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program with assume () and assert ()

I assume (e) ≡ if e then skip else halt

I assert (e) ≡ if e then skip else error

I generalize partial correctness:
correctness of program wrt. Hoare triple:

{φ} C {ψ}

≡ safety of program: assume (φ) ; C ; assert (ψ)

I safety = non-reachability of error
(no execution of error branch)
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validity of Hoare triple:

{y >= z}

while (x < y) {

x++;

}

{x >= z}

≡ safety of program:

assume(y >= z);

while (x < y) {

x++;

}

assert(x >= z);

.



1: assume(y >= z);

2: while (x < y) {

x++;

}

3: assert(x >= z);

4: exit

5: error

.

`1

`2

y ≥ z

x < y ∧ x ′ = x + 1

`3

x ≥ y

`4

x ≥ z
`5

x < z

ρ1 = (move(`1, `2) ∧ y ≥ z ∧ skip(x , y , z))

ρ2 = (move(`2, `2) ∧ x + 1 ≤ y ∧ x ′ = x + 1 ∧ skip(y , z))

ρ3 = (move(`2, `3) ∧ x ≥ y ∧ skip(x , y , z))

ρ4 = (move(`3, `4) ∧ x ≥ z ∧ skip(x , y , z))

ρ5 = (move(`3, `5) ∧ x + 1 ≤ z ∧ skip(x , y , z))



transition relation ρ expressed by logica formula

ρ1 ≡ (move(`1, `2) ∧ y ≥ z ∧ skip(x , y , z))

ρ2 ≡ (move(`2, `2) ∧ x + 1 ≤ y ∧ x ′ = x + 1 ∧ skip(y , z))

ρ3 ≡ (move(`2, `3) ∧ x ≥ y ∧ skip(x , y , z))

ρ4 ≡ (move(`3, `4) ∧ x ≥ z ∧ skip(x , y , z))

ρ5 ≡ (move(`3, `5) ∧ x + 1 ≤ z ∧ skip(x , y , z))

abbreviations:

move(`, `′) ≡ (pc = ` ∧ pc ′ = `′)

skip(v1, . . . , vn) ≡ (v ′1 = v1 ∧ . . . ∧ v ′n = vn)



program P = (V , pc , ϕinit ,R, ϕerr)

I V - finite tuple of program variables

I pc - program counter variable (pc included in V )

I ϕinit - initiation condition given by formula over V

I R - a finite set of transition relations

I ϕerr - an error condition given by a formula over V

I transition relation ρ ∈ R given by
formula over the variables V and their primed versions V ′



states, sets, and relations

I each program variable is assigned a domain of values

I program state = function that assigns each program variable
a value from its respective domain

I Σ = set of program states

I formula with free variables in V = set of program states

I formula with free variables in V and V ′ =

binary relation over program states
I first component of each pair assigns values to V

I second component of the pair assigns values to V ′

I identify formulas with sets and relations that they represent

I identify the logical consequence relation between formulas |=
with set inclusion ⊆

I identify the satisfaction relation |= between valuations and
formulas, with the membership relation ∈
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example: states, sets, and relations

I formula y ≥ z = set of program states in which the value of
the variable y is greater than the value of z

I formula y ′ ≥ z = binary relation over program states,
= set of pairs of program states (s1, s2) in which the value of
the variable y in the second state s2 is greater than the value
of z in the first state s1

I if program state s assigns 1, 3, 2, and `1
to program variables x , y , z , and pc, respectively,
then s |= y ≥ z

I logical consequence: y ≥ z |= y + 1 ≥ z
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example program P = (V , pc , ϕinit ,R, ϕerr)

I program variables V = (pc, x , y , z)

I program counter pc

I program variables x , y , and z range over integers

I set of control locations L = {`1, . . . `5}
I initiation condition ϕinit = (pc = pc = `1)

I error condition ϕerr = (pc = pc = `5)

I program transitions R = {ρ1, ρ2, ρ3, ρ4, ρ5}

ρ1 = (move(`1, `2) ∧ y ≥ z ∧ skip(x , y , z))

ρ2 = (move(`2, `2) ∧ x + 1 ≤ y ∧ x ′ = x + 1 ∧ skip(y , z))

ρ3 = (move(`2, `3) ∧ x ≥ y ∧ skip(x , y , z))

ρ4 = (move(`3, `4) ∧ x ≥ z ∧ skip(x , y , z))

ρ5 = (move(`3, `5) ∧ x + 1 ≤ z ∧ skip(x , y , z))



1: assume(y >= z);

2: while (x < y) {

x++;

}

3: assert(x >= z);

4: exit

5: error

.

