## Hybrid Systems

Prof. Dr. Andreas Podelski

Chair of Software Engineering University of Freiburg

SS 2012

```
Input: Set Init of initial states.
Algorithm:
```

$$\begin{array}{l} R^{\mathsf{new}} := \mathsf{lnit}; \\ R := \emptyset; \\ \mathsf{while} \ (R^{\mathsf{new}} \neq \emptyset) \{ \\ R & := R \cup R^{\mathsf{new}}; \\ R^{\mathsf{new}} & := \mathsf{Reach}(R^{\mathsf{new}}) \backslash R; \\ \} \end{array}$$

Output: Set R of reachable states.

• When applied to hybrid automata, there is a problem with this procedure:

```
How to compute \operatorname{Reach}(P) for a set P?
```

When applied to hybrid automata, there is a problem with this procedure:

How to compute  $\operatorname{Reach}(P)$  for a set P?

- Generally there are two kinds of approaches:
  - **1** CEGAR (CounterExample-Guided Abstraction Refinement):
    - Build a finite abstraction of the state space.
    - Compute reachability for the abstract system.
    - $\blacksquare \ Spurious \ counterexamples \rightarrow abstraction \ refinement.$
  - **2** Compute an over-approximation of  $\operatorname{Reach}(P)$  in the above procedure.

When applied to hybrid automata, there is a problem with this procedure:

How to compute  $\operatorname{Reach}(P)$  for a set P?

- Generally there are two kinds of approaches:
  - **1** CEGAR (CounterExample-Guided Abstraction Refinement):
    - Build a finite abstraction of the state space.
    - Compute reachability for the abstract system.
    - $\blacksquare \ \ Spurious \ \ counterexamples \rightarrow abstraction \ refinement.$
  - **2** Compute an over-approximation of  $\operatorname{Reach}(P)$  in the above procedure.
- Let us have a look at (2) in more details.

We need to solve two problems:

#### Continuous dynamics

Given a dynamical system defined by  $\dot{x} = f(x)$ , where x takes values from  $\mathbb{R}^d$ , and given  $P \subseteq \mathbb{R}^d$ , calculate (or over-approximate) the set of points in  $\mathbb{R}^d$  reached by trajectories (solutions) starting in P.

#### Discrete steps

Given a discrete transition of a hybrid system with state space  $\mathbb{R}^d$ , and given  $P \subseteq \mathbb{R}^d$ , calculate (or approximate) the set of points in  $\mathbb{R}^d$  reachable by taking the discrete transition starting in P.

## Reachability approximation for hybrid automata



- The geometry chosen to represent reachable sets has a crucial effect on the efficiency of the whole procedure.
- Usually, the more complex the geometry,
  - 1 the more costly is the storage of the sets,
  - 2 the more difficult it is to perform operations like union and intersection, and
  - 3 the more elaborate is the computation of new reachable sets, but
  - 4 the better the approximation of the set of reachable states.
- Choosing the geometry has to be a compromise between these impacts.

### The geometry should allow efficient computation of the operations for

- membership relation,
- union,
- intersection,
- subtraction,
- test for emptiness.

### Approaches:

- Convex polyhedra
- Orthogonal polyhedra
- Oriented rectangular hulls
- Zonotopes, ellipsoids, support functions,...

## 1 Convex polyhedra

#### 2 Operations on convex polyhedra



## Definition

A (convex) polyhedron in  $\mathbb{R}^d$  is the solution set to a finite number of linear inequalities with real coefficients in d real variables. A bounded polyhedron is called polytope.

Depending on the form of the representation, we distinguish between

- *H*-polytopes and
- *V*-polytopes.

## Definition (Closed halfspace)

A *d*-dimensional closed halfspace is a set  $\mathcal{H} = \{x \in \mathbb{R}^d \mid c \cdot x \leq z\}$  for some  $c \in \mathbb{R}^d$ , called the normal of the halfspace, and a  $z \in \mathbb{R}$ .

## Definition (Closed halfspace)

A *d*-dimensional closed halfspace is a set  $\mathcal{H} = \{x \in \mathbb{R}^d \mid c \cdot x \leq z\}$  for some  $c \in \mathbb{R}^d$ , called the normal of the halfspace, and a  $z \in \mathbb{R}$ .

