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The importance of the support function in representation, manip-
ulation, and analysis of convex bodies can indeed be compared with
that of the Fourier transform in signal processing. The support func-
tion, in intuitive terms, is the signed distance of a supporting plane
of a convex body from the origin point. In this paper we show that,
just as simple multiplication in the Fourier transform domain turns
out to be the convolution of two signals, similarly simple algebraic
operations on support functions result in a variety of geometric op-
erations on the corresponding geometric objects. In fact, since the
support function is a real-valued function, these simple algebraic
operations are nothing but arithmetic operations such as addition,
subtraction, reciprocal, and max—min, which give rise to geometric
operations such as Minkowski addition (dilation), Minkowski de-
composition (erosion), polar duality, and union-intersection. Fur-
thermore, it has been shown in this paper that a number of represen-
tation schemes (such as the Legendre transformation, the extended
Gaussian image, slope diagram representation, the normal trans-
form, and slope transforms), which appear to be very disparate at
first sight, belong to the same class of the support function represen-
tation. Finally, we indicate some algebraic manipulations of support
functions that lead to new and unsuspected geometric operations.
Support function like representations for nonconvex objects are also
indicated.  © 1998 Academic Press

Key Words: support function; convexity; shape representation
and analysis; polar body; mathematical morphology; Legendre
transformation; Fourier transform.

1. INTRODUCTION

In classical mathematics the most widely used representatic
scheme for convex bodies is thepport function representation
[3, 13, 29]. It was introduced by Minkowski in 1903, and has
been extensively studied by mathematicians thereafter.

The representation scheme goes as follows.AetRY be
a convex body (i.e., nonempty compact convex set) in the re:
Euclideard-dimensional spac®®. Thesupport function HA,

v) of Aforallv e RY (providedv # 0; i.e.,vis an arbitrary vector
different from the origiro) is given by

H(A,Vv) =sud(a,v) |ae A}, Q)

where “sup” stands for supremum or least upper bound, an
(a, v) denotes the inner/scalar product of two vectmsndv
(the inner product is also denoted by other notations sualas
or in matrix form asa’v, etc.).

SinceH (A, Av) =AH(A, v) for any real numbek > 0, the
support functiorH (A, v) is completely determined by its value
on the unit spherdv| =1, where|v| denotes the Euclidean
norm of the vectow (i.e., |[v|| = ((v, v))¥?). Thus, if u de-
notes a unit vector (i.e e S9-1, whereS®—1 is the unit sphere
in RY with center at the origin), it is most convenient to use
the functionH (A, u) as the support function oA. H(A, u)
is a complete representatioof the convex bodyA, since the
values ofH (A, u) for all ue S9! completely specifyA such
that

A={xeRY|(x,u) < H(A u)forallu e %1}, (2)

The significant role thateonvex bodyplays inshape descrip- which, in words, meanA is the intersection of all the halfspaces
tion andanalysis(in fields such as computer vision, graphics(x, u) < H(A, u).

and image processing) does not require any elaboration. NoAlthough a large part of the theory of convex bodies in math:-
only does the domain of convex bodies provide a suitable spasaatics usesl (A, u) as the standard representation of a conve»
for theorizations and experiments, but one also notices that elrly A, in the fields of computer vision, graphics, or image
in dealing with a complex geometric object, the most frequenthrocessing the use of the support function representation is st
adopted technique is either to approximate it by a convex objegtite limited. One primary reason is that (i) the functiegA, u)

or to decompose it into a union of convex constituents. Obus, in general, a continuous function of whose closed-form
ously the representations and manipulations of convex bodggecification may not be readily available. It is, therefore, be
remain foremost issues in computer vision, graphics, and ottieved that such a representation is not computationally conve
related fields. nient in most of the situations. (ii) In addition, it appears that the
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380 GHOSH AND KUMAR

H (A, u)-representation is less intuitive than the boundary repre- 2. SUPPORT FUNCTION REPRESENTATION:
sentation or halfspace representation of convex bodies. (i) We SOME PRELIMINARIES
must also mention that a number of representation schemes
that are currently in vogue in the vision- and graphics-relat@dl. A Support Function Is Signed Distance
fields are nothing but slight variants of the support function rep- ¢ H(A, u) < oo (this condition ensures thak is bounded)
resentation, though they cannot be immediately recognizedas, the point set
such.

In this paper, after presenting the preliminaries on support L(A,u) = {x € RY [ (x, u) = H(A, u)} 3)
function representation, we first attempt to show that the repre-

sgnta_tlonz |sWnoth as Eonlntt]wtlvl: as 'tf seems at first SlgEtobviouslythesupporting hyperplanef A with outward/outer
(Section 2). We then show that thepport function representa- normalu. (Notice that the supporting hyperplane also specifie

tion of convex bodies can be very effectively used in ComDUtirQhalfspace defined bix, u) < H(A, u).) In R2, for example

variety of geometric operations within a single framework. Thg supporting hyperplane becomes a supporting liné efith

idea Of a single framework i:.; o establish _that such geo.metﬂ ter normadl (Fig. 1). Itis easy to see that the support functior
operations are nothing but simple algebraic transformations A, u) is precisely the “signed distance” from the origin
the support functions of the operand objects (Section 3). -;%th’e supporting hyperplane(A, u). This distance is to be

support fun_ctlon, it is shown, can be V|eweq hot as a sin Bnsidered positive ifA and the origin lie on the same side
representation, but one ofcéassof representation schemes. f the supporting hyperplane, negativedifand the origin are

number of other representation schemes for convex curves ad - ated by the supporting hyperplane, and zero if the oric
bodies, which may appear quite dissimilar, can be establis in the supporting hyperplane ’ b
re

as schemes that belong to the same class (Section 4). One mo
feature of support function representation, though not reportedNote. It is, therefore, convenient for all practical purpose:
adequately in the paper, is also mentioned. We notice that soidessume that the origin lies in the interior Af so that the
of the algebraic manipulations of support functions indicate ifiinction H(A, u) is positive for every.

teresting but, to the best of our knowledge, hitherto unknown To provide examples we consider three simple 2D conve
geometric operations (Section 5). It also appears that we digures—a unit circle having its center at the origin, a triangle
devise “support function-like” representations for geometric olend an ellipse, and show their correspondt@, u)’s in Fig. 2.
jects which are nonconvex. Notice that for the unit circle whose center isoaH (A, u)=1

) ) _forall u. In fact, for some simple convex bodies one may obtai
Remark. (1) It is beyond the scope of this paper to poingjosed-form representations of their support functions:
out, even briefly, the specific application areas where the sup-

port function class of representations have already been in usel- For a singleton point s¢&} in RY, H({a}, u) = (a, u).
Apart from the shape representation application, the other areag- For a ballB, having radiusx and centeo, H(B,, u) =
include the Hough transform in image processing [31], grasffsu, U) =a.