`1

`2

y ≥ z

x < y ∧ x ′ = x + 1

`3

x ≥ y

`4

x ≥ z
`5

x < z

ρ1 = (move(`1, `2) ∧ y ≥ z ∧ skip(x , y , z))

ρ2 = (move(`2, `2) ∧ x + 1 ≤ y ∧ x ′ = x + 1 ∧ skip(y , z))

ρ3 = (move(`2, `3) ∧ x ≥ y ∧ skip(x , y , z))

ρ4 = (move(`3, `4) ∧ x ≥ z ∧ skip(x , y , z))

ρ5 = (move(`3, `5) ∧ x + 1 ≤ z ∧ skip(x , y , z))



initial state, error state, transition relation R

I each state that satisfies the initiation condition ϕinit is called
an initial state

I each state that satisfies the error condition ϕerr is called an
error state

I program transition relation ρR is the union of the
“single-statement” transition relations, i.e.,

ρR =
∨
ρ∈R

ρ .

I the state s has a transition to the state s ′ if
the pair of states (s, s ′) lies in the program transition
relation ρR, i.e., if (s, s ′) |= ρR



program computation s1, s2, . . .

I the first element is an initial state, i.e., s1 |= ϕinit

I each pair of consecutive states (si , si+1) is connected by a
program transition, i.e., (si , si+1) |= ρR

I if the sequence is finite
then the last element does not have any successors
i.e., if the last element is sn,
then there is no state s such that (sn, s) |= ρR



1: assume(y >= z);

2: while (x < y) {

x++;

}

3: assert(x >= z);

4: exit

5: error

.

`1

`2

ρ1 y ≥ z

ρ2 x < y ∧ x ′ = x + 1

`3

ρ3 x ≥ y

`4

ρ4 x ≥ z
`5

ρ5 x < z

example of a computation:

(`1, 1, 3, 2), (`2, 1, 3, 2), (`2, 2, 3, 2), (`2, 3, 3, 2), (`3, 3, 3, 2), (`4, 3, 3, 2)

I sequence of transitions ρ1, ρ2, ρ2, ρ3, ρ4
I state = tuple of values of program variables pc, x , y , and z

I last program state does not any successors

.



Correctness: Safety

I a state is reachable if it occurs in some program computation

I a program is safe if no error state is reachable

I . . . if and only if no error state lies in ϕreach,

ϕerr ∧ ϕreach |= false .

where ϕreach = set of reachable program states



1: assume(y >= z);

2: while (x < y) {

x++;

}

3: assert(x >= z);

4: exit

5: error

.

`1

`2

ρ1 y ≥ z

ρ2 x < y ∧ x ′ = x + 1

`3

ρ3 x ≥ y

`4

ρ4 x ≥ z
`5

ρ5 x < z

set of reachable states:

ϕreach = (pc = `1 ∨
pc = `2 ∧ y ≥ z ∨
pc = `3 ∧ y ≥ z ∧ x ≥ y ∨
pc = `4 ∧ y ≥ z ∧ x ≥ y)



post operator

I let ϕ be a formula over V

I let ρ be a formula over V and V ′

I define a post-condition function post by:

post(ϕ, ρ) = ∃V ′′ : ϕ[V ′′/V ] ∧ ρ[V ′′/V ][V /V ′]

an application post(ϕ, ρ) computes the image of the set ϕ
under the relation ρ

I post distributes over disjunction wrt. each argument:

post(ϕ, ρ1 ∨ ρ2) = (post(ϕ, ρ1) ∨ post(ϕ, ρ2))

post(ϕ1 ∨ ϕ2, ρ) = (post(ϕ1, ρ) ∨ post(ϕ2, ρ))



application of post(φ, ρ) in example program

set of states φ ≡ pc = `2 ∧ y ≥ z , transition relation ρ ≡ ρ2,

ρ2 ≡ (move(`2, `2) ∧ x + 1 ≤ y ∧ x ′ = x + 1 ∧ skip(y , z))

post(φ, ρ2)