### Definition ( $\mathcal{H}$ -polyhedron, $\mathcal{H}$ -polytope)

A *d*-dimensional  $\mathcal{H}$ -polyhedron  $P = \bigcap_{i=1}^{n} \mathcal{H}_i$  is the intersection of finitely many closed halfspaces. A bounded  $\mathcal{H}$ -polyhedron is called an  $\mathcal{H}$ -polytope.

The facets of a  $d\text{-dimensional}\ \mathcal{H}\text{-polytope}$  are  $d-1\text{-dimensional}\ \mathcal{H}\text{-polytopes}.$ 

An  $\mathcal H\text{-}\mathsf{polytope}$ 

$$P = \bigcap_{i=1}^{n} \mathcal{H}_{i} = \bigcap_{i=1}^{n} \{ x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i} \}$$

can also be written in the form

$$P = \{ x \in \mathbb{R}^d \mid Cx \le z \}.$$

We call (C, z) the  $\mathcal{H}$ -representation of the polytope.

An  $\mathcal H\text{-}\mathsf{polytope}$ 

$$P = \bigcap_{i=1}^{n} \mathcal{H}_{i} = \bigcap_{i=1}^{n} \{ x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i} \}$$

can also be written in the form

$$P = \{ x \in \mathbb{R}^d \mid Cx \le z \}.$$

We call (C, z) the  $\mathcal{H}$ -representation of the polytope.

Each row of C is the normal vector to the *i*th facet of the polytope.

An  $\mathcal{H}$ -polytope

$$P = \bigcap_{i=1}^{n} \mathcal{H}_{i} = \bigcap_{i=1}^{n} \{ x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i} \}$$

can also be written in the form

$$P = \{ x \in \mathbb{R}^d \mid Cx \le z \}.$$

We call (C, z) the  $\mathcal{H}$ -representation of the polytope.

- Each row of C is the normal vector to the *i*th facet of the polytope.
- An  $\mathcal{H}$ -polytope P has a finite number of vertices V(P).

An  $\mathcal{H}$ -polytope

$$P = \bigcap_{i=1}^{n} \mathcal{H}_{i} = \bigcap_{i=1}^{n} \{ x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i} \}$$

can also be written in the form

$$P = \{ x \in \mathbb{R}^d \mid Cx \le z \}.$$

We call (C, z) the  $\mathcal{H}$ -representation of the polytope.

- Each row of C is the normal vector to the *i*th facet of the polytope.
- An  $\mathcal{H}$ -polytope P has a finite number of vertices V(P).

#### Definition

A set S is called convex, if

$$\forall x, y \in S. \ \forall \lambda \in [0, 1] \subseteq \mathbb{R}. \ \lambda x + (1 - \lambda)y \in S.$$

#### $\mathcal{H}$ -polyhedra are convex sets.

Podelski (Chair of Software Engineering

# $\mathcal V$ -polytopes

### Definition (Convex hull)

Given a set  $V \subseteq \mathbb{R}^d$ , the convex hull CH(V) of V is the smallest convex set that contains V.

# $\mathcal{V}$ -polytopes

#### Definition (Convex hull)

Given a set  $V \subseteq \mathbb{R}^d$ , the convex hull CH(V) of V is the smallest convex set that contains V.

For a finite set  $V = \{v_1, \ldots, v_n\}$ , its convex hull can be computed by

$$CH(V) = \{ x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \ \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x \}.$$

#### Definition (Convex hull)

Given a set  $V \subseteq \mathbb{R}^d$ , the convex hull CH(V) of V is the smallest convex set that contains V.

For a finite set  $V = \{v_1, \ldots, v_n\}$ , its convex hull can be computed by

$$CH(V) = \{ x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x \}.$$

#### Definition ( $\mathcal{V}$ -polytope)

A  $\mathcal{V}$ -polytope P = CH(V) is the convex hull of a finite set  $V \subset \mathbb{R}^d$ . We call V the  $\mathcal{V}$ -representation of the polytope.

#### Definition (Convex hull)

Given a set  $V \subseteq \mathbb{R}^d$ , the convex hull CH(V) of V is the smallest convex set that contains V.

