Hybrid Systems Hybrid systems and their modeling

Andreas Podelski

Freiburg University

SS 2012

Contents

- 1 Hybrid systems
- 2 Labeled state transition systems
- 3 Labeled transition systems
- 4 Hybrid automata

Motivation

- Dynamical system: continuous evolution of the state over time
- Time model:

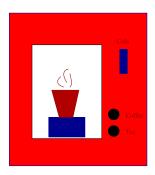
```
\begin{array}{ll} \text{continuous} \leadsto & t \in \mathbb{R} \\ \text{discrete} & \leadsto & k \in \mathbb{Z} \end{array}
```

hybrid \longrightarrow continuous time, but there are also discrete "instants" where something "special" happens

- State model:
 - continuous \leadsto evolution described by ordinary differential equations (ODEs) $\dot{x} = f(x,u)$
 - discrete \leadsto evolution described by difference equations $x_{k+1} = f(x_k, u_k)$
 - hybrid \leadsto continuous space, but there are also discrete "instants" for that something "special" holds

Example: Vending machine

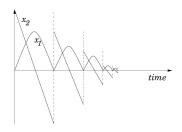
- insert coin
- choose beverage (coffee/tee)
- wait for cup
- take cup



→ Discrete

Example: Bouncing ball

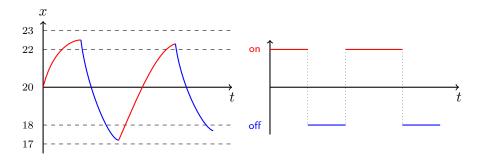
- vertical position of the ball x_1
- velocity x₂
- continuous changes of position between bounces
- discrete changes at bounce time



→ Hybrid

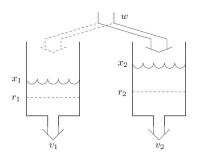
Example: Thermostat

- lacktriangle Temperature x is controlled by switching a heater on and off
- *x* is regulated by a thermostat:
 - $17^{\circ} < x < 18^{\circ} \rightsquigarrow$ "heater on"
 - $22^{\circ} \le x \le 23^{\circ} \leadsto$ "heater off"



Example: Water tank system

- lacktriangle two constantly leaking tanks v_1 and v_2
- hose w refills exactly one tank at one point in time
- w can switch between tanks instantaneously



There are much more complex examples of hybrid systems...

- automobils, trains, etc.
- automated highway systems
- collision-avoidance and free flight for aircrafts
- biological cell growth and division

Contents

- 1 Hybrid systems
- 2 Labeled state transition systems
- 3 Labeled transition systems
- 4 Hybrid automata

Labeled state transition systems

Definition

A labeled state transition system (LSTS) is a tuple $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ with

- \blacksquare a (probably infinite) state set Σ ,
- \blacksquare a label set \underline{Lab} ,
- a transition relation $\underline{Edge} \subseteq \Sigma \times Lab \times \Sigma$,
- non-empty set of initial states $Init \subseteq \Sigma$.

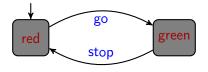
Semantics of LSTS

Operational semantics

$$\frac{(\sigma, a, \sigma') \in Edge}{\sigma \xrightarrow{a} \sigma'}$$

- system run (execution): $\sigma_0 \stackrel{a_0}{\to} \sigma_1 \stackrel{a_1}{\to} \sigma_2 \dots$ with $\sigma_0 \in Init$
- a state is called reachable iff there is a run leading to it

Pedestrian light



Parallel composition

Larger or more complex systems are often modeled compositionally.

- The global system is given by the parallel composition of the components.
- Component-local, non-synchronizing transitions, having labels belonging to one components's label set only, are executed in an interleaved manner.
- Synchronizing transitions of the components, agreeing on the label, are executed synchronously.

Parallel composition of LSTSs

Definition

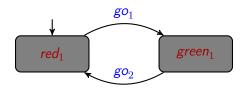
Let

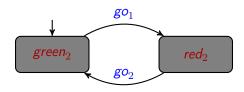
$$\mathcal{LSTS}_1 = (\Sigma_1, Lab_1, Edge_1, Init_1)$$
 and $\mathcal{LSTS}_2 = (\Sigma_2, Lab_2, Edge_2, Init_2)$

be two LSTSs. The parallel composition $\mathcal{LSTS}_1||\mathcal{LSTS}_2|$ is the LSTS $(\Sigma, Lab, Edge, Init)$ with