= (∃V ′′ : (pc = `2 ∧ y ≥ z)[V ′′/V ] ∧ ρ2[V ′′/V ][V /V ′])

= (∃V ′′ : (pc ′′ = `2 ∧ y ′′ ≥ z ′′) ∧
(pc ′′ = `2 ∧ pc ′ = `2 ∧ x ′′ + 1 ≤ y ′′ ∧ x ′ = x ′′ + 1 ∧
y ′ = y ′′ ∧ z ′ = z ′′)[V /V ′])

= (∃V ′′ : (pc ′′ = `2 ∧ y ′′ ≥ z ′′) ∧
(pc ′′ = `2 ∧ pc = `2 ∧ x ′′ + 1 ≤ y ′′ ∧ x = x ′′ + 1 ∧
y = y ′′ ∧ z = z ′′))

= (pc = `2 ∧ y ≥ z ∧ x ≤ y)

[renamed] program variables:
V = (pc, x , y , z), V ′ = (pc ′, x ′, y ′, z ′), V ′′ = (pc ′′, x ′′, y ′′, z ′′)



iteration of post

postn(ϕ, ρ) = n-fold application of post to ϕ under ρ

postn(ϕ, ρ) =

{
ϕ if n = 0

post(postn−1(ϕ, ρ), ρ) otherwise

characterize ϕreach using iterates of post:

ϕreach = ϕinit ∨ post(ϕinit , ρR) ∨ post(post(ϕinit , ρR), ρR) ∨ . . .

=
∨

i≥0 post
i (ϕinit , ρR)

disjuncts = iterates for every natural number n (“ω iteration”)



finite iteration post may suffice

“fixpoint reached in n steps” if

if
∨n

i=1 post
i (ϕinit , ρR) =

∨n+1
i=1 post i (ϕinit , ρR)

then
∨n

i=1 post
i (ϕinit , ρR) =

∨
i≥0 post

i (ϕinit , ρR)



‘distributed’ fixpoint test

I ρR is itself a disjunction: ρR =
∨

ρ∈R ρ = {ρ1, . . . , ρm}
I post(φ, ρ) distributes over disjunction in both arguments

I in ‘distributed’ disjunction Φ = {φk | k ∈ M}, every disjunct
φk corresponds to a sequence of transitions ρj1 , . . . , ρjn

φk = post(post(. . . post(ϕinit , ρj1), . . .), ρjn)

I “fixpoint reached in n steps” if (but not only if):
every application of post(·, ·) to any disjunct φk is contained
in one of the disjuncts φk ′ in “big” disjunction

∀k ∈ M ∀j = 1, . . . ,m ∃k ′ ∈ M : post(φk , ρj) ⊆ φk ′



example iteration

I post(ϕinit , ρ1) ≡ post(pc = `1, ρ1)
≡ pc = `2 ∧ y ≥ z

ρ1 ≡ (move(`1, `2) ∧ y ≥ z ∧ skip(x , y , z))

I post((pc = `i ), ρj) ≡ ∅ if ρj ∧ pc = `i ≡ ∅



loop applied to post(ϕinit , ρ1)

I post(ϕinit , ρ1) ≡ (pc = `2 ∧ y ≥ z)

I ρ2 ≡ (move(`2, `2) ∧ x + 1 ≤ y ∧ x ′ = x + 1 ∧ skip(y , z))

post(pc = `2 ∧ y ≥ z , ρ2)

= (∃V ′′ : (pc = `2 ∧ y ≥ z)[V ′′/V ] ∧ ρ2[V ′′/V ][V /V ′])