or probes in the realm of robotics [15, 31], convex hull, intersec- 3. For aline segmertay joining pointsaandb, H(Lap, u) =
tion, and such operations in computational geometry, interpf@ax(a, u), (b, u)).

tation of deforming shapes in high-level vision [23], morpho- i )

logical operations in mathematical morphology [30], offsetting-2: Ffom Support Function Representation to Boundary
in CAD, Steiner symmetral in medical CAT scanning [9], and Répresentation and Vice Versa

so on. The reader may get a glimpse of such applications fromsupport function to boundary pointsAssume that the sup-

the rest of the paper. (2) Various geometric computations B¥rt function H(A, u) of a convex bodyA is given for all
means of support functions become particularly remunerative

because of its rich theory already available in mathematics.
In this paper we make use of the classical results whenever

needed. H(Au)"
5 .V._- \\'\\

Note. For indicating a vector or a point we use bold letters e F(Au)
such asal, v, x, while capital letters such a&s, B, X areusedto 5{ _______ ' “\{\x .
indicate a set (of points) in a vector space. Though in most of \__M L4 /_/ \\\L(A,u)
the places we use Greek letters for real numbers (scalars), we, il .

for pragmatic reasons, are not consistent. For example, the coor-
dinate of a poink in R? is denoted by the conventional, (y)
notation, thouglx, y are real numbers. To avoid any confusion
mOSt of the notaFions are described wherever they are being Usgsl 1. The support functiom (A, u) is the signed distance from originto
In our presentation. the hyperpland (A, u).
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FIG.2. The support function representation of some typical convex figures; sifit&drunit vectom = (cost, siné), it is specified in the graph by the angle
(in radians) along th&-axis and the corresponding valueté{ A, u) along they-axis.
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u e S9-1. How do we determine the boundary pointsAf We ~ The support functiorH ({x}, u) of a singleton point sefx}
answer this question by following the approach given in [3]. is simply (x, u). If the coordinates of the poimt= (x, Xz, . . .,
The boundary points of where the outer normal is eithar Xj, ..., X¢) andu=(uz, Uz, ..., Uj, ..., Ug), then

or parallel tou is precisely the set of points

W = aH{x), u)

F(A,u) = L(A, u)N A. (4) ST

F(A, u) is termed theface of A having outer normali (see wheredH/du; denotes gartial derivativeof H with respect
Fig. 1). Obviously, the dimension & (A, u) isat mosd —1.  tOUj.

Now let ux be some fixed direction ané (A, ux) be the  Remark. The procedure given above to determine the boun
face of A having the outer normal. Our task is to deter- ary noints from the support function is for general convex bodie
mine F (A, uk). Since F(A, ux) is a subset of the supportingj, ad-dimensional space. But for 2- or 3-dimensional bodies, t+
hyperplanel (A, ux), for any pointx € F(A, ux) it must satisfy - hrocedure reduces to much simpler ones. For example, (1) if t

(because of Eq. (3)) outer normal directions of two adjacent edges of a convex pol
gon areu; andu,, then the intersection of the corresponding
(X, u) = H(A, ug). (8  supporting lines. (A, u;) and L(A, up) (whose equations can

) be obtained by using Eq. (2)) gives the vertexAodit which the
Moreover,F (A, uk) is a subset of the convex bodytoo. So a g edges meet. (2) Almost similar consideration follows for :
pointx of F(A, ux) must also satisfy, for all, all the following  convex polyhedron too, where the intersection of the supportir

inequalities (see Eq. (2)) planes corresponding to two adjacent facets (i.e., 2-dimensior
faces or planar faces of a polyhedron) determine their commg
(x,u) = H(A, u). (b)  edge line, and so on. (3) The procedure turns out to be part

ularly simple for convex bodies whose boundariessam@oth
Now if w is a unit vector in an arbitrary direction and=ux +  (For a formal definition of a smooth boundary, note that a su
Aw, wherex > 0, then using Egs. (a) and (b) we can write,  porting hyperpland.(A, u) is calledregular if it has only one
point in common withA; i.e., the corresponding fade(A, u)
H(A, U+ aw) — H(A, u")_ (c) Isasingle point. IfA has only regular supporting hyperplanes
A we say that the boundary & is smooth.) For such smooth-
boundary convex bodies, it is easy to derive the following prc
cedure which we state as a proposition.

X,w) =

Therefore, letting. — O,

(x,w) < Hy,(A, ug), (5) ProprosiTion2. If a convex body A has only regular support-
ing hyperplanes, then
where H;, (A, uk) is the directional derivativeof H (A, u) at
U =uy, in the direction of the unit vectar. (On the question - dH(A, u)
of the existence of the directional derivatives we refer the reader ' ou;
to [29], pp. 25 and 40.)
If we consider all thav's (i.e., unit vectors in all directions), holds for the coordinates of each of its boundary points
then the inequalities of Eq. (5) represent the intersection of theg,q boundary points to support function. (A, u) can be

corresponding halfspaces, and that intersection is precisely fjfained using Eq. (1). Clearly, instead of using every poir

faceF (A, uq). . = ae A itis sufficient to consider only the boundary pointsfof
Thus one arrives at the following proposition. there.

ProposiTion1. If H(A, u) is the support function of a con-

vex body A, then the face(A, uy) of A having the outer normal 2.3. Support Function Transforms a Line into a Point

uy has the support function HA, uy), i.e., In this section we shall confine ourselvesRA (i.e., to 2-
dimensional convex figures), though the approach is easily €
H/ (A, u) = H(F(A, uy), u). tendible to higher dimensions. In higher dimensions the conce

of “line” has to be replaced by “hyperplanes.”

According to Proposition 1, the support functionfofA, uy) Theprinciple of dualitybetween points and lines R?, which
can be determined if the support functidifA, u) of Aisknown. essentially consists of transforming a line into a point, has be
Notice thatF (A, uy) is itself a convex body of dimension atused very extensively from the classical projective geometry
mostd — 1. Therefore, by repeated application of the direction#the Hough transform in image processing. It is also known th:
derivative one eventually (after at mabsteps) reaches a facethe support function of a convex polygon provides one natur:
whose dimension is zero; i.e., the face is a singleton point sefransformation of this kind.
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FIG. 3. Transforming a line into a point: (a) the coordinates of the verticed afe (2 —5), (6, —1), (1, 5), (—4, 3), (-5, —3) in thexy-space; (b)A in the
fp-space (i.e., plot of alongx-axis andp alongy-axis) where a line becomes a point and a point becomes a sinusoidal curién (it)e st-space (i.e., plot of
alongx-axis andt alongy-axis) where again a line becomes a point but a point becomes a circle; (d) the transformation of the point (3, 2){gptte) into a
circle in thest-space.

