Hybrid Systems

Prof. Dr. Andreas Podelski
Chair of Software Engineering
University of Freiburg

SS 2012

General forward reachability computation

Input: Set Init of initial states.
Algorithm:

$$
\begin{aligned}
& R^{\text {new }}:=\text { Init; } \\
& R:=\emptyset \text {; } \\
& \text { while }\left(R^{\text {new }} \neq \emptyset\right)\{ \\
& R \quad:=R \cup R^{\text {new }} \text {; } \\
& R^{\text {new }} \quad:=\operatorname{Reach}\left(R^{\text {new }}\right) \backslash R \text {; } \\
& \text { \} }
\end{aligned}
$$

Output: Set R of reachable states.

Reachability computation

- When applied to hybrid automata, there is a problem with this procedure:
How to compute Reach (P) for a set P ?

Reachability computation

- When applied to hybrid automata, there is a problem with this procedure:
How to compute Reach (P) for a set P ?
- Generally there are two kinds of approaches:

1 CEGAR (CounterExample-Guided Abstraction Refinement):
■ Build a finite abstraction of the state space.
■ Compute reachability for the abstract system.
■ Spurious counterexamples \rightarrow abstraction refinement.
2 Compute an over-approximation of $\operatorname{Reach}(P)$ in the above procedure.

Reachability computation

- When applied to hybrid automata, there is a problem with this procedure:
How to compute Reach (P) for a set P ?
- Generally there are two kinds of approaches:

1 CEGAR (CounterExample-Guided Abstraction Refinement):
■ Build a finite abstraction of the state space.
■ Compute reachability for the abstract system.
■ Spurious counterexamples \rightarrow abstraction refinement.
2 Compute an over-approximation of $\operatorname{Reach}(P)$ in the above procedure.

- Let us have a look at (2) in more details.

Computing reachability

We need to solve two problems:

Continuous dynamics

Given a dynamical system defined by $\dot{x}=f(x)$, where x takes values from \mathbb{R}^{d}, and given $P \subseteq \mathbb{R}^{d}$, calculate (or over-approximate) the set of points in \mathbb{R}^{d} reached by trajectories (solutions) starting in P.

Discrete steps

Given a discrete transition of a hybrid system with state space \mathbb{R}^{d}, and given $P \subseteq \mathbb{R}^{d}$, calculate (or approximate) the set of points in \mathbb{R}^{d} reachable by taking the discrete transition starting in P.

Reachability approximation for hybrid automata

State set representation

- The geometry chosen to represent reachable sets has a crucial effect on the efficiency of the whole procedure.
- Usually, the more complex the geometry,

1 the more costly is the storage of the sets,
2 the more difficult it is to perform operations like union and intersection, and
3 the more elaborate is the computation of new reachable sets, but
4 the better the approximation of the set of reachable states.

- Choosing the geometry has to be a compromise between these impacts.

Representation requirements

The geometry should allow efficient computation of the operations for
■ membership relation,

- union,
- intersection,
- subtraction,

■ test for emptiness.

State set representation

Approaches:

- Convex polyhedra

■ Orthogonal polyhedra

- Oriented rectangular hulls

■ Zonotopes, ellipsoids, support functions,...

State set representation

1 Convex polyhedra

2 Operations on convex polyhedra

Polyhedra

Convex polyhedra

Definition

A (convex) polyhedron in \mathbb{R}^{d} is the solution set to a finite number of linear inequalities with real coefficients in d real variables. A bounded polyhedron is called polytope.

Depending on the form of the representation, we distinguish between

- \mathcal{H}-polytopes and
- \mathcal{V}-polytopes.

\mathcal{H}-polytopes

Definition (Closed halfspace)

A d-dimensional closed halfspace is a set $\mathcal{H}=\left\{x \in \mathbb{R}^{d} \mid c \cdot x \leq z\right\}$ for some $c \in \mathbb{R}^{d}$, called the normal of the halfspace, and a $z \in \mathbb{R}$.

\mathcal{H}-polytopes

Definition (Closed halfspace)

A d-dimensional closed halfspace is a set $\mathcal{H}=\left\{x \in \mathbb{R}^{d} \mid c \cdot x \leq z\right\}$ for some $c \in \mathbb{R}^{d}$, called the normal of the halfspace, and a $z \in \mathbb{R}$.

Definition (\mathcal{H}-polyhedron, \mathcal{H}-polytope)

A d-dimensional \mathcal{H}-polyhedron $P=\bigcap_{i=1}^{n} \mathcal{H}_{i}$ is the intersection of finitely many closed halfspaces. A bounded \mathcal{H}-polyhedron is called an \mathcal{H}-polytope.

The facets of a d-dimensional \mathcal{H}-polytope are d - 1 -dimensional \mathcal{H}-polytopes.

\mathcal{H}-polytopes

An \mathcal{H}-polytope

$$
P=\bigcap_{i=1}^{n} \mathcal{H}_{i}=\bigcap_{i=1}^{n}\left\{x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i}\right\}
$$

can also be written in the form

$$
P=\left\{x \in \mathbb{R}^{d} \mid C x \leq z\right\} .
$$

We call (C, z) the \mathcal{H}-representation of the polytope.