For a finite set  $V = \{v_1, \ldots, v_n\}$ , its convex hull can be computed by

$$CH(V) = \{ x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x \}.$$

#### Definition ( $\mathcal{V}$ -polytope)

A  $\mathcal{V}$ -polytope P = CH(V) is the convex hull of a finite set  $V \subset \mathbb{R}^d$ . We call V the  $\mathcal{V}$ -representation of the polytope.

Note that all  $\mathcal{V}$ -polytopes are bounded.

- For each *H*-polytope, the convex hull of its vertices defines the same set in the form of a *V*-polytope, and vice versa,
- each set defined as a V-polytope can be also given as an H-polytope by computing the halfspaces defined by its facets.

The translations between the  $\mathcal{H}$ - and the  $\mathcal{V}$ -representations of polytopes can be very expensive.

## 1 Convex polyhedra

### 2 Operations on convex polyhedra

If we represent reachable sets of hybrid automata by polytopes, we need some operations like

- membership computation,
- intersection, or the
- union of two polytopes.

## Operations: Membership

### Membership for $p \in \mathbb{R}^d$ :

•  $\mathcal{H}$ -polytope defined by  $Cx \leq z$ :

■ *H*-polytope defined by *Cx* ≤ *z*: just substitute *p* for *x* to check if the inequation holds.

- *H*-polytope defined by *Cx* ≤ *z*: just substitute *p* for *x* to check if the inequation holds.
- $\mathcal{V}$ -polytope defined by the vertex set V:

- *H*-polytope defined by *Cx* ≤ *z*: just substitute *p* for *x* to check if the inequation holds.
- *V*-polytope defined by the vertex set *V*: check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \quad \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x \;.$$

- *H*-polytope defined by *Cx* ≤ *z*: just substitute *p* for *x* to check if the inequation holds.
- *V*-polytope defined by the vertex set *V*: check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \quad \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x \;.$$

Alternatively:

- *H*-polytope defined by Cx ≤ z: just substitute p for x to check if the inequation holds.
- *V*-polytope defined by the vertex set *V*: check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \quad \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x \;.$$

Alternatively: convert the  $\mathcal{V}$ -polytope into an  $\mathcal{H}$ -polytope by computing its facets.

Intersection for two polytopes  $P_1$  and  $P_2$ :

•  $\mathcal{H}$ -polytopes defined by  $C_1 x \leq z_1$  and  $C_2 x \leq z_2$ :

Intersection for two polytopes  $P_1$  and  $P_2$ :

•  $\mathcal{H}$ -polytopes defined by  $C_1 x \leq z_1$  and  $C_2 x \leq z_2$ : the resulting  $\mathcal{H}$ -polytope is defined by  $\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} x \leq \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ .

•  $\mathcal{V}$ -polytopes defined by  $V_1$  and  $V_2$ :

Intersection for two polytopes  $P_1$  and  $P_2$ :

- $\mathcal{H}$ -polytopes defined by  $C_1 x \leq z_1$  and  $C_2 x \leq z_2$ : the resulting  $\mathcal{H}$ -polytope is defined by  $\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} x \leq \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ .
- $\mathcal{V}$ -polytopes defined by  $V_1$  and  $V_2$ : Convert  $P_1$  and  $P_2$  to  $\mathcal{H}$ -polytopes and convert the result back to a  $\mathcal{V}$ -polytope.

 $\rightarrow$  take the convex hull of the union.

 $\rightarrow$  take the convex hull of the union.

•  $\mathcal{V}$ -polytopes defined by  $V_1$  and  $V_2$ :

 $\rightarrow$  take the convex hull of the union.

•  $\mathcal{V}$ -polytopes defined by  $V_1$  and  $V_2$ :  $\mathcal{V}$ -representation  $V_1 \cup V_2$ .

•  $\mathcal{H}$ -polytopes defined by  $C_1 x \leq z_1$  and  $C_2 x \leq z_2$ :

 $\rightarrow$  take the convex hull of the union.

•  $\mathcal{V}$ -polytopes defined by  $V_1$  and  $V_2$ :  $\mathcal{V}$ -representation  $V_1 \cup V_2$ .

■ *H*-polytopes defined by *C*<sub>1</sub>*x* ≤ *z*<sub>1</sub> and *C*<sub>2</sub>*x* ≤ *z*<sub>2</sub>: convert to *V*-polytopes and compute back the result.