fp-space. Consider a convex polygoA in the Cartesian 2-dimensional space a unit vectoe S is uniquely determined
coordinate system (Fig. 3a). Sincpaintis the primitive entity by the angled between the positive-axis andu (¢ varies from
in this system, it is generally referred to as hant coordinate 0 to 27 radians), i.e.u = (cosd, sind). Therefore, the equation
space However, since the coordinate of a pairit this system of L(A, u;) (see Fig. 3a) can be expressed as
is conventionally denoted by (y) in R?, we shall simply call
it the xy-space For each edge of there is only one support- X COSH; + ysing = pj. (6)
ing line, and, if the outer normal direction of an edgds u;
then the equation of the corresponding supportinglit®, u;) (Equation (6) is sometimes referred to as tltoeemal equation
would be (refer to Eq. (3)Jx, uj) = H(A, u;). SinceH (A, u;) of a straight line.)
is nothing but the distance from the origirto the edges (refer If we now consider a new coordinate system hawingnd
to Section 2.1), we may follow a more conventional notatiop values as its axes, the line(A, u;), which is completely
pi to denote this distance, i.e4(A, u;) = p;. Note that, in the specified byg; and p;, will be represented as a point in that
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space having the coordinaté ,(o;) (Fig. 3b). Let us refer to u3

this space as thep-space or, more generally, as theupport T H (A u3) * H(Bu3)
function spaceObviously, a point in thay-space will be trans-
formed into a sinusoidal curve in tlig-space. The reason is,
if (Xi, yi) is the Cartesian coordinate of some point, say of the
vertexv; of A, then its support functiotd ({v;}, u) is (v;, u). H (A, u4) * H (B,u4)
Using the conventional notatiorts ({vi}, u) = p, vi = (X, Vi),
andu = (cosh, sinh), we can write

ud u2

© = X C0SH + y; Sinf = A sin@ + ¢), )
H (A, u2) *H (Bu2)
whereA = (xi2 + yiz)% andg = tarm(x; /y;). Equation (7), which

is clearly a sinusoidal curve, is the representation of the poin
(Xi, ¥i) in the@p-space. To sum up, a convex polygarnin the
Xy-space transforms in thgp-space into a sequence of sinu- H (A, ul) * H (B,ul)
soidal curves representing its vertices and the intersection poil ul

between two consecutive sine curves representing the respective _ _
edges ofA (Fig. 3b). FIG. 4. An example where the resulting functiéh(A, v) x H(B, v) cannot

In th t th tati t%e a valid support function; the supporting line corresponding to the valu
n the same way we may argue out the representations OHaA, us) x H(B, u3) is a redundant line.

circle, ellipse, etc. in thép-spaces which have been depicted
earlier in Fig. 2.

st-space. A slight variation of thesp-space will be of use 2.4. Necessary and Suffipient Conditions for a Function
to us in the future. Essentially it isgolar transformatiorofthe 10 B @ Support Function

Op-space. Let The support functiorH (A, v) (see Eq. (1)) is a scalar func-
tion of the vectow and hence, in the present case, a mappin
s=pcosh, t=psind. (8) fromRYtoR. A natural question is which functions froRf' to
R could be characterized as support functions. This question
Assuming a system having the coordinate axasdt, respec- particularly important to us since in the next section we will be
tively, we can conceive of thet-spaceln thestspace the line concerned whether afunctith(A, v) x H(B, v) resulting from
given by Eq. (6) is being represented again as a point having éeme operatios on the given support functiond (A, v) and
ordinatess = p; cos6; andt; = p; sing; (Fig. 3c). On the other H(B, v) is a valid support function or not. Consider, for exam:
hand, a point is transformed into a circle. To see this, use Eq. (8%, the situation shown in Fig. 4, where no object could have
to write p = (s2 + t2) andd = tarr}(t/s), and substitute these the support function valued (A, us) x H(B, uz), H(A, up) x
values into Eq. (7) which, after simplification, reducesto ~ H(B, uz), H(A, uz) x H(B, uz), H(A, us) x H(B, uyg), since
the supporting line corresponding to the valtA, us) x

7 o\ 2 H (B, u3) is a redundant line.
(s B ﬁ)Z N (t B &)2 v XY, ) For the characterization of support function, we may state tt
2 2/ = 2 ' following result:

ProposiTion3. (&) Every real-valued function (v) defined

Equation (9) states that a poing (Vi) in thexy-space is trans- for all v e RY and satisfying the properties
formed in thest-space into a circle whose center isxaf @, Vi /2)

S PR o 1. Fo)=0
and the rad|u§ |§ equal g’zéxi +y7/2. Thls circle always.passes 2. F(v) = AF(v), fora >0
through_the origin (Q, 0) an&{, i), and mtersects_tfmams and 3. F(v+w) < F(v) + F(w)
the t-axis at the pointsx, 0) and (0 y;), respectively (shown
separately in Fig. 3d). Therefore, the vertices of a convex poly-a support function of a convex body.
gon in thexy-space transform into circular arcs in tiiespace, ~ (0) If F(v) is a support function then the convex body it re-
and the intersection point between two consecutive arcs reppgesents must be the intersection of all the halfspazes) <
sents the corresponding edgef(Fig. 3c). F(v).

Remark. The transformation of a circle in they-space hav-  Part(a) of the resultis a classical one whose proof can be fou
ing radiusa and centero is particularly interesting. In the in [3]. Part (b) follows easily from Eq. (2). We also refer the
stspace it transforms into the same circle; that means, it remareader to [15] for a review on the topic of consistency checkin
invariant of support functions.
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3.1. MAX and MIN OperationgJonvex hulland Intersection

MAX operation. The max operation is defined as
max{H (A, u), H(B, u)},

for everyu € S9-1, where maxg, 8) specifies the maximum of
the two real numbers andg.

It is not difficult to prove that the max operation results in
the convex hulbperation of the union oA andB. We need the
following proposition toward that end.

ProrosiTion.  If H (A, u) and H(B, u) are the support func-
tions of two convex bodies A and B, then the following inequalit

H(A,u) < H(B,u)forallu

FIG.5. The conditionF (v+w) < F(v)+ F(w) ensures that the support func- holds if and only if AC B.

tion does not define any supporting hyperplane which is redundant. . . .
The proof of the proposition follows immediately from Egs. (1)

(2). The reader may also refer to [3].

(Remark. Condition 3 in the proposition, i.eF (v 4 w) < We can now state and prove the main result concerning th

F(v) + F(w), appears to be most nonintuitive compared to tH82X operation.
other two conditions. However, its connection with the question proposition5.  (a) The functiormax{(H (A, u), H(B, u)} is
of redundant halfspace can be easily demonstrated. a support function.

