Reachability Analysis

Andreas Podelski

program with assume () and assert ()

» assume (e) = if e then skip else halt

program with assume () and assert ()

» assume (e) = if e then skip else halt

» assert (e) = if e then skip else error

program with assume () and assert ()

» assume (e) = if e then skip else halt
» assert (e) = if e then skip else error

» generalize partial correctness:

program with assume () and assert ()

» assume (e) = if e then skip else halt
» assert (e) = if e then skip else error

» generalize partial correctness:
correctness of program wrt. Hoare triple:

{¢} C{v}

program with assume () and assert ()

» assume (e) = if e then skip else halt
» assert (e) = if e then skip else error

» generalize partial correctness:
correctness of program wrt. Hoare triple:

{¢} C{v}

= safety of program: assume (¢) ; C ; assert (¢)

» safety = non-reachability of error
(no execution of error branch)

validity of Hoare triple:

{y >= z}
while (x < y) {
X++;
}
{x >= z}
= safety of program:

assume(y >= z);
while (x < y) {

X++;
}

assert(x >= z);

4.
. error

assume(y >= z);

while (x < y) {
X++;

}

3

assert(x >= z);
exit

yz>z

@ x<yAx =x+1
X2y

(o
Xﬁ\z

Ay > z A skip(x,y, z))
Ax+1<yAx =x+1Askip(y,z))
A x>y A skip(x,y,z))

A x >z A skip(x,y,z))
Ax+1<zAskip(x,y,z))

transition relation p expressed by logica formula

p1 = (move(l1,la) Ny > z N\ skip(x, y, z))

p2 = (move(la,l2) Ax+1<yAx =x+1Askip(y,z))
p3 = (move(la,03) A x >y A skip(x,y,z))

pa = (move(l3, ly) N x > z A\ skip(x,y, z))

ps = (move(ls, ls) Ax +1 < z Askip(x,y, z))

abbreviations:

move({,¢') = (pc =LA pc =1)
skip(vi, ..., vp)

(Vi=viA...Av,=v,)

program P = (V, pc, Yinit, R, Perr)

V - finite tuple of program variables

v

» pc - program counter variable (pc included in V)
> @init - Initiation condition given by formula over V
» R - a finite set of transition relations

Werr - an error condition given by a formula over V

v

v

transition relation p € R given by
formula over the variables V and their primed versions V'’

states, sets, and relations

» each program variable is assigned a domain of values

states, sets, and relations

» each program variable is assigned a domain of values

» program state = function that assigns each program variable
a value from its respective domain

states, sets, and relations

» each program variable is assigned a domain of values

» program state = function that assigns each program variable
a value from its respective domain

» > = set of program states

states, sets, and relations

v

each program variable is assigned a domain of values

» program state = function that assigns each program variable
a value from its respective domain

v

> = set of program states

v

formula with free variables in V = set of program states

states, sets, and relations

v

each program variable is assigned a domain of values

» program state = function that assigns each program variable
a value from its respective domain

» > = set of program states
» formula with free variables in V' = set of program states
» formula with free variables in V and V/ =

binary relation over program states

» first component of each pair assigns values to V
» second component of the pair assigns values to V'

states,

sets, and relations

each program variable is assigned a domain of values

program state = function that assigns each program variable
a value from its respective domain

> = set of program states
formula with free variables in V = set of program states

formula with free variables in V and V' =
binary relation over program states
» first component of each pair assigns values to V
» second component of the pair assigns values to V'

identify formulas with sets and relations that they represent

states,

sets, and relations

each program variable is assigned a domain of values

program state = function that assigns each program variable
a value from its respective domain

> = set of program states
formula with free variables in V = set of program states

formula with free variables in V and V' =
binary relation over program states
» first component of each pair assigns values to V
» second component of the pair assigns values to V'
identify formulas with sets and relations that they represent

identify the logical consequence relation between formulas =
with set inclusion C

states,

sets, and relations

each program variable is assigned a domain of values

program state = function that assigns each program variable
a value from its respective domain

> = set of program states
formula with free variables in V = set of program states

formula with free variables in V and V' =
binary relation over program states
» first component of each pair assigns values to V
» second component of the pair assigns values to V'
identify formulas with sets and relations that they represent

identify the logical consequence relation between formulas =
with set inclusion C

identify the satisfaction relation = between valuations and
formulas, with the membership relation €

example: states, sets, and relations

» formula y > z = set of program states in which the value of
the variable y is greater than the value of z

example: states, sets, and relations

» formula y > z = set of program states in which the value of
the variable y is greater than the value of z

