specifying enabling,
a set of clocks to be reset.

Invariants are clock constraints.

() May 15, 2012 5 / 56

Timed automaton

Definition (Syntax of timed automata)

A timed automaton T = (Loc, C,Lab,Edge, Inv , Init) is a tuple with
Loc is a finite set of locations,
C is a finite set of clocks,
Lab is a finite set of synchronization labels,
Edge ⊆ Loc × Lab × (CC (C)× 2C)× Loc is a finite set of edges,
Inv : Loc → CC (C) is a function assigning an invariant to each
location, and
Init ⊆ Σ with ν(x) = 0 for all x ∈ C and all (l, ν) ∈ Init .

We call the variables in C clocks. We also use the notation l
a:g,C
↪→ l′ to

state that there exists an edge (l, a, (g, C), l′) ∈ Edge.

Note: (1) no explicite activities given (2) restricted logic for constraints

() May 15, 2012 6 / 56

Timed automaton

Analogously to Kripke structures, we can additionally define
a set of atomic propositions AP and
a labeling function L : Loc → 2AP

to model further system properties.

() May 15, 2012 7 / 56

Operational semantics

(l, a, (g,R), l′) ∈ Edge

ν |= g ν ′ = reset R in ν ν ′ |= Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

t>0 ν ′ = ν + t ν ′ |= Inv(l)

(l, ν)
t→ (l, ν ′)

Rule Time

Execution step: → =
a→ ∪ t→

Path: σ0 → σ1 → σ2 . . .

Run: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0), l0 ∈ Init , ν0(x) = 0
f.a. x ∈ C and ν0 ∈ Inv(l0)

Reachability of a state: exists a run leading to the state

() May 15, 2012 8 / 56

Operational semantics

(l, a, (g,R), l′) ∈ Edge

ν |= g ν ′ = reset R in ν ν ′ |= Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

t>0 ν ′ = ν + t ν ′ |= Inv(l)

(l, ν)
t→ (l, ν ′)

Rule Time

Execution step: → =
a→ ∪ t→

Path: σ0 → σ1 → σ2 . . .

Run: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0), l0 ∈ Init , ν0(x) = 0
f.a. x ∈ C and ν0 ∈ Inv(l0)

Reachability of a state: exists a run leading to the state

() May 15, 2012 8 / 56

Examples:
Light switch
Controller from the railroad crossing example
Simplified railroad crossing
Parallel composition for the simplified railroad crossing

() May 15, 2012 9 / 56

Example: Timed Automaton

q1

x ≥ 2, reset(x)

t

x

2

3

() May 15, 2012 10 / 56

Example: Timed Automaton

q1

x ≥ 2, reset(x)

t

x

2

3

() May 15, 2012 10 / 56

Example: Timed Automaton

q2
x ≤ 3

x ≥ 2, reset(x)

t

x

2

3

() May 15, 2012 11 / 56

Example: Timed Automaton

q2
x ≤ 3

x ≥ 2, reset(x)

t

x

2

3

() May 15, 2012 11 / 56

Example: Timed Automaton

q2

2 ≤ x ≤ 3, reset(x)

t

x

2

3

() May 15, 2012 12 / 56

far near
y ≤ 5

past
y ≤ 5

reset(y)

approach

y > 2

enter

exit

up coming down
x ≤ 1

downgoing up
x ≤ 2

reset(x)

lower

reset(x)

raise

x
≥

1

0 1
z ≤ 1

23
z ≤ 1

reset(z)

approach

z
=

1

low
er

reset(z)

exit

ra
is
e

() May 15, 2012 13 / 56

Time divergence, timelock, and zenoness

Zeno of Elea
(ca.490 BC-ca.430 BC)

Aristotle
(384 BC-322 BC)

Paradox:
Achilles and the tortoise
(Achilles was the great Greek hero of Homer’s

The Iliad.)

“In a race, the quickest runner can never overtake the slowest, since the
pursuer must first reach the point where the pursued started, so that the
slower must always hold a lead.” –Aristotle, Physics VI:9, 239b15

Not all paths of a timed automata represent realistic behaviour.
Three essential phenomena: time convergence, timelock, zenoness.

() May 15, 2012 14 / 56

Time convergence

Definition
For a timed automaton T = (Loc, C,Lab,Edge, Inv , Init). we define
ExecTime : (Lab ∪ R≥0)→ R≥0 with

ExecTime(a) = 0 for a ∈ Lab and
ExecTime(d) = d for d ∈ R≥0.