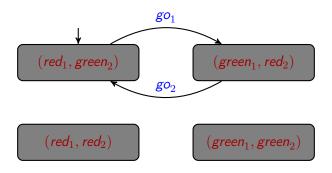
- $\Sigma = \Sigma_1 \times \Sigma_2$,
- $\blacksquare Lab = Lab_1 \cup Lab_2,$
- $((s_1, s_2), a, (s'_1, s'_2)) \in Edge \text{ iff}$
 - **1** $a \in Lab_1 \cap Lab_2$, $(s_1, a, s_1') \in Edge_1$, and $(s_2, a, s_2') \in Edge_2$, or
 - $a \in Lab_1 \setminus Lab_2$, $(s_1, a, s_1') \in Edge_1$, and $s_2 = s_2'$, or
- $Init = (Init_1 \times Init_2).$

Two traffic lights





Two traffic lights



Labeling

To be able to formalize properties of LSTSs, it is common to define

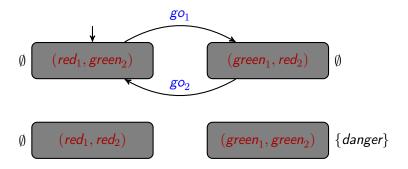
- a set of atomic propositions AP and
- **a** labeling function $L: \Sigma \to 2^{AP}$ assigning a set of atomic propositions to each state.

The set $L(\sigma)$ consists of all propositions that are defined to hold in σ .

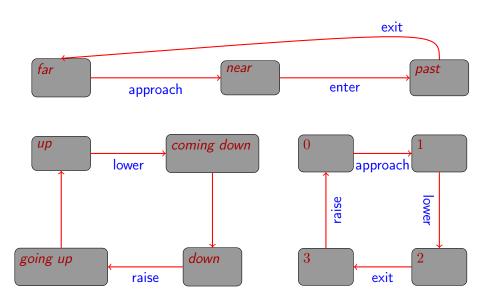
Two kinds of labels:

- propositional labels on states
- synchronization labels on edges

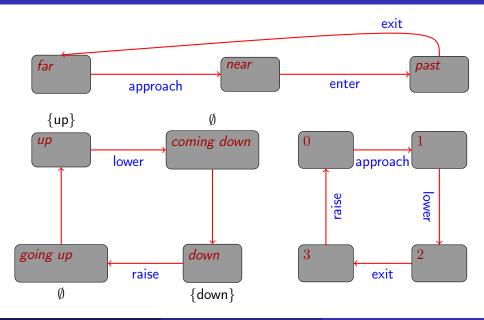
Two traffic lights



Railroad crossing: Train, controller and gate



Railroad crossing: Train, controller and gate



Contents

- 1 Hybrid systems
- 2 Labeled state transition systems
- 3 Labeled transition systems
- 4 Hybrid automata

Labeled transition system

Definition

$$\mathcal{LTS} = (Loc, Var, Lab, Edge, Init)$$

- finite set of locations *Loc*,
- finite set of (typed) variables *Var*,
- finite set of synchronization labels <u>Lab</u>
- finite set of edges $\underline{Edge} \subseteq Loc \times Lab \times 2^{V^2} \times Loc \ (l, \tau, Id, l)$ for each location $l \in Loc$),
- initial states $Init \subseteq \Sigma$.

where

- V is the set of valuations $\nu: Var \to Domain$
- lacksquare Σ is the set of state $\sigma = (l, \nu) \in Loc \times V$

Labeled transition system with stuttering

Definition

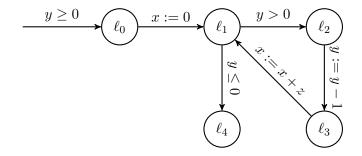
$$\mathcal{LTS} = (Loc, Var, Lab, Edge, Init)$$

- finite set of locations Loc,
- finite set of (typed) variables *Var*,
- finite set of synchronization labels Lab special stutter label $\tau \in Lab$
- finite set of edges $\underline{Edge} \subseteq Loc \times Lab \times 2^{V^2} \times Loc$ special stutter transition (l, τ, Id, l) for each location $l \in Loc$
- initial states $Init \subseteq \Sigma$.