» formula y’ > z = binary relation over program states,
= set of pairs of program states (s, sp) in which the value of
the variable y in the second state s, is greater than the value
of z in the first state s;

example: states, sets, and relations

» formula y > z = set of program states in which the value of
the variable y is greater than the value of z

» formula y’ > z = binary relation over program states,
= set of pairs of program states (s, sp) in which the value of
the variable y in the second state s, is greater than the value
of z in the first state s;

» if program state s assigns 1, 3, 2, and /3
to program variables x, y, z, and pc, respectively,
thensf=y >z

example: states, sets, and relations

v

formula y > z = set of program states in which the value of
the variable y is greater than the value of z

formula y’ > z = binary relation over program states,

= set of pairs of program states (s, sp) in which the value of
the variable y in the second state s, is greater than the value
of z in the first state s;

if program state s assigns 1, 3, 2, and /;
to program variables x, y, z, and pc, respectively,

thensf=y >z

logical consequence: y >zEy+1>2

example program P = (V, pc, @init, R, Perr)

» program variables V = (pc, x,y, z)

> program counter pc

> program variables x, y, and z range over integers
» set of control locations £ = {/1,... 05}

» initiation condition @i, = (pc = pc = ¢1)

» error condition we = (pc = pc = ¥s)

» program transitions R = {p1, p2, p3, P4, P5 }
ove(l1,0) Ny > z A skip(x,y, z))

= (move({1, {2)

(move(la, o) Ax+1<yAx"=x+1Askip(y, z))
(move (2, £3) A x > y A skip(x,y, z))
()
= ()

3

p2 =

move({3,04) N\ x > z A skip(x, y, z))
move({3,ls) A x +1 < z A skip(x, y, z))

4.

assume(y >= z); @
while (x < y) { ?
X+ yzz
} @ x<y A x' = x +1
assert(x >= z); x>y
exit @
: error > /.\

iR ok

= (move(l1,02) Ny > z A skip(x,y, z))

(move(l2, £a) Ax +1 <y Ax" = x+1Askip(y, z))
= (move(la, £3) A x > y A skip(x, y, z))

(move(

= (move(

move({3,ls) A x > z A skip(x, y, z))

move({3,05) A x +1 < z A skip(x,y, z))

initial state, error state, transition relation R

> each state that satisfies the initiation condition @, is called
an initial state

» each state that satisfies the error condition e is called an
error state

> program transition relation pr is the union of the
“single-statement” transition relations, i.e.,

=\ r-

PER

» the state s has a transition to the state s’ if
the pair of states (s, s’) lies in the program transition
relation pg, i.e., if (s,s') E pr

program computation sy, s, . ..

» the first element is an initial state, i.e., s1 = @init

» each pair of consecutive states (s;, s;11) is connected by a
program transition, i.e., (s, si+1) F pr
> if the sequence is finite
then the last element does not have any successors
i.e., if the last element is s,,
then there is no state s such that (s,, s) E pr

1: assume(y >= z);
while (x < y) {

6,

1y=>z

X++;
} @ px<yAx =x+1
3: assert(x >= z); pP3IX >y
4: exit

e

5: error p4x>i iix<z

example of a computation:

(61717372)7 (62717372)7 (62727372)7 (£27373a2)7 (63737372)7 (64737372)

» sequence of transitions p1, p2, P2, P3, P4
» state = tuple of values of program variables pc, x, y, and z

> last program state does not any successors

Correctness: Safety

> a state is reachable if it occurs in some program computation
> a program is safe if no error state is reachable

> ... if and only if no error state lies in ©each,

Perr N\ Preach ': false .

where ©,each = set of reachable program states

1: assume(y >= z);
2: while (x < y) {
Kbt pry =22z

} @ px<yAx =x+1
3: assert(x >= z); pP3IX >y
4: exit @
5: error > A

set of reachable states:

Preach = (pc = {1 V
pc=bANy>zV
pc=U03ANy>zAx>yV
pc=LlaNy >z Ax>y)

post operator

> let ¢ be a formula over V
» let p be a formula over V and V’

» define a post-condition function post by:
post(p,p) = V" [V /VI A pIV" VIV V]

an application post(ip, p) computes the image of the set ¢
under the relation p

» post distributes over disjunction wrt. each argument:

post(y, p1 V p2) = (post(p, p1) V post(yp, p2))
post(p1 V 2, p) = (post(p1, p) V post(y2, p))

application of post(¢, p) in example program
set of states ¢ = pc =4 Ay >z, transition relation p = po,
p2 = (move(la, l) Ax+1<yAx =x+1Askip(y,z))

post(¢, p2)

— @V (pe =t Ay 2 AV VIA gl VI VIV V)

=@V (p" =l Ny" > 2" A
(p" =l Apd =l AX"+1<y"AX =x"+1A
y/ — y// /\Z/ — Z//)[V/V/])

= @V":(pc" =l Ay" > 2") A
(p" =loNpc=UbLAX" +1<y"Ax=x"+1A
y=y'nz=2"))

=(pc=laNy>zAx<y)

[renamed] program variables:

iteration of post

post"(y, p) = n-fold application of post to ¢ under p

® ifn=0
post(post™ (g, p), p) otherwise

post”(¢, p) = {

characterize @yeach Using iterates of post:

Preach = Pinit V POSt(@init, pr) V post(post(@init, PR), PR) V - ..