Furthermore, for ρ = s0
α0→ s1

α1→ s2
α2→ . . . we define

ExecTime(ρ) =

∞∑
i=0

ExecTime(αi).

A path is time-divergent iff ExecTime(ρ) =∞, and time-convergent
otherwise.

Time-convergent paths are not realistic, and are not considered in the
semantics.
Note: their existence cannot be avoided (in general).

() May 15, 2012 15 / 56

Timelock

Definition
For a state σ ∈ Σ let Pathsdiv(σ) be the set of time-divergent paths
starting in σ.
A state σ ∈ Σ contains a timelock iff Pathsdiv(σ) = ∅.
A timed automaton is timelock-free iff none of its reachable states contains
a timelock.

Timelocks are modeling flows and should be avoided.

() May 15, 2012 16 / 56

Zenoness

Definition
An infinite path fragment π is zeno iff it is time-convergent and infinitely
many discrete actions are executed within π.
A timed automaton is non-zeno iff no zeno path starts in an initial state.

Zeno paths represent nonrealizable behaviour, since their execution
would require infinitely fast processors.
Thus zeno paths are modeling flows and should be avoided.
To check whether a timed automaton is non-zeno is algorithmically
difficult.
Instead, sufficient conditions are considered that are simple to check,
e.g., by static analysis.

() May 15, 2012 17 / 56

Checking non-zenoness

Theorem (Sufficient condition for non-zenoness)

Let T be a timed automaton with clocks C such that for every control cycle

l0
α1:g1,C1−→ l1

α2:g2,C2−→ l2 . . .
αn:gn,Cn−→ ln = l0

in T there exists a clock x ∈ C such that
x ∈ Ci for some 0 < i ≤ n, and
for all evaluations ν ∈ V there exist some 0 < j ≤ n and d ∈ N>0 with

ν(x) < d implies (ν 6|= Inv(lj) or ν 6|= gj).

Then T is non-zeno.

() May 15, 2012 18 / 56

TCTL

How to describe the behaviour of timed automata?
Logic: TCTL, a real-time variant of CTL
Syntax:

State formulae

ψ ::= true | a | g | ψ ∧ ψ | ¬ψ | Eϕ | Aϕ

Path formulae:
ϕ ::= ψ UJ ψ

with J ⊆ R≥0 is an interval with integer bounds (open right bound
may be ∞).

() May 15, 2012 19 / 56

TCTL syntax

Syntactic sugar:

FJψ := true UJ ψ
EGJψ := ¬AFJ¬ψ
AGJψ := ¬EFJ¬ψ

ψ1 U ψ1 := ψ1 U [0,∞) ψ2

Fψ := F [0,∞)ψ

Gψ := G[0,∞)ψ

Note: no next-time operator

() May 15, 2012 20 / 56

TCTL semantics

Definition (TCTL semantics)

Let T = (Loc, C,Lab,Edge, Inv , Init) be a timed automaton, AP a set of
atomic propositions, and L : Loc → 2AP a state labeling function.The
function |= assigns a truth value to each TCTL state and path formulae as
follows:

σ |= true
σ |= a iff a ∈ L(σ)
σ |= g iff σ |= g
σ |= ¬ψ iff σ 6|= ψ
σ |= ψ1 ∧ ψ2 iff σ |= ψ1 and σ |= ψ2

σ |= Eϕ iff π |= ϕ for some π ∈ Pathsdiv(σ)
σ |= Aϕ iff π |= ϕ for all π ∈ Pathsdiv(σ).

where σ ∈ Σ, a ∈ AP , g ∈ ACC (C), ψ, ψ1 and ψ2 are TCTL state
formulae, and ϕ is a TCTL path formula.

() May 15, 2012 21 / 56

TCTL semantics

Meaning of U : a time-divergent path satisfies ψ1 UJ ψ2 whenever at
some time point in J property ψ2 holds and at all previous time instants
ψ1 ∨ ψ2 is satisfied.

() May 15, 2012 22 / 56

TCTL semantics (cont.)

Definition (TCTL semantics)

For a time-divergent path π = σ0
α1→ σ1

α2→ . . . we define π |= ψ1 UJ ψ2 iff
∃i ≥ 0. σi + d |= ψ1 for some d ∈ [0, di] with

(

i−1∑
k=0

dk) + d ∈ J, and

∀j ≤ i. σj + d′ |= ψ1 ∨ ψ2 for any d′ ∈ [0, dj] with

(

j−1∑
k=0

dk) + d′ ≤ (

i−1∑
k=0

dk) + d

where di = ExecTime(αi).