Consider Fig. 5 where we show a part of the boundary of a(b)max{H (A, u), H(B, u)} = H(C, u), where C= conv(AU

convex bodyA (drawn by a solid curve line). Let; anduz be  B). (Hereconv(X) denotes the convex hull of the se} X.
two arbitrary unit vectors, and ld (A, u;) and H(A, uy) be

the corresponding support function values which are denoted’r00f (@) Refer to Proposition 3a. Conditions 1 and 2 obvi-
by the line segmentsa andob, respectively; the correspond-°Usly hold for maxH (A, u), H(B, u)}, since they hold for both

ing supporting lines are, respectiveym andbm in the figure _H(A, u)_gndH(B, L_J). Only the condition 3, i.e., the subadditiv-
(heremis the intersection point of the two supporting lines). LefY condition, requires to be proved.
V=uj + Uy, and letL be the supporting line oA having outer LetuswrlteF(u)_: max{H(A, u), H(B, u)}, and assume that
normalv. It is obvious that if such a liné moves beyond the uz, Uz are two arbitrary unit vectors.
Ici)rc])g?tm, i.e.,beyond.’, theline becomesaredundantsupportlngF(Ul) + F(u2) = maxtH(A. uy). H(B. up))
Now assume that the angle betwagnandus, is ¢. There- +max{H(A, uy), H(B, uy)}
fore, |v|| =2 cosg/2). That means, a supporting line having
outer normal will not be redundant if the corresponding sup- H(A ug) + H(A w)
port function valueH (A, v) <2 cos¢/2)-|oc| (the pointc is H(A, uy + uy), sinceH (A, u) is a support
the intersection point oE’ with the line in the direction o¥;
i.e.,mcis perpendicular toc). By a simple geometric argument
from the figure we can show thgfa) + |ob| =2 cosg/2) - |0C). .
That means a supporting line will not be redundant if the corimilarly, F(u1) + F(uz) = H(B, up + Up).
responding support functioH (A, v) < [0a] + |oby; i.e., H(A, Furthermore, S'nCE(”?:UZ) = rr|1ax{H(A, Uz + Ua), H(B’I
U1 4 Uz) < H(A, up) + H(A, u,).) ;101 ;(UBZ?}I;lFquulz;T up) is either equal tdH (A, u + uy) or equa
ThereforeF (u;) + F(u2) > F(uy + up). That means, ma
3. GEOMETRIC OPERATIONS BY MEANS (A, u), H(B, u)} is a support function of some convex body,
OF SUPPORT FUNCTIONS say,C.
(b) LetmaxXH (A, u), H(B, u)} = H(C, u), whereC isa con-
We assume that the support functidhéA, u) andH (B, u) of  vexbody. Sincéd (C, u) > H(A, u)andalsdH (C, u) > H(B, u)
two convex bodie#\ and B are given. We now show that somefor all u, according to Proposition € > AU B.
simple algebraic operations on the support functions result inLet us assume that the convex hull cofiv{ B) is notC, but
fairly complicated geometric operations involving the bodées conv(AU B) = C’, andC’ is strictly smaller thar, i.e.,C’' c C.
andB. Therefore, according to Proposition 4(C’, u) < H(C, u) for

v

\

function.
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all u. For someu, sayus, let H(C', u) be strictly smaller than for everyu € S9-1, where+ denotes the arithmetic addition of
H(C, u), i.e.,H(C’, u;) < maxH (A, up), H(B, up)}. Butthat the two real numbers.

is not possible. That mearns,=C’. ] The geometric operation performed by the addition operatiol
is of importance for various reasons. We first state the geometr

We show two convex polygon& andB (in the xy-space) in tion (in the f f it d then briefl i
Fig. 6a and their support function representations (AeandB Ppizgéﬁgggcee orm of a proposition) and then briefly mentior

in the 6p-space) in Fig. 6b. The max operation of the suppo
functions is to take, for each fixetd the maximum of the two
p’s. Itis shown in Fig. 6¢. The resulting polygon which is equ
to conv(A U B) is presented in Fig. 6d.

ProrosiTion6.  (a) The function HA, u) + H(B, u)isasup-
8Fgort function.
(b) H(A, u) + H(B, u)= H(A® B, u), whered denoteghe
Remark. In Fig. 6e we show the max operation done in thilinkowski additionof two point sets.
stspace. In that space the max operation turns out to be nothln%” A and B are two arbitrary sets of points in the real

but the set union operation. In this connection it may be of SOMB® clidean d-dimensional spa@¥, their Minkowski addition
use to view the representations of an object in various SPARS, B is defined as ’ '

as variougieometric transformationg-or example, we may say

that a geometric transformatiay) transformsAto H(A, u), or,

transformationes; transformsA to its st-space form. Then one AdB={a+blacAbeB}
can write

where+ denotes the vector addition of two points; A and B are
conv(A U B) = max(rs, (A), 75, (B)) = tsi(A) U 7st(B) . called the summands of the sungAB.
— S It can also be expressed in terms of the set union and ge
metric translation operations. If Adenotes the translate of a

_ _ . i set A by a vectox, that is, A, = A® {x}, then it is easy to see
MIN operation. The min operation is similarly defined as ¢

Xy-space 0,-space st-space

min{H (A, u), H(B, u)}, A@B:B@A=UAb=UBa'

beB acA
for everyu e S4-1, where ming, 8) denotes the minimum of
the two real numbers andg. ~ Note. The proposition simply states that Minkowski addi-
The min operation, itis not difficult to show, performs the intion reduces to arithmetic addition of two real numbers in the
tersection operatioAN B. Butunlike the previous case, nild  sypport function space. It is a well-known result and a simple
(A, u), H(B, u)} is not a support function. As a result some Obroof of the proposition can be found in [17].
the supporting hyperplanes defined by thifA, u), H(B. u)}  The reader may be aware that Minkowski addit®rplays
may be redundant. But the common intersection of all the half$,ndamental role ishape description and analysishelin-
paces (some of which may be redundant corresponding to thedgr combination of convex bodibas been extensively studied
dundant hyperplanes) defined by the function {higA, u), H  ynder the classical convexity theory. The study becomes pa
(B, u)} will resultin AN B. ticularly interesting because if, A,, .. ., An are positive real
To give an example we consider the same two polygons pigimpers andy;, A, ..., A, are convex bodies then their linear
sented in Fig. 6a, and show the function f#{A, u), H(B, U)}  combinatiomy Ay @ 1,4, @ --- @ A, A, also turns out to be a
in Fig. 7a. The corresponding supporting liregs are depicted convex body. Its application in recent times includes the disci
in Fig. 7b. Note that the supporting linesande, are redundant. pjine of mathematical morphologwhere Minkowski addition
However, the common intersection of the halfspaces defined @yieddilation in that discipline) is used as the kernel operator
all the supporting lines i& N B which is shown in Fig. 7c.  for image processing and analysis [30]. In robotics, Minkowski

Remark. In the latter part of this paper we shall talk abouddition operation is a primary tool to constracnfiguration
polar dualityof a convex body and describe how such a duali§Pacefor motion planning [20]. The other important application
operation can be used to remove redundant supporting linesdomains are blending and offsetting in CAGD [22, 27], geo-

metric modeling [10, 25], textured object modeling, computel
3.2. Addition and Subtraction Operatiotiglinkowski animation [16], type font design [19, 28], etc.