Modeling a simple while-program

```
\begin{array}{c} \text{method mult(int y, int z)} \{\\ & \text{int x;} \\ \ell_0 & \text{x := 0;} \\ \ell_1 & \\ & \text{while( y > 0 )} \{\\ \ell_2 & \text{y := y-1;} \\ \ell_3 & \text{x := x+z;} \\ \\ \end{pmatrix} \\ \ell_4 & \end{array}
```

Modeling a simple while-program



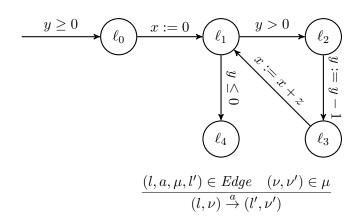
Semantics of LTS

Operational semantics

$$\frac{(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu}{(l, \nu) \stackrel{a}{\rightarrow} (l', \nu')}$$

- system run (execution): $\sigma_0 \stackrel{a_0}{\to} \sigma_1 \stackrel{a_1}{\to} \sigma_2 \dots$ with $\sigma_0 \in Init$
- a state is called reachable iff there is a run leading to it

Semantics of the simple while-program



Parallel composition of LTSs

Definition

Let

$$\mathcal{LTS}_1 = (Loc_1, Var, Lab_1, Edge_1, Init_1)$$
 and $\mathcal{LTS}_2 = (Loc_2, Var, Lab_2, Edge_2, Init_2)$

be two LTSs. The parallel composition or product $\mathcal{LTS}_1||\mathcal{LTS}_2$ is

$$\mathcal{LTS} = (Loc, Var, Lab, Edge, Init)$$

with

- $\bullet Loc = Loc_1 \times Loc_2,$
- $\blacksquare Lab = Lab_1 \cup Lab_2,$
- $Init = \{((l_1, l_2), \nu) \mid (l_1, \nu) \in Init_1 \land (l_2, \nu) \in Init_2\},$

Parallel composition of LTSs

Definition ((Cont.))

and

- $((l_1, l_2), a, \mu, (l'_1, l'_2)) \in Edge \text{ iff}$
 - there exist $(l_1, a_1, \mu_1, l_1') \in Edge_1$ and $(l_2, a_2, \mu_2, l_2') \in Edge_2$ such that
 - either $a_1=a_2=a$ or $a_1=a\in Lab_1\backslash Lab_2$ and $a_2=\tau$, or $a_1=\tau$ and $a_2=a\in Lab_2\backslash Lab_1$, and
 - $\blacksquare \mu = \mu_1 \cap \mu_2.$

Contents

- 1 Hybrid systems
- 2 Labeled state transition systems
- 3 Labeled transition systems
- 4 Hybrid automata

Hybrid automata

Hybrid automata

Definition

A hybrid automaton is a tuple $\mathcal{H} = (Loc, Var, Lab, Edge, Act, Inv, Init)$ with

- a finite set of locations Loc,
- a finite set of real-valued variables Var,
- **a** a finite set of synchronization labels Lab, $\tau \in Lab$ (stutter label)
- a finite set of edges $\underline{Edge} \subseteq Loc \times Lab \times 2^{V^2} \times Loc$ (including stutter transitions $(l, \tau, \mathrm{Id}, l)$ for each location $l \in Loc$),
- Act is a function assigning a set of activities $f: \mathbb{R}^+ \to V$ to each location; the activity sets are time-invariant, i.e., $f \in Act(l)$ implies $(f+t) \in Act(l)$, where (f+t)(t') = f(t+t') f.a. $t' \in \mathbb{R}^+$,
- **a** a function Inv assigning an invariant $Inv(l) \subseteq V$ to each location $l \in Loc$,
- initial states $Init \subseteq \Sigma$.

with

- \blacksquare valuations $\nu: Var \to \mathbb{R}, V$ is the set of valuations
- state $(l, \nu) \in Loc \times V$, Σ is the set of states
- transitions: discrete and time

Semantics of hybrid automata

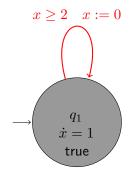
$$\frac{(l,a,\mu,l') \in Edge \quad (\nu,\nu') \in \mu \quad \nu' \in Inv(l')}{(l,\nu) \stackrel{a}{\rightarrow} (l',\nu')} \text{ Rule }_{\text{Discrete}}$$

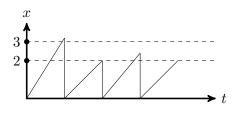
$$f \in Act(l) \quad f(0) = \nu \quad f(t) = \nu'$$

$$\frac{t \geq 0 \quad \forall 0 \leq t' \leq t. f(t') \in Inv(l)}{(l,\nu) \stackrel{t}{\rightarrow} (l,\nu')} \text{ Rule }_{\text{Time}}$$