() May 15, 2012 23 / 56

Satisfaction set

Definition
For a timed automaton T with clocks C and locations Loc, and a TCTL
state formula ψ the satisfaction set Sat(ψ) is defined by

Sat(ψ) = {s ∈ Σ|s |= ψ}.

T satisfies ψ iff ψ holds in all initial states:

T |= ψ iff ∀l0 ∈ Init . (l0, ν0) |= ψ

where ν0(x) = 0 for all x ∈ C.

() May 15, 2012 24 / 56

TCTL vs. CTL

TCTL formulae with intervals [0,∞) may be considered as CTL
formulae
However, there is a difference due to time convergent paths
TCTL ranges over time-divergent paths, whereas CTL over all paths!

() May 15, 2012 25 / 56

TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question if T |= ψ

1 Eliminate the timing parameters from ψ, resulting in ψ̂;
2 Make a finite abstraction of the state space
3 Construct abstract transition system RTS with
T |= ψ iff RTS |= ψ̂.

4 Apply CTL model checking to check whether RTS |= ψ̂;
5 Return the model checking result.

() May 15, 2012 26 / 56

TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question if T |= ψ

1 Eliminate the timing parameters from ψ, resulting in ψ̂;
2 Make a finite abstraction of the state space
3 Construct abstract transition system RTS with
T |= ψ iff RTS |= ψ̂.

4 Apply CTL model checking to check whether RTS |= ψ̂;
5 Return the model checking result.

() May 15, 2012 27 / 56

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ = T ⊕z result from T by adding a fresh clock which never gets
reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL E ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL A ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 iff reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 iff reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

() May 15, 2012 28 / 56

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ = T ⊕z result from T by adding a fresh clock which never gets
reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL E ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL A ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 iff reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 iff reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

() May 15, 2012 28 / 56

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ = T ⊕z result from T by adding a fresh clock which never gets
reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL E ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL A ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 iff reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 iff reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

() May 15, 2012 28 / 56

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ = T ⊕z result from T by adding a fresh clock which never gets
reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL E ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL A ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 iff reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 iff reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

() May 15, 2012 28 / 56

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ = T ⊕z result from T by adding a fresh clock which never gets
reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL E ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL A ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 iff reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 iff reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

() May 15, 2012 28 / 56

1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ = T ⊕z result from T by adding a fresh clock which never gets
reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL E ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL A ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 iff reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 iff reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)

() May 15, 2012 28 / 56

TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question if T |= ψ

1 Eliminate the timing parameters from ψ, resulting in ψ̂;
2 Make a finite abstraction of the state space
3 Construct abstract transition system RTS with
T |= ψ iff RTS |= ψ̂.

4 Apply CTL model checking to check whether RTS |= ψ̂;
5 Return the model checking result.

() May 15, 2012 29 / 56

Keywords:
Finite abstraction

Equivalence relation, equivalence classes
Bisimulation

And what does it mean in our context?

() May 15, 2012 30 / 56

2. Finite state space abstraction

We search for an equivalence relation ∼= on states, such that equivalent
states satisfy the same (sub)formulae ψ′ occurring in the timed automaton
T or in the specification ψ:

σ ∼= σ′ ⇒
(
σ |= ψ′ iff σ′ |= ψ′

)
.

Since the set of such (sub)formulae is finite, we strive for a finite number
of equivalence classes.

() May 15, 2012 31 / 56

Bisimulation for two LSTSs

Definition
Let LSTS 1 = (Σ1,Lab1,Edge1, Init1),LSTS 2 = (Σ2,Lab2,Edge2, Init2)
be two state transition systems, AP a set of atomic propositions, and
L1 : Σ1 → 2AP and L2 : Σ2 → 2AP labeling functions over AP .
A bisimulation for (LSTS 1,LSTS 2) is an equivalence relation ≈⊆ Σ1 ×Σ2

such that for all σ1 ≈ σ2
1 L(σ1) = L(σ2)

2 for all σ′1 ∈ Σ1 with σ1
a→ σ′1 there exists σ′2 ∈ Σ2 such that σ2

a→ σ′2
and σ′1 ≈ σ′2.