Addition/ Dilation and Minkowski Decomposition/Erosion) !N Fig. 8 we present an example. The two summand poly

gonsA andB are shown in Fig. 8a and their support functions

Addition operation. The additionof two support functions H(A, u), H(B, u) in Fig. 8b. The sumH (A, u)+ H(B, u) is
is defined as shown in Fig. 8c, whereas the convex polygon corresponding t

H(A, u)+ H(B, u) is shown in Fig. 8d. This polygon is equal
H(A, u) + H(B, u), to Ag B.
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y L
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3L 3

X —= 4

FIG.7. Demonstration of the min operation (for input polygons and their support functions, refer to Figs. 6a and 6b) KegAnir), H(B, u)} drawn by solid
lines, dashed lines indicaté(A, u), H(B, u) separately (it is thép-space); (b) supporting lines corresponding to the functior{ Bh{\, u), H (B, u)} as shown

in (a); supporting lineg; ande, are redundant; (c) common intersection of the halfspaces defined by the supporting lines gives a convex polygon which is
to AN B.

Subtraction operation. Thesubtractionoperation (whichis H(B, u) + H(C, u), and therebyH (A, u) — H(B, u) is a sup-
nothing but thenverseof addition operation) is defined as port function corresponding to the other summé&nd
e Case ll. LetA#B@C, i.e., B is not a summand oA.
H(A, u) — H(B, u), In this caseH (A, u) — H(B, u) cannot be a support function
(because ifitis then it implies that there exists a convex ody
for everyu € $%-1, where— denotes the arithmetic subtractiovhose support function isi (A, u) — H(B, u) andB & C = A,
of one rea| number from another_ Wh|Ch iS Contrary to our |n|t|al aSSUmption).
The functionH (A, u) — H(B, u), in general, is not a support

function. This can be understood by examining the following N Fi9- 9 we present a case whetgA, u) — H(B, u)is nota
tWO cases. Support function. We take the input polygons which are the san

two polygons considered in the example of Fig. 8a. We sho
e Case |. LetA andB be two given convex bodies such thathe functionH (A, u) — H(B, u) in Fig. 9a. The corresponding
one of the Minkowski summands & is the convex bodyB, supporting linesg’s are depicted in Fig. 9b. Notice that some
i.e., A=B@®C. Then according to Proposition (A, u)= of the supporting lines are redundant.
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FIG. 8. Demonstration of thadditionoperation: (a) input convex polygorsandB (in the xy-space); (b) support function representationé\@ndB (the6p-
space); (cH (A, u)+ H(B, u) drawn by solid lines (thép-space); (d) the resulting convex polygémp B (in thexy-space) whose support function representation
is H(A, u) + H(B, u) as shown in (c).

It has been shown (for example, referto[11, 30]) thatthe cor®:3. Reciprocal OperatiorRolar Duality
mon intersection of all the halfspaces (some of which may be

. . Hnlike the previously mentioned operations which are all bi-
redundant corresponding to the redundant hyperplanes) deflﬂgr operations. theeciprocal operation is a Unary operation
by H(A, u) — H(B, u) will result into Ae B, wheresS denotes Yy op ' P P Y op '

theMinkowski decompositiomperation (also known ayosion :i—r:]s drzgprocal operation on a support functidA, u) is de-
in the literature of mathematical morphology). (Minkowski de-

compositionA e B is the inverse of Minkowski addition in a 1
“restricted” sense. It is defined as H(A, u)
d—1
AGB = ﬂ Ap. for everyu e S

The significance of the geometric transformation performec
by means of the reciprocal operation can be properly understoc
if we represent AH (A, u) in thestspace.

The seB = {—b | b € B} is called thesymmetrical setf B with At this point, to keep our explanation intuitively simple, we
respect to the origin point.) shall concentrate only on convex polygons in the plane (i.e

—beB
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FIG.9. Demonstration of theubtractionoperation (for input polygons and their support functions, refer to Figs. 8a and 8b)(fa)u) — H(B, u) drawn by
solid lines, dashed lines indicalt&( A, u), H(B, u) (it is thedp-space); (b) supporting lines corresponding to the fundidg¢A, u) — H(B, u) as shown in (a) some
supporting lines are redundant; (¢) common intersection of the halfspaces defined by the supporting lines gives a convex polygon whichAigeBual to

in R2), though the basic theory is equally applicable to higher Exactly in the same way we can show that a straight lin
dimensional convex bodies. aXx+by+c =0 in thexy-space, by the reciprocal transfor-
Recalling that irR? we use the notatioprather tharH (A, u), mation, becomes a point in tis¢space whose coordinate will
the representation of the reciprocgplin thest-space becomes be (—a; /¢, —b; /ci).
(refer to Eq. (8)) In Fig. 10 we give two examples to demonstrate the geometr
interpretation of the reciprocal operation.
cosd sinf
S= T’ t= 7~ (10) (Note. Inthe second example (i.e., quadrilateral), the poly
gonAis completely outside the unit circle centered at the origil
Eliminating o andéd from Eqg. (10) using Eq. (7), we obtain  (Fig. 10a); in that case the transformed polygon is completely i
side the unit circle (Fig. 10c). In the first example, the polygon
Xis+yt—1=0. (11) ispartly inside and partly outside the unit circle (Fig. 10a) and
is the transformed polygon (Fig. 10c). The distinction betwee
Equation (11) states that a point (y;) in the xy-space, by these two cases will be clearer from our subsequent discussic
means of reciprocal operation, becomes a straight line in then summary, the reciprocal operation of the support function
stspace whose equation will bex + yiy —1=0. adual transformationr—a transformation that transforms a point
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FIG. 10. Two examples of reciprocal operation ¢h(A, u) and corresponding geometric transformation: (a) Input poly8dmy-space); unit circle is also
shown; (b) Support functiokl (A, u) (dotted) and its reciprocal/H (A, u) (6p-space); (c) Polygon corresponding toH(A, u) in the st-space; input polygoi
and unit circle (dotted) are drawn in the same space to show the relationship among them.
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p =(xi,yi)

FIG.11. Polar duality: Polar lind_ of a pointp.

into a line and a line into a point. Since there exist many suchfFrom the observation th#bp| [op| = 1, the polar duality in

dual transformations, it is required to characterize the type @fe generaR? space is often defined as follows. Latbe a

duality obtained by the reciprocal transformation. We show thaibset oR¢; the polar dual seA* of A s

it is nothing but the well-knowmpolar duality which is briefly

described below. A*={xeRY|(ax) <1lforallac A}. (12)
Letp=(x, yi) be a given point an& be the unit circle about

the origin (i.e., having equatior? + y?=1). With respect to ~ We now state some properties of polar duality which are ¢

the positions op and B, there arise two cases. use to us. (For the proofs of the results refer to [13, 26].)