= (∃V ′′ : (pc ′′ = `2 ∧ y ′′ ≥ z ′′) ∧
(pc ′′ = `2 ∧ pc ′ = `2 ∧ x ′′ + 1 ≤ y ′′ ∧ x ′ = x ′′ + 1 ∧
y ′ = y ′′ ∧ z ′ = z ′′)[V /V ′])

= (∃V ′′ : (pc ′′ = `2 ∧ y ′′ ≥ z ′′) ∧
(pc ′′ = `2 ∧ pc = `2 ∧ x ′′ + 1 ≤ y ′′ ∧ x = x ′′ + 1 ∧
y = y ′′ ∧ z = z ′′))

= (pc = `2 ∧ y ≥ z ∧ x ≤ y)



loop applied twice to post(ϕinit , ρ1)

post2(pc = `2 ∧ y ≥ z , ρ2)

= post(post(pc = `2 ∧ y ≥ z , ρ2), ρ2)

= post(pc = `2 ∧ y ≥ z ∧ x ≤ y , ρ2)

= (∃V ′′ : (pc ′′ = `2 ∧ y ′′ ≥ z ′′ ∧ x ′′ ≤ y ′′) ∧
(pc ′′ = `2 ∧ pc = `2 ∧ x ′′ + 1 ≤ y ′′ ∧ x = x ′′ + 1 ∧
y = y ′′ ∧ z = z ′′))

= (pc = `2 ∧ y ≥ z ∧ x − 1 ≤ y ∧ x ≤ y)

= (pc = `2 ∧ y ≥ z ∧ x ≤ y)



compute ϕreach for example program (1)

apply transition relation of the program once:

post(pc = `1, ρR)

= (post(pc = `1, ρ1) ∨ post(pc = `1, ρ2) ∨ post(pc = `1, ρ3) ∨
post(pc = `1, ρ4) ∨ post(pc = `1, ρ5))

= post(pc = `1, ρ1)

= (pc = `2 ∧ y ≥ z)

obtain the post-condition for one more application:

post(pc = `2 ∧ y ≥ z , ρR)

= (post(pc = `2 ∧ y ≥ z , ρ2) ∨ post(pc = `2 ∧ y ≥ z , ρ3))

= (pc = `2 ∧ y ≥ z ∧ x ≤ y ∨ pc = `3 ∧ y ≥ z ∧ x ≥ y)



compute ϕreach for example program (2)

repeat the application step once again:

post(pc = `2 ∧ y ≥ z ∧ x ≤ y ∨
pc = `3 ∧ y ≥ z ∧ x ≥ y , ρR)

= (post(pc = `2 ∧ y ≥ z ∧ x ≤ y , ρR) ∨
post(pc = `3 ∧ y ≥ z ∧ x ≥ y , ρR))

= (post(pc = `2 ∧ y ≥ z ∧ x ≤ y , ρ2) ∨
post(pc = `2 ∧ y ≥ z ∧ x ≤ y , ρ3) ∨
post(pc = `3 ∧ y ≥ z ∧ x ≥ y , ρ4) ∨
post(pc = `3 ∧ y ≥ z ∧ x ≥ y , ρ5))

= (pc = `2 ∧ y ≥ z ∧ x ≤ y ∨
pc = `3 ∧ y ≥ z ∧ x = y ∨
pc = `4 ∧ y ≥ z ∧ x ≥ y)



compute ϕreach for example program
disjunction obtained by iteratively applying post to ϕinit :

pc = `1 ∨
pc = `2 ∧ y ≥ z ∨
pc = `2 ∧ y ≥ z ∧ x ≤ y ∨ pc = `3 ∧ y ≥ z ∧ x ≥ y ∨
pc = `2 ∧ y ≥ z ∧ x ≤ y ∨ pc = `3 ∧ y ≥ z ∧ x = y ∨
pc = `4 ∧ y ≥ z ∧ x ≥ y

disjunction in a logically equivalent, simplified form:

pc = `1 ∨
pc = `2 ∧ y ≥ z ∨
pc = `3 ∧ y ≥ z ∧ x ≥ y ∨
pc = `4 ∧ y ≥ z ∧ x ≥ y

above disjunction = ϕreach since any further application of post
does not produce any additional disjuncts