() May 15, 2012 32 / 56

Bisimulation for a single LSTS

Definition
Let LSTS = (Σ,Lab,Edge, Init) be a state transition system, AP a set of
atomic propositions, and L : Σ→ 2AP a labeling function over AP .
A bisimulation for LSTS is an equivalence relation ≈⊆ Σ×Σ such that for
all σ1 ≈ σ2

1 L(σ1) = L(σ2)

2 for all σ′1 ∈ Σ with σ1
a→ σ′1 there exists σ′2 ∈ Σ such that σ2

a→ σ′2
and σ′1 ≈ σ′2.

() May 15, 2012 33 / 56

Time abstract bisimulation

Definition
Let T = (Loc, C,Lab,Edge, Inv , Init) be a timed automaton, AP a set of
atomic propositions, and L : Σ→ 2AP .
A time abstract bisimulation on T is an equivalence relation ≈⊆ Σ× Σ
such that for all σ1, σ2 ∈ Σ satisfying σ1 ≈ σ2

L(σ1) = L(σ2)

for all σ′1 ∈ Σ with σ1
a→ σ′1 there is a σ′2 ∈ Σ such that σ2

a→ σ′2 and
σ′1 ≈ σ′2
for all σ′1 ∈ Σ with σ1

t1→ σ′1 there is a σ′2 ∈ Σ such that σ2
t2→ σ′2 and

σ′1 ≈ σ′2.

() May 15, 2012 34 / 56

Bisimulation

Lemma
Assume a timed automaton T with state space Σ, and a bisimulation
≈⊆ Σ× Σ on T .
Then for all σ, σ′ ∈ Σ with σ ≈ σ′ we have that for each path

π : σ
α1→ σ1

α2→ σ2
α3→ . . .

of T there exists a path

π′ : σ′
α′
1→ σ′1

α′
2→ σ′2

α′
3→ . . .

of T such that for all i
σi ≈ σ′i,
αi = α′i if αi ∈ Lab and
αi, α

′
i ∈ R≥0 otherwise.

() May 15, 2012 35 / 56

2. Finite state space abstraction

Now, back to timed automata. How could such a bisimulation look like?

Since, in general,
the atomic propositions assigned to and
the paths starting at

different locations in T are different, only states (l, ν) and (l′, ν ′) satisfying
l = l′ should be equivalent.

() May 15, 2012 36 / 56

2. Finite state space abstraction

Equivalent states should satisfy the same atomic clock constraints.
Notation:

Integral part of r ∈ R: brc = max {c ∈ N | c ≤ r}
Fractional part of r ∈ R: frac(r) = r − brc

For clock constraints x < c with c ∈ N we have:

ν |= x < c ⇔ ν(x) < c ⇔ bν(x)c < c.

For clock constraints x ≤ c with c ∈ N we have:

ν |= x ≤ c ⇔ ν(x) ≤ c ⇔ bν(x)c < c ∨ (bν(x)c = c ∧ frac(ν(x)) = 0) .

I.e., only states (l, ν) and (l, ν ′) satisfying

bν(x)c = bν ′(x)c and frac(ν(x)) = 0 iff frac(ν ′(x)) = 0

for all x ∈ C should be equivalent.
() May 15, 2012 37 / 56

2. Finite state space abstraction

Problem: It would generate infinitely many equivalence classes!

Let cx be the largest constant which a clock x is compared to in T or in ψ.
Then there is no observation which could distinguish between the x-values
in (l, ν) and (l, ν ′) if ν(x) > cx and ν ′(x) > cx.
I.e., only states (l, ν) and (l, ν ′) satisfying

(ν(x) > cx ∧ ν ′(x) > cx) ∨(
bν(x)c = bν ′(x)c ∧ frac(ν(x)) = 0 iff frac(ν ′(x)) = 0

)
for all x ∈ C should be equivalent.

() May 15, 2012 38 / 56

2. Finite state space abstraction

x

y

0

1

2

0 1 2 3

2 < x < 3
1 < y < 2

x = 3
y = 2

x = 3
0 < y < 1

cy = 2
cx = 3

() May 15, 2012 39 / 56

2. Finite state space abstraction

As the following example illustrates, we must make a further refinement of
the abstraction, since it does not distinguish between states satisfying
different formulae.

() May 15, 2012 40 / 56

2. Finite state space abstraction

. . .

. . .

y < 1

. . .