(i) If p lies outsideB (Fig. 11a), draw tangents ® from p. ProposiTIon7.  If A, B are any subsets & then:
Let the tangents touch in pointsb; andb,. The lineL through
b; andb; is called thepolar of the pointp. SinceL is perpen-
dicular to the lineop and the equation dB can be rewritten as
X-X+Yy-y—1=0,itis easy to show that the equation.oWill
bexx +yy —1=0.

(ii) If p lies insideB (Fig. 11b), draw a lind.’ throughp
perpendicular t@p. Let L’ intersec;tB at the pointsb, andby, (iv) If A and B are closed convex sets containing o the
anq letT, and T, be the tgngent Ime; tB through those two (AN B)* = conv(A* U B*).
pomts bl_and b?, respectively. The lind dr_awn thgu_gh the (v) If AC B then A D B* and A* C B**.
intersection point off; and T, and perpendicular top is the
polar line ofp in this case. The equation &f, in this case too, = The importance of the polar bod¥* in analyzing the prop-
will be xx +yy —1=0. erty of a given convex bodg has been adequately explored by
mathematicians. The results such as (i) the unitBadl its own
polar dual, (i) the ellipsoids (ellipse iR?) have ellipsoids as
polar duals, and (iii) volumeX) volume(A*) is invariant of the
linear shape oA (refer to [2]) obviously arouse intrinsic math-
8@1atical interest in studying polar duality. Here we avoid an

eration is the polar dgall_ty. T_he polar _duallty, one may hote, NQlich discussion, but quickly indicate, by means of two example
only transforms a point into its polar line or vice versa, but als

suggests a set transformation in the following way. Adte a ts significance in geometric computing.

convex polygon which can be viewed as the intersection of thee Dual versions of geometric operatianhe way set com-
halfspaces defined by its boundary lines. By means of polar qalement operation connects set union and set intersection ope
ality the vertices ofA can be transformed into their polar linedion, in a similar way polar operation connects the max and mi
which, in turn, define a set of halfspaces. The intersection @berations as dual operations. Note the following results that v
these halfspaces results in another convex polygonAsayhe obtain from Proposition 7 (all throughout we assume that tt
polygon A* is known as theoolar dual (polar body of A. The origin lies within the bodies):

concept of polar dual, the reader may be aware, is widely studied

in the theory of convex bodies. AN B = (conv(A* U B*))* (13)

(i) A**=clconv(A U {0}), where cl A denoteslosureof A
and{o} denotes the origin point.

(In particular, if Ais a closed convex set containing the origir
othen A*=A)

(i) A= =A*

(i) (AuB)*=A"nB*.

Note. Another way to look at the poirg and its polar is
to observe thak is perpendicular to the linep at the pointp’
such thatop| |op'| = 1.
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FIG. 12. Demonstration thaA N B = (conv(A* U B*))*: (a) input polygonsA, B and their polar bodieg*, B*; (b) C = conv(A* U B*) (drawn by solid line)
andD =C*; note thatD = AN B.

conv(AU B) = (A* N B¥)* (14) not a support function and thereby gives rise to redundant su
porting lines (as shown in Fig. 9b). Note that the distance of
These expressions essentially state that the intersection of f&gundant supporting line from the origin is always more than thi
convex bodies (min operation) is equivalent to the convex hull @ssential supporting line in that direction. As a result the reci
the union of their polar bodies (max operation), and vice vergarocal operation A(F(u)) will transform, in thest-space, the
In Fig. 12 we demonstrate this result. The input polygén® redundant supporting lines into points which are nearer to th
and their polar bodies*, B* are shown in Fig. 12a. By means oforigin than the points corresponding to the essential supportir
max operation we compute conV{U B*) and then compute its lines (shown a€ in Fig. 13). Obviously, the convex hull of those
polar body using the reciprocal operation (Fig. 12b); The polgeints (shown a®, which is equal to con)) will contain only
body D is equal toAN B. the furthermost points and eliminate the nearer points. Now th
e Removal of redundant supporting linéd/e have shown
before that mifiH (A, u), H(B, u)}, though eventually result-

ing into AN B, is not a support function, and therefore may give P , : . : . i :

rise to redundant supporting lines (as shown in Fig. 7, for ex-

ample). On the other hand Eq. (13) expresses &atB can 15 -

be obtained by means of a convex hull and polar dual operation E

without producing any redundant supporting lines in between. 1r e

This observation suggests that the redundant supporting lines

may be removed by means of reciprocal operation. 05 1 NN 7
Note. The conventional polar dual operation (defined by 0r C, ]

Eq. (12)) is apoint transformationi.e., every point of a given

setAis being transformed. In contrast, our way of accomplish- 05T |

ing polar dual by the reciprocal/{H (A, u)) is a boundary q L |

operation—only the points of the boundary of the sAtare i

being transformed. As long &sis a convex body an#l (A, u) 15 S |

is a valid support function, the two approaches do not make | 77 [ e

any difference. The difference can be seen if a given function ) : : . . . ; L

F(u) is not a support function. And it is precisely this differ- 2 15 1 05 0 05 1 15 2

ence that can be utilized to remove redundant supporting lines

from F(u). FIG. 13. Removal of redundant supporting lines by the reciprocal opera-

tion (for input polygons and the functiod (A, u) — H(B, u) refer to Fig. 9):
We present an example to demonstrate the method. Consﬁ(ﬁ)l;gonc (drawn by solid lines) is the representation of the reciprogal 1

the example of the subtraction operation where the functigg(a, u) — H(B, u)) in the stspace; polygorD is equal to con\g), and the
F(u)=H(A, u) — H(B, u) (drawn in Fig. 9a by solid lines) is polygonE = D*; note thatE becomes equal t& & B as shown in Fig. 9c.
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polar dual of the convex hull (i.e., the reciprocal operation d®5. Symmetric Addition OperatigBymmetrization)

the convex hull) will produce the convex figure corresponding
to the functionF (u), but without the redundant supporting Iine§_|

(shown asE = D* = Ao B in Fig. 13).