\mathcal{H}-polytopes

An \mathcal{H}-polytope

$$
P=\bigcap_{i=1}^{n} \mathcal{H}_{i}=\bigcap_{i=1}^{n}\left\{x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i}\right\}
$$

can also be written in the form

$$
P=\left\{x \in \mathbb{R}^{d} \mid C x \leq z\right\} .
$$

We call (C, z) the \mathcal{H}-representation of the polytope.
■ Each row of C is the normal vector to the i th facet of the polytope.

\mathcal{H}-polytopes

An \mathcal{H}-polytope

$$
P=\bigcap_{i=1}^{n} \mathcal{H}_{i}=\bigcap_{i=1}^{n}\left\{x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i}\right\}
$$

can also be written in the form

$$
P=\left\{x \in \mathbb{R}^{d} \mid C x \leq z\right\} .
$$

We call (C, z) the \mathcal{H}-representation of the polytope.
■ Each row of C is the normal vector to the i th facet of the polytope.
■ An \mathcal{H}-polytope P has a finite number of vertices $V(P)$.

\mathcal{H}-polytopes

An \mathcal{H}-polytope

$$
P=\bigcap_{i=1}^{n} \mathcal{H}_{i}=\bigcap_{i=1}^{n}\left\{x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i}\right\}
$$

can also be written in the form

$$
P=\left\{x \in \mathbb{R}^{d} \mid C x \leq z\right\} .
$$

We call (C, z) the \mathcal{H}-representation of the polytope.
■ Each row of C is the normal vector to the i th facet of the polytope.

- An \mathcal{H}-polytope P has a finite number of vertices $V(P)$.

Definition

A set S is called convex, if

$$
\forall x, y \in S . \forall \lambda \in[0,1] \subseteq \mathbb{R} . \lambda x+(1-\lambda) y \in S
$$

\mathcal{H}-polyhedra are convex sets.

\mathcal{V}-polytopes

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^{d}$, the convex hull $C H(V)$ of V is the smallest convex set that contains V.

\mathcal{V}-polytopes

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^{d}$, the convex hull $C H(V)$ of V is the smallest convex set that contains V.

For a finite set $V=\left\{v_{1}, \ldots, v_{n}\right\}$, its convex hull can be computed by

$$
C H(V)=\left\{x \in \mathbb{R}^{d} \mid \exists \lambda_{1}, \ldots, \lambda_{n} \in[0,1] \subseteq \mathbb{R}^{d} . \sum_{i=1}^{n} \lambda_{i}=1 \wedge \sum_{i=1}^{n} \lambda_{i} v_{i}=x\right\}
$$

\mathcal{V}-polytopes

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^{d}$, the convex hull $C H(V)$ of V is the smallest convex set that contains V.

For a finite set $V=\left\{v_{1}, \ldots, v_{n}\right\}$, its convex hull can be computed by

$$
C H(V)=\left\{x \in \mathbb{R}^{d} \mid \exists \lambda_{1}, \ldots, \lambda_{n} \in[0,1] \subseteq \mathbb{R}^{d} . \sum_{i=1}^{n} \lambda_{i}=1 \wedge \sum_{i=1}^{n} \lambda_{i} v_{i}=x\right\} .
$$

Definition (\mathcal{V}-polytope)

A \mathcal{V}-polytope $P=C H(V)$ is the convex hull of a finite set $V \subset \mathbb{R}^{d}$. We call V the \mathcal{V}-representation of the polytope.

\mathcal{V}-polytopes

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^{d}$, the convex hull $C H(V)$ of V is the smallest convex set that contains V.

For a finite set $V=\left\{v_{1}, \ldots, v_{n}\right\}$, its convex hull can be computed by

$$
C H(V)=\left\{x \in \mathbb{R}^{d} \mid \exists \lambda_{1}, \ldots, \lambda_{n} \in[0,1] \subseteq \mathbb{R}^{d} . \sum_{i=1}^{n} \lambda_{i}=1 \wedge \sum_{i=1}^{n} \lambda_{i} v_{i}=x\right\} .
$$

Definition (\mathcal{V}-polytope)

A \mathcal{V}-polytope $P=C H(V)$ is the convex hull of a finite set $V \subset \mathbb{R}^{d}$. We call V the \mathcal{V}-representation of the polytope.

Note that all \mathcal{V}-polytopes are bounded.

Motzkin's theorem

■ For each \mathcal{H}-polytope, the convex hull of its vertices defines the same set in the form of a \mathcal{V}-polytope, and vice versa,
■ each set defined as a \mathcal{V}-polytope can be also given as an \mathcal{H}-polytope by computing the halfspaces defined by its facets.

The translations between the \mathcal{H} - and the \mathcal{V}-representations of polytopes can be very expensive.

