
Hybrid Systems

Prof. Dr. Andreas Podelski

Chair of Software Engineering
University of Freiburg

SS 2012

Podelski (Chair of Software Engineering University of Freiburg)Hybrid Systems SS 2012 1 / 20



General forward reachability computation

Input: Set Init of initial states.
Algorithm:

Rnew := Init;
R := ∅;
while (Rnew 6= ∅){

R := R ∪Rnew;
Rnew := Reach(Rnew)\R;

}
Output: Set R of reachable states.
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Reachability computation

When applied to hybrid automata, there is a problem with this
procedure:
How to compute Reach(P ) for a set P?

Generally there are two kinds of approaches:
1 CEGAR (CounterExample-Guided Abstraction Refinement):

Build a finite abstraction of the state space.
Compute reachability for the abstract system.
Spurious counterexamples → abstraction refinement.

2 Compute an over-approximation of Reach(P ) in the above procedure.

Let us have a look at (2) in more details.
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Computing reachability

We need to solve two problems:

Continuous dynamics

Given a dynamical system defined by ẋ = f(x), where x takes values from
Rd, and given P ⊆ Rd, calculate (or over-approximate) the set of points in
Rd reached by trajectories (solutions) starting in P .

Discrete steps

Given a discrete transition of a hybrid system with state space Rd, and
given P ⊆ Rd, calculate (or approximate) the set of points in Rd reachable
by taking the discrete transition starting in P .
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Reachability approximation for hybrid automata

P P

Podelski (Chair of Software Engineering University of Freiburg)Hybrid Systems SS 2012 5 / 20



State set representation

The geometry chosen to represent reachable sets has a crucial effect
on the efficiency of the whole procedure.
Usually, the more complex the geometry,

1 the more costly is the storage of the sets,
2 the more difficult it is to perform operations like union and intersection,

and
3 the more elaborate is the computation of new reachable sets, but
4 the better the approximation of the set of reachable states.

Choosing the geometry has to be a compromise between these
impacts.
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Representation requirements

The geometry should allow efficient computation of the operations for
membership relation,
union,
intersection,
subtraction,
test for emptiness.
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State set representation

Approaches:
Convex polyhedra
Orthogonal polyhedra
Oriented rectangular hulls
Zonotopes, ellipsoids, support functions,...
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State set representation

1 Convex polyhedra

2 Operations on convex polyhedra
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Polyhedra
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Convex polyhedra

Definition
A (convex) polyhedron in Rd is the solution set to a finite number of linear
inequalities with real coefficients in d real variables. A bounded polyhedron
is called polytope.

Depending on the form of the representation, we distinguish between
H-polytopes and
V-polytopes.
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H-polytopes

Definition (Closed halfspace)

A d-dimensional closed halfspace is a set H = {x ∈ Rd | c · x ≤ z} for
some c ∈ Rd, called the normal of the halfspace, and a z ∈ R.

Definition (H-polyhedron, H-polytope)
A d-dimensional H-polyhedron P =

⋂n
i=1Hi is the intersection of finitely

many closed halfspaces. A bounded H-polyhedron is called an H-polytope.

The facets of a d-dimensional H-polytope are d− 1-dimensional
H-polytopes.
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H-polytopes

An H-polytope

P =

n⋂
i=1

Hi =

n⋂
i=1

{x ∈ Rd | ci · x ≤ zi}

can also be written in the form

P = {x ∈ Rd | Cx ≤ z}.
We call (C, z) the H-representation of the polytope.

Each row of C is the normal vector to the ith facet of the polytope.
An H-polytope P has a finite number of vertices V (P ).

Definition
A set S is called convex, if

∀x, y ∈ S. ∀λ ∈ [0, 1] ⊆ R. λx+ (1− λ)y ∈ S.

H-polyhedra are convex sets.

Podelski (Chair of Software Engineering University of Freiburg)Hybrid Systems SS 2012 13 / 20



H-polytopes

An H-polytope

P =

n⋂
i=1

Hi =

n⋂
i=1

{x ∈ Rd | ci · x ≤ zi}

can also be written in the form

P = {x ∈ Rd | Cx ≤ z}.
We call (C, z) the H-representation of the polytope.