3.4. Translation and Scaling Operations
(Offsetting, Rotation, and Scaling)

The symmetric additionoperation on a support function
(A, u) is defined as

%(H(A, u) + H(A, —u)),

Simple geometric transformations such as translation or scgjr everyu e S9-1.
ing, in thedp-space, produce more complex transformations in Noting thatH (A, —u) = H(A, u), where the seA={—a |
the xy-space. IrR? such transformations are relatively easy tg ¢ A} (often A is called thesymmetrical seof A with respect

follow.

to the origin point), and recalling Proposition 6, we arrive at th

Writing p(A, 0) for the support function, its translation alongrollowing result.

the 6-axis by an amound is nothing but to sepnew= p(A,
6 — ¢) which, in turn, is equivalent tp(rot, (A), 8); by rot,(A)
we mean rotation ofA by an anglep about the origin. Tha
means, translation of the support function alongttaxis is the
rotation of the bodyA in thexy-space (Fig. 14).

ProposiTion8. The function%(H(A, u+H(A —u))is a

t support function and is equal to (@(A ® A), u).

The set%(A &) A) is called theSteiner symmetradf A with
respect to the origin point, and the process of generating the :

On the other hand translation of the support function alofjghm A is known asymmetrizatiorNote that the sej(A® A) is
the p-axis is not a simple geometric transformation in €& 4 centrally symmetriset whose center of symmetry is the origin.

space, becaugg A, 6) + A, wherea is some positive real num-
ber,isequalt@(A, 0) + p(By, 8), whereo(B;, 6) is the support
function of a ballB,, (i.e., circular disk inR?) having radius\
and center at the origin. ThygA, ) + > = p(A@® B, , 6). That
means, translation of the support function alongdfeis in the
positive direction is nothing but thaffsetof A by an amouni
(Fig. 14). (For the definition and utilities of the offset operatio
refer to [8]).

For example, we consider a convex polygén(shown in
Fig. 15b) whose support functiof (A, u) is presented in
Fig. 15a. The Steiner symmetral (also the symmetrica&};eﬁ‘
Alis givenin Fig. 15b and the corresponding functida(‘%(A@
A)) in Fig. 15a. (Note that ifR2, A can be obtained by rotating
Athroughr radians about the origin, and therely A, —u) as

TS(A, 7 +0)).

It obviously follows that scaling the support function by some Remark. For more details on symmetrization we refer the

positive scaling factor is nothing but scaling the bodlpy the
same factor, sinceo(A, 0) = p(AL A, 0).

6 I I T T
rot(A)

| _offset(A)
/7/ _____ ’ SC(A) \ /“%/,7

oF [ A
; ['\ ) \

2f b ] :

-4 . : I |

-4 2 0 5 " A

FIG. 14. Translation of support function oA alongf-axis produces rof)
which is a rotated version of, whereas translation along the positieaxis
produces offse#§)—offset of A; the polygonsq A) is a scaled version of,
obtained by scaling the support function.

reader to [1] and [32]. The importance of symmetrization in
shape analysis task can be easily gauged from the basic ic
behind symmetrization. The idea is to replace a given bady

by a more symmetric body’ in such a way that quite a few

properties ofA remain invariant ifA’. The study of those prop-

erties in A’ rather than in the original bodj becomes easier

since the former possesses more symmetry than the latter. |
us mention a couple of such invariant properties in the case
the Steiner symmetral:

1. The length of theerimeternof Aand%(A@ A) is the same.
(One can immediately see here the importance of symmetriz
tion in dealing withisoperimetric problem$

2. Thewidthof A and%(A@ A) in any given direction is the
same. (The width oA in the directioru is given byW(A, u) =
H(A,u)+ H(A, —u).)

3.6. Fourier Series Expansion of the Support Function
and Some Related Geometric Computations

In R? the support functiop(A, ) is a real-valued integrable
function on -7, 7]. We may, therefore, consider theurier
series expansioaf the support function. Our interest lies in the
fact that important geometric data like area A (perime-
ter Peri(d), and Steiner point(A) can be succinctly expressed
in terms of the coefficients of the Fourier series. Some of th
isoperimetric problems too can be easily formulated and solve
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FIG. 15. Symmetrization of convex body by means of support functlonA(aB C denote the support functiod (A, u), H(A, u), 2(H(A u) + H(A, —u)),
respectively; (b)A is the input convex polygorB denotes the symmetrical satof A, andC = 2(Ae]a B), i.e.,C is the Steiner symmetr%I(A @ A)

by means of the Fourier expansion. The Fourier series approaaotterms of support functions, as
one must also note, can be quickly generalized to higher dimen-

sions.
The Fourier series expansion of the support functiof, 6)
of a convex figureA in R? can be written as

p(A.0) =) (ancoSNd -+ by sinng), (15)
n=0
where
17 17
Q= — /p(A, 0)do, a, = — /,o(A, 0) cosnb do
27 b4

l m
bp=0 b,=— /p(A, 0) sinng do.
T

-7

We can now state some useful results:

Area(A) = maj — %n i(n2 —1)(a2+b2)  (16)
n=2

Peri(A) = 2rag an
Z(A) = (a1, by). (18)

For more details the reader may refer to [12].

du (A, B) = max|H(A, u) — H(B, u)| |u e 891}, (19)
At present, however, we do not delve further.

4. SOME OTHER REPRESENTATION SCHEMES
WHICH BELONG TO THE SAME CLASS OF THE
SUPPORT FUNCTION REPRESENTATION

The support function representation is one of a class of ref
resentation schemes that can be expressed in terms of a gene
formulation such as the following:

It is to represent a convex body in terms di@undary parameteas a
function of outer normal direction(or tangent directioh of the boundary
points of the body. (By boundary parameter one means any representative
geometric characteristic of the boundary of the body.)

The boundary parameter, in case of support function, is take
to be the signed distance from the origin to the supporting
line/hyperplane at a boundary point. But this is not the only
choice. Itis possible to design representation schemes choosi
some other boundary parameters, but always as a function
outer normal/tangent direction of the boundary. All such repre
sentation schemes will possess the same basic characteristic:
those of the support function representation. We may say th:
all of them belong to the same class of the support functiol
representation.

Infact, in classical mathematics as well as in computer vision
graphics, and related fields one comes across a humber of re

Remark. Thereisahostof other geometric operations whiatesentation schemes which apparently look very disparate, b
can be easily conceptualized and computed within the sup€lose examination shows that they belong to the same cla
port function framework. For example, tihtausdorff distance in the above sense. We mention a few of them as demonstrati
dn (A, B) between two convex bodigsandB can be expressed, examples.
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and
f=—B+xf=af,—p.
That means, the point coordinate of the boundary curvg,is (

afB, — B) if the tangent line coordinate is(8).