= Vi POst' (@init, PR

disjuncts = iterates for every natural number n (“w iteration")

finite iteration post may suffice

“fixpoint reached in n steps” if

it Vg post!(@inie, pr) = V1 post! (¢imie, pr)

then \/[_; post(@init, pR) = iz POSt' (Pinit, PR)

‘distributed’ fixpoint test

> pr is itself a disjunction: pr =\ ,cpp ={p1,....pm}
» post(¢, p) distributes over disjunction in both arguments

» in ‘distributed’ disjunction ® = {¢y | k € M}, every disjunct
¢y corresponds to a sequence of transitions pj,,...,pj,

¢k = post(post(... post(init, Pjr), - --); Pjn)

» “fixpoint reached in n steps” if (but not only if):
every application of post(-,-) to any disjunct ¢y is contained
in one of the disjuncts ¢,/ in “big" disjunction

Vke MVj=1,...,m3k' € M: post(¢x, p;) C b

example iteration

> post(pinit; p1) = post(pc = L1, p1)
= pc=UbhAy>z

p1 = (move(l1,02) Ny > z A skip(x,y, z))

» post((pc =¢),p)) = Dif piApc=1; = 0

loop applied to post(@init, p1)

> post(pinit,p1) = (pc =LAy > z)

» po = (move(la,lr) Ax+1<yAx" =x+1Askip(y,z))
post(pc =la Ny > z,p2)
=@V (pc=lany = Z)[V"/VIApo[V' /VIIV/V])
= (3V": (pc" = Lo Ay" > 2") A
(pc”:€2/\pc’:€2/\x”+l§y”/\x’zx”+1/\
y/ — y// /\Z/ — Z//)[V/V/])
=3V (p" =lany” > Z") A
(p" =l Apc=la AX"+1<y"Ax=x"+1A

y=y"nz=2")
=(pc=lbANy>zAx<Yy)

loop applied twice to post(init, p1)

post?(pc = la Ny > z, p2)
= post(post(pc = la ANy > z,p2), p2)
=post(pc =l ANy >zAx<y,p2)
— (HV// (pC//:£2/\y// 22///\X” Sy”) /\
(pc" =l Apc=LAX" + 1<y ANx=x"+1A
y=y'ne=2")
=(pc=lbhy>zAx—1<yAx<y)
=(pc=laNy>zAx<Yy)

compute @each for example program (1)

apply transition relation of the program once:

post(pc = {1, pr)
= (post(pc = {1, p1) V post(pc = {1, p2) V post(pc = {1, p3) V
post(pc = {1, pa) V post(pc = {1, ps))
= post(pc = {1, p1)
=(pc=lbNy>2)

obtain the post-condition for one more application:

post(pc =l Ny > z,pR)
= (post(pc =la Ny > z,p2) V post(pc = la Ny > z,p3))
=(pc=lbANy>zAx<yVpc=IlLAy>zAx>y)

compute @each for example program (2)

repeat the application step once again:

post(pc =la ANy >zAx<yV
pc=03Ny>zZAX>y,pR)

= (post(pc =lao ANy > zAx<y,pr)V
post(pc =Ul3 Ny >zAXx>y,pr))

= (post(pc =l ANy >zAx<y,p2)V
post(pc =la Ny >zAx<y,p3)V
post(pc =03 Ny >zAx>y,ps)V
post(pc =3 Ny >zAx >y, ps))

=(pc=bANy>zAx<yV
pc=l3ANy>zAx=yV
pc =Ll Ny >zZAXx>y)

compute ©,eacy for example program
disjunction obtained by iteratively applying post to jnit:

pc=1¥1V

pc=UlANy>2zV
pc=UbANy>zAx<yVpc=U0bANy>zAx>yV
pc=UbANy>zAx<yVpc=L3ANy>zAx=yV
pc=UliNy>zAx>y

disjunction in a logically equivalent, simplified form:
pc=1¥01V
pc=LANy>zV

pc=Ll3ANy>zAx>yV
pc=LlisNy>zAx>y

above disjunction = ,esch Since any further application of post
does not produce any additional disjuncts