. . .

x ≥ 2

x

y

0
0

1

2

1 2 3 4

() May 15, 2012 41 / 56

2. Finite state space abstraction

What we need is a refinement taking the order of the fractional parts of the
clock values into account. However, again only for values below the largest
constants to which the clocks get compared.
I.e., only states (l, ν) and (l, ν ′) satisfying

(ν(x), ν ′(x) > cx ∧ ν(y), ν ′(y) > cx) ∨
(frac(ν(x)) < frac(ν(y)) iff frac(ν ′(x)) < frac(ν ′(y)) ∧

frac(ν(x)) = frac(ν(y)) iff frac(ν ′(x)) = frac(ν ′(y)) ∧
frac(ν(x)) > frac(ν(y)) iff frac(ν ′(x)) > frac(ν ′(y)))

for all x, y ∈ C should be equivalent.
Because of symmetry the following is also sufficient:

(ν(x), ν ′(x) > cx ∧ ν(y), ν ′(y) > cy) ∨
(frac(ν(x)) ≤ frac(ν(y)) iff frac(ν ′(x)) ≤ frac(ν ′(y)))

for all x, y ∈ C should be equivalent.

() May 15, 2012 42 / 56

2. Finite state space abstraction

x

y

0
0

1

2

1 2 3 4

cy = 2
cx = 4

finite index

() May 15, 2012 43 / 56

2. Finite state space abstraction

Definition
For a timed automaton T and a TCTL formula ψ, both over a clock set C,
we define the clock equivalence relation ∼=⊆ Σ× Σ by (l, ν) ∼= (l′, ν ′) iff
l = l′ and

for all x ∈ C, either ν(x) > cx ∧ ν ′(x) > cx or

bν(x)c = bν ′(x)c ∧ (frac(ν(x)) = 0 iff frac(ν ′(x)) = 0)

for all x, y ∈ C if ν(x), ν ′(x) ≤ cx and ν(y), ν ′(y) ≤ cx then

frac(ν(x)) ≤ frac(ν(y)) iff frac(ν ′(x)) ≤ frac(ν ′(y)).

The clock region of an evaluation ν ∈ V is the set [ν] = {ν ′ ∈ V | ν ∼= ν ′}.
The clock region of a state σ = (l, ν) ∈ Σ is the set
[σ] = {(l, ν ′) ∈ Σ | ν ∼= ν ′}.

() May 15, 2012 44 / 56

2. Finite state space abstraction

Lemma
Clock equivalence is a bisimulation over AP ′ = AP ∪ACC (T)∪ACC (ψ).

() May 15, 2012 45 / 56

TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question if T |= ψ

1 Eliminate the timing parameters from ψ, resulting in ψ̂;
2 Make a finite abtraction of the state space
3 Construct abstract transition system RTS with
T |= ψ iff RTS |= ψ̂.

4 Apply CTL model checking to check whether RTS |= ψ̂;
5 Return the model checking result.

() May 15, 2012 46 / 56

3. The abstract transition system

We have defined regions as abstract states,
now we connect them by abstract transitions.

Two kinds of transitions:
time and discrete

() May 15, 2012 47 / 56

3. The abstract transition system

Definition
The clock region r∞ = {ν ∈ V | ∀x ∈ C. ν(x) > cx} is called unbounded.
Let r, r′ be two clock regions. The region r′ is the successor clock region of
r, denoted by r′ = succ(r), if either

r = r′ = r∞, or
r 6= r∞, r 6= r′, and for all ν ∈ r:

∃d ∈ R>0. (ν + d ∈ r′ ∧ ∀0 ≤ d′ ≤ d. ν + d′ ∈ r ∪ r′).

The successor state region is defined as succ((l, r)) = (l, succ(r)).

() May 15, 2012 48 / 56

x

y

0

1

2

3

4

0 1 21

2

3

4

5

6

7

8

9

10

1112

l α :x ≥ 2, reset(x)

EF (0,2] x = 0

1 2 3 4 5 6

τ τ τ τ τ τ

7 8 9 10 11

12

τ τ τ τ α
α

τ
α

τ

() May 15, 2012 49 / 56

x

y

0

1

2

3

4

0 1 21

2

3

4

5

6

7

8

9

10

1112

l α :x ≥ 2, reset(x)