Remark. The duality between the boundary point coordi-
nates and the tangent line coordinates becomes obvious wt
we express the above formulas in the following form:

f+8=xax
o = fy
X = Bo

FIG.16. The tangent line at a poink( f) of the boundary curve subtends an

angleg with the x-axis, so the value af = tang; the intercept of the tangent The Legendre transformation s a|WayS feasibleifthe equatic
line with they-axis is— 8.

o= fy
4.1. The Legendre Transformation

There are two ways of viewing a classical curve or surface.can be solved fox, i.e., whenf (x) is a differentiable function

either as a locus of points or as an envelope of tangents. THY! it iS possible to establish a one-to-one correspondence |

notion of theLegendre transformatiostems from the latter tWEeN the points and the tangent lines of the boundary cur

view. The fundamental idea of the Legendre transformation f" €xample, the Legendre transformation is not well defined

to represent the boundary points of a figure by its “tangent liifg® boundary curve contains soiiiee segmentssimilarly, the

coordinates” instead of by its “point coordinates” [5]. Reco”ed.tegendre transformation is also not well defined if the boundal
that the line coordinate of a straight lige- ax + = Ois (@, ) CUrve has someorner pointswhere it is not differentiable. For
in the straight line space, i.e., in thg-space. (In some literature MOre details on the Legendre transformation we refer the reac

the line coordinate is taken to be equaldo £ 3).) to[5, 26].
We consider a simple exampleR? as shown in Fig. 16. Let
us assume that a part of the boundary curve of a figuisgiven
by the equatiory = f (x). That part of the boundary, therefore,
can be thought of as a set of points having point coordinatesThe extended circular imagés the 2-dimensional counter-
(x, f(x)). (To simplify the notation we write point coordinate ofpart of theextended Gaussian imageéhich is a representation
a point simply asX, f) instead of k, f(x)).) The straight line scheme for convex polyhedra in the 3-dimensional space [1
which is tangent to the boundary curve at a point{() has the (For orientedC? surfaces (i.e., twice continuously differentiable

4.2. The Extended Circular Image (Extended Gaussian Imac
Curvature Functions of Convex Bodies)

coefficient values, surfaces) one may refer to [24], and for the genfadpace refer
to [3].)
_df . In the extended circular image, the boundary curve is repr
a=—="F, and B =xf,—f. i s ” .
dx sented in terms of “radius of curvaturg”as a function of outer

normal directiorp.

Therefore, the line coordinate of the tangentlinefis & fx — f). To demonstrate the idea we assume that the boundary curv
In the Legendre transformation the boundary/ofs repre- described parametrically in terms of the arc-lengtmeasured
sented by the set of tangent line coordinatgs X fx — f), in-  along the curve from some arbitrary starting point) by the equi
stead of the set of point coordinates @) The SImI'arIty of this tionsx = X(S), y= y(s) The functions((s) andy(s) are related

representation with the support function representation is quitey by the equations
clear now. The “boundary parameter” in this case isytkaxis

interceptx fy — f as a function of the tangent directidq. dx ] dy
For the sake of completeness we mention how to determine gs = ~Sind, o = cosv. [a]
the point coordinates from the tangent line coordinates. Since
a= fyandg =xfy — f, The radius of curvature can now be obtained by the formula,
ds ¢ dx df dx ds
do P =X NG Tax da S =6
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(In the literature one often finds that the radius of curvature fi®n of the boundary curve can be shown to be
defined as the reciprocal of the “curvature’at each point of

the curve, i.e., ag(s) = f5.) o(s)
It is not difficult to show that x(s) = x(0) — / sing - y(¢)d¢, and
0(0)
(9 = : [ o
Y dx d?y d2x dy
%W Y9 =y + [ coso- ¥(¢)do.
6(0)

The extended circular imagg®) (i.e.,y as afunction o) can
be easily obtained now using Egs. [b] and [a]. where &(0), y(0)) is the arbitrary starting point whese= 0, and

o 0(0) is the value ob ats=0, etc. For further details the reader
Remark. In case the boundary curve is given as a gener, ay refer to [4, 14].

parametric equatior = x(t), y = y(t), then the extended circu-

lar imagey (9) can be obtained using the following results i3, The Slope Diagram Representation

conjunction with Eqg. [b]:
: a. [P] Theslope diagranrepresentation is particularly designed to

represent polygons and polyhedra whose boundaries conte

((%)2 + (ﬂ—f)zf/z lines, planes, etc. The basic idea is to arrangéabes(i.e., pla-
y(t) = ix @y dx dy and nar faces or facets, edges, vertices, etc.) of a polygon/polyhedr:
dt " de T de - dt according to their outer normal directions. For a convex poly-
5 5 5 [c] gon, since all its outer normal vectors lie on a unit circle, the
(d_3> _ <%> (d_Y> unit circle is taken to be the basis for its slope diagram repre
dt/ — \dt dt /- sentation. (For a polyhedron, the basis is the unit sphere.) Tt

representation scheme goes as follows (Fig. 17):

The reader may recall in this context that the general para- N
. . . ; . a. The outer normal direction at each edge of the polygon ca
metric equation of a circle of radius, with center at (0, 0) b

is X(t) = cosd, y(t) =a sing: its parameterization in terms e represented by the corresponding point on a unit circle. It i

of arc-length isx(s) = « cos@), y(s) =« sin(2). One may start cal_led aredge p_omt(By corresponding point one mefins.that
with any of these two forms to obtajr(6) o point on the unit circle where the outer normal direction is the

same as the outer normal direction of the edge.)

Note. The extended circular image representation is notb. At each vertex of the polygon, it is possible to draw innu-
mathematically completiea the sense that it does not preservenerably many outer normals filling an angle (supplementary t
the position information of the body with respect to some givahe interior angle at the vertex). This set of outer normal direc
coordinate system. The boundary curve can be recovered frtiams at the vertex is represented by the corresponding arc on t
y (), provided itis convex, uniquelyp to translation The equa- unit circle. It is called arertex arc

V I’\\\
poy Y

Convex polygon A Slope diagram of A

FIG. 17. Slope diagram representation of a convex polygon.
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c. Eachedge pointis assigned a number which is equal to the For a parametric curve(t), y(t)) in R?, the normal trans-
“length” of the corresponding edge. This may be consideredfrm representation becomes,
be the weight of the edge point. No weight is assigned to any
vertex arc. w(t) = .(—y, >.<)
Any convex polygon can be recovered uniquely (up to trans- Xy —yXx
lation) from its slope diagram. To obtain the exact position ¢f
the polygon with respect to some given coordinate system, t
coordinate positionx,1, y,1) of any vertex, say the first vertex
v, is maintained separately. Remark. The reader must have realized by now that th
One may point out that the slope diagram representation gagrmal transform representation is essentially the “polar dua
be derived from the concept of the extended circular image [14]hich had been discussed earlier in Section 3.3.
Note that, at any point on each edge of a polygon, the value of
the radius of curvature (9) tends to infinity. However, the fact 4-5. The Upper and Lower Slope Transforms

that [ds= ['y(p) d6 implies that “the integral of the extended cgnsider functions defined dR® and whose range is any
circular image over some angular interval is equal to the lengi{jpset of the extended reds= R U {—o0, o). For any such
of the curve which has normal direction falling in