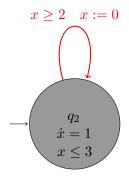
- lacktriangle execution step: $\rightarrow = \stackrel{a}{\rightarrow} \cup \stackrel{t}{\rightarrow}$
- run: $\sigma_0 \to \sigma_1 \to \sigma_2 \dots$ with $\sigma_0 = (l_0, \nu_0) \in Init$ and $\nu_0 \in Inv(l_0)$
- reachability of a state: exists run leading to the state
- activities are represented in form of differential equations

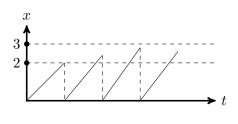
Example: Timed automata



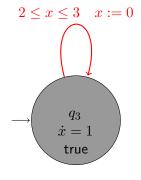


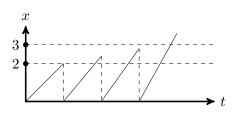
Example: Timed automata





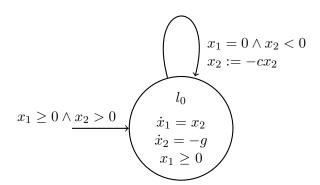
Example: Timed automata





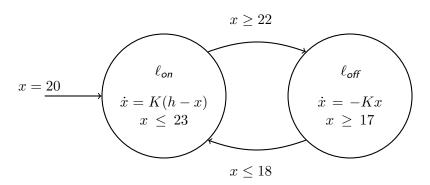
Example revisited: Bouncing ball

- vertical position of the ball x_1
- velocity x₂
- continuous changes of position between bounces
- discrete changes at bounce time



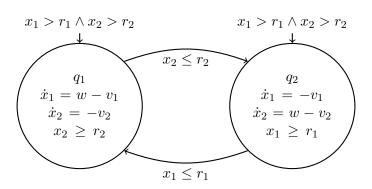
Example revisited: Thermostat

- $17^{\circ} \le x \le 18^{\circ} \leadsto$ "heater on"
- $22^{\circ} \le x \le 23^{\circ} \leadsto$ "heater off"



Example revisited: Water tank system

- lacktriangle two constantly leaking tanks v_1 and v_2
- hose w refills exactly one tank at one point in time
- w can switch between tanks instantaneously



Parallel composition

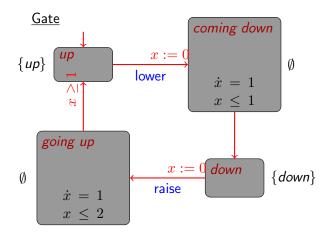
Definition

```
Let \mathcal{H}_1 = (Loc_1, Var, Lab_1, Edge_1, Act_1, Inv_1, Init_1) and \mathcal{H}_2 = (Loc_2, Var, Lab_2, Edge_2, Act_2, Inv_2, Init_2) be two hybrid automata. The product \mathcal{H}_1 || \mathcal{H}_2 = (Loc_1 \times Loc_2, Var, Lab_1 \cup Lab_2, Edge, Act, Inv, Init)
```

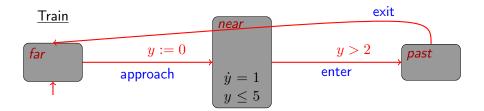
 $\mathcal{H}_1||\mathcal{H}_2=(Loc_1\times Loc_2, Var, Lab_1\cup Lab_2, Edge, Act, Inv, Init)$ is the hybrid automaton with

- $Act(l_1, l_2) = Act_1(l_1) \cap Act_2(l_2)$ for all $(l_1, l_2) \in Loc$,
- $Inv(l_1, l_2) = Inv_1(l_1) \cap Inv_2(l_2)$ for all $(l_1, l_2) \in Loc$,
- $Init = \{((l_1, l_2), \nu) | (l_1, \nu) \in Init_1, \ (l_2, \nu) \in Init_2\}$, and
- $((l_1, l_2), a, \mu, (l'_1, l'_2)) \in \underline{Edge}$ iff
 - $lacksquare (l_1, a_1, \mu_1, l_1') \in Edge_1 \text{ and } (l_2, a_2, \mu_2, l_2') \in Edge_2$, and
 - either $a_1=a_2=a$, or $a_1=a\notin Lab_2$ and $a_2=\tau$, or $a_1=\tau$ and $a_2=a\notin Lab_1$, and
 - $\blacksquare \mu = \mu_1 \cap \mu_2.$

Simplified railroad crossing with time component



Simplified railroad crossing with time component



Simplified railroad crossing with time component