Each row of C is the normal vector to the ith facet of the polytope.

An H-polytope P has a finite number of vertices V (P ).

Definition
A set S is called convex, if

∀x, y ∈ S. ∀λ ∈ [0, 1] ⊆ R. λx+ (1− λ)y ∈ S.

H-polyhedra are convex sets.

Podelski (Chair of Software Engineering University of Freiburg)Hybrid Systems SS 2012 13 / 20



H-polytopes

An H-polytope

P =

n⋂
i=1

Hi =

n⋂
i=1

{x ∈ Rd | ci · x ≤ zi}

can also be written in the form

P = {x ∈ Rd | Cx ≤ z}.
We call (C, z) the H-representation of the polytope.

Each row of C is the normal vector to the ith facet of the polytope.
An H-polytope P has a finite number of vertices V (P ).

Definition
A set S is called convex, if

∀x, y ∈ S. ∀λ ∈ [0, 1] ⊆ R. λx+ (1− λ)y ∈ S.

H-polyhedra are convex sets.

Podelski (Chair of Software Engineering University of Freiburg)Hybrid Systems SS 2012 13 / 20



H-polytopes

An H-polytope

P =

n⋂
i=1

Hi =

n⋂
i=1

{x ∈ Rd | ci · x ≤ zi}

can also be written in the form

P = {x ∈ Rd | Cx ≤ z}.
We call (C, z) the H-representation of the polytope.

Each row of C is the normal vector to the ith facet of the polytope.
An H-polytope P has a finite number of vertices V (P ).

Definition
A set S is called convex, if

∀x, y ∈ S. ∀λ ∈ [0, 1] ⊆ R. λx+ (1− λ)y ∈ S.

H-polyhedra are convex sets.
Podelski (Chair of Software Engineering University of Freiburg)Hybrid Systems SS 2012 13 / 20



V-polytopes

Definition (Convex hull)

Given a set V ⊆ Rd, the convex hull CH (V ) of V is the smallest convex
set that contains V .

For a finite set V = {v1, . . . , vn}, its convex hull can be computed by

CH (V ) = {x ∈ Rd | ∃λ1, . . . , λn ∈ [0, 1] ⊆ Rd.
n∑

i=1

λi = 1∧
n∑

i=1

λivi = x}.

Definition (V-polytope)
A V-polytope P = CH (V ) is the convex hull of a finite set V ⊂ Rd. We
call V the V-representation of the polytope.

Note that all V-polytopes are bounded.
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Motzkin’s theorem

For each H-polytope, the convex hull of its vertices defines the same
set in the form of a V-polytope, and vice versa,
each set defined as a V-polytope can be also given as an H-polytope
by computing the halfspaces defined by its facets.

The translations between the H- and the V-representations of polytopes
can be very expensive.
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State set representation

1 Convex polyhedra

2 Operations on convex polyhedra
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Operations

If we represent reachable sets of hybrid automata by polytopes, we need
some operations like

membership computation,
intersection, or the
union of two polytopes.
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Operations: Membership

Membership for p ∈ Rd:

H-polytope defined by Cx ≤ z:
just substitute p for x to check if the inequation holds.
V-polytope defined by the vertex set V :
check satisfiability of

∃λ1, . . . , λn ∈ [0, 1] ⊆ Rd.

n∑
i=1

λi = 1 ∧
n∑

i=1

λivi = x .

Alternatively: convert the V-polytope into an H-polytope by
computing its facets.
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Intersection

Intersection for two polytopes P1 and P2:
H-polytopes defined by C1x ≤ z1 and C2x ≤ z2:

the resulting H-polytope is defined by
(
C1

C2

)
x ≤

(
z1
z2

)
.

V-polytopes defined by V1 and V2:
Convert P1 and P2 to H-polytopes and convert the result back to a
V-polytope.
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Union

Note that the union of two convex polytopes is in general not a convex
polytope.

→ take the convex hull of the union.
V-polytopes defined by V1 and V2:
V-representation V1 ∪ V2.
H-polytopes defined by C1x ≤ z1 and C2x ≤ z2:
convert to V-polytopes and compute back the result.
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