EF (0,2] x = 0

1 2 3 4 5 6

τ τ τ τ τ τ

7 8 9 10 11

12

τ τ τ τ α
α

τ
α

τ

() May 15, 2012 49 / 56

l x ≥ 2 : α, reset(x)

l

x = 0

z = 0

fr(x) = fr(y)

l

0 < x < 1

0 < z < 1

fr(x) = fr(y)

l

x = 1

z = 1

fr(x) = fr(y)

l

1 < x < 2

1 < z < 2

fr(x) = fr(y)

l

x = 2

z = 2

fr(x) = fr(y)

l

x > 2

z > 2

τ τ τ τ τ

τ

l

x = 0

z = 2

fr(x) = fr(y)

l

0 < x < 1

z > 2

l

x = 1

z > 2

l

1 < x < 2

z > 2

l

x = 2

z > 2

l

x = 0

z > 2

τ τ τ τ α

α
τ

α

τ

() May 15, 2012 50 / 56

3. The abstract transition system

Definition
Let T = (Loc, C,Lab,Edge, Inv , Init) be a non-zeno timelock-free timed
automaton with an atomic proposition set AP and a labeling function L,
and let ψ̂ be an unbounded TCTL formula over C and AP .
The region transition system of T for ψ̂ is a labelled state transition system
RT S(T , ψ) = (Σ′,Lab′,Edge ′, Init ′) with atomic propositions AP ′ and a
labeling function L′ such that

Σ′ the finite set of all state regions
Init ′ = {[σ] | σ ∈ Init}
AP ′ = AP ∪ACC (T) ∪ACC (ψ̂)

L′((l, r)) = L(l) ∪ {g ∈ AP ′\AP | r |= g}
and

() May 15, 2012 51 / 56

3. The abstract transition system

Definition

(l, a, (g, C), l′) ∈ Edge

r |= g r′ = reset(C) in r r′ |= Inv(l′)

(l, r)
a→ (l′, r′)

Rule Discrete

r |= Inv(l) succ(r) |= Inv(l)

(l, r)
t→ (l, succ(r))

Rule Time

() May 15, 2012 52 / 56

3. The abstract transition system

Lemma
For non-zeno T and π = s0 → s1 → . . . an initial, infinite path of T :

if π is time-convergent, then there is an index j and a state region
(l, r) such that si ∈ (l, r) for all i ≥ j.
if there is a state region (l, r) with r 6= r∞ and an index j such that
si ∈ (l, r) for all i ≥ j then π is time-convergent.

Lemma
For a non-zeno timed automaton T and a TCLT formula ψ:

T |=TCTL ψ iff RTS (T , ψ̂) |=CTL ψ̂

() May 15, 2012 53 / 56

TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question if T |= ψ

1 Eliminate the timing parameters from ψ, resulting in ψ̂;
2 Make a finite abstraction of the state space
3 Construct abstract transition system RTS with
T |= ψ iff RTS |= ψ̂.

4 Apply CTL model checking to check whether RTS |= ψ̂;
5 Return the model checking result.

() May 15, 2012 54 / 56

TCTL model checking

The procedure is quite similar to CTL model checking for finite automata.

One difference:
Handling nested time bounds in TCTL formulae

() May 15, 2012 55 / 56

TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question if T |= ψ

1 Eliminate the timing parameters from ψ, resulting in ψ̂;
2 Make a finite abstraction of the state space
3 Construct abstract transition system RTS
T |= ψ iff RTS |= ψ̂

4 Apply CTL model checking to check whether RTS |= ψ̂;
5 Return the model checking result.

() May 15, 2012 56 / 56

CTL model checking

Given a state transition system and a CTL formula ψ, CTL model checking
labels the states recursively with the sub-formulae of ψ inside-out.

The labeling with atomic propositions a ∈ AP is given by a labeling
function.
Given the labelings for ψ1 and ψ2, we label a state with ψ1 ∧ψ2 iff the
state is labeled with both ψ1 and ψ2.
Given the labeling for ψ, we label a state with ¬ψ iff the state is not
labeled with ψ.

() May 15, 2012 57 / 56

CTL model checking

Given the labeling for ψ, we label a state with EXψ iff there is a
successor state labeled with ψ.
Given the labeling for ψ1 and ψ2, we

label all with ψ2 labeled states additionally with Eψ1 U ψ2, and
label all states that have the label ψ1 and have a successor state with
the label Eψ1 U ψ2 also with Eψ1 U ψ2 iteratively until a fixed point
is reached.

Given the labeling for ψ, we label a state with AXψ iff all successor
states are labeled with ψ.
Given the labeling for ψ1 and ψ2, we

label all with ψ2 labeled states additionally with Aψ1 U ψ2, and
label all states that have the label ψ1 and all of their successor states
have the label Aψ1 U ψ2 also with Aψ1 U ψ2 iteratively until a fixed
point is reached.

() May 15, 2012 58 / 56