State set representation

1 Convex polyhedra

2 Operations on convex polyhedra

Operations

If we represent reachable sets of hybrid automata by polytopes, we need some operations like

- membership computation,
- intersection, or the
- union of two polytopes.

Operations: Membership

Membership for $p \in \mathbb{R}^{d}$:

Operations: Membership

Membership for $p \in \mathbb{R}^{d}$:
■ \mathcal{H}-polytope defined by $C x \leq z$:

Operations: Membership

Membership for $p \in \mathbb{R}^{d}$:

- \mathcal{H}-polytope defined by $C x \leq z$: just substitute p for x to check if the inequation holds.

Operations: Membership

Membership for $p \in \mathbb{R}^{d}$:

- \mathcal{H}-polytope defined by $C x \leq z$: just substitute p for x to check if the inequation holds.
- \mathcal{V}-polytope defined by the vertex set V :

Operations: Membership

Membership for $p \in \mathbb{R}^{d}$:

- \mathcal{H}-polytope defined by $C x \leq z$: just substitute p for x to check if the inequation holds.
- \mathcal{V}-polytope defined by the vertex set V : check satisfiability of

$$
\exists \lambda_{1}, \ldots, \lambda_{n} \in[0,1] \subseteq \mathbb{R}^{d} . \sum_{i=1}^{n} \lambda_{i}=1 \wedge \sum_{i=1}^{n} \lambda_{i} v_{i}=x
$$

Operations: Membership

Membership for $p \in \mathbb{R}^{d}$:

- \mathcal{H}-polytope defined by $C x \leq z$: just substitute p for x to check if the inequation holds.
- \mathcal{V}-polytope defined by the vertex set V : check satisfiability of

$$
\exists \lambda_{1}, \ldots, \lambda_{n} \in[0,1] \subseteq \mathbb{R}^{d} . \sum_{i=1}^{n} \lambda_{i}=1 \wedge \sum_{i=1}^{n} \lambda_{i} v_{i}=x
$$

Alternatively:

Operations: Membership

Membership for $p \in \mathbb{R}^{d}$:

- \mathcal{H}-polytope defined by $C x \leq z$: just substitute p for x to check if the inequation holds.
- \mathcal{V}-polytope defined by the vertex set V : check satisfiability of

$$
\exists \lambda_{1}, \ldots, \lambda_{n} \in[0,1] \subseteq \mathbb{R}^{d} . \sum_{i=1}^{n} \lambda_{i}=1 \wedge \sum_{i=1}^{n} \lambda_{i} v_{i}=x
$$

Alternatively: convert the \mathcal{V}-polytope into an \mathcal{H}-polytope by computing its facets.

Intersection

Intersection for two polytopes P_{1} and P_{2} :

- \mathcal{H}-polytopes defined by $C_{1} x \leq z_{1}$ and $C_{2} x \leq z_{2}$:

Intersection

Intersection for two polytopes P_{1} and P_{2} :

- \mathcal{H}-polytopes defined by $C_{1} x \leq z_{1}$ and $C_{2} x \leq z_{2}$: the resulting \mathcal{H}-polytope is defined by $\binom{C_{1}}{C_{2}} x \leq\binom{ z_{1}}{z_{2}}$.
- \mathcal{V}-polytopes defined by V_{1} and V_{2} :

Intersection

Intersection for two polytopes P_{1} and P_{2} :

- \mathcal{H}-polytopes defined by $C_{1} x \leq z_{1}$ and $C_{2} x \leq z_{2}$: the resulting \mathcal{H}-polytope is defined by $\binom{C_{1}}{C_{2}} x \leq\binom{ z_{1}}{z_{2}}$.
- \mathcal{V}-polytopes defined by V_{1} and V_{2} :

Convert P_{1} and P_{2} to \mathcal{H}-polytopes and convert the result back to a \mathcal{V}-polytope.

Union

Note that the union of two convex polytopes is in general not a convex polytope.

Union

Note that the union of two convex polytopes is in general not a convex polytope.
\rightarrow take the convex hull of the union.

Union

Note that the union of two convex polytopes is in general not a convex polytope.
\rightarrow take the convex hull of the union.

- \mathcal{V}-polytopes defined by V_{1} and V_{2} :

Union

Note that the union of two convex polytopes is in general not a convex polytope.
\rightarrow take the convex hull of the union.

- \mathcal{V}-polytopes defined by V_{1} and V_{2} :
\mathcal{V}-representation $V_{1} \cup V_{2}$.
- \mathcal{H}-polytopes defined by $C_{1} x \leq z_{1}$ and $C_{2} x \leq z_{2}$:

Union

Note that the union of two convex polytopes is in general not a convex polytope.
\rightarrow take the convex hull of the union.

- \mathcal{V}-polytopes defined by V_{1} and V_{2} :
\mathcal{V}-representation $V_{1} \cup V_{2}$.
- \mathcal{H}-polytopes defined by $C_{1} x \leq z_{1}$ and $C_{2} x \leq z_{2}$: convert to \mathcal{V}-polytopes and compute back the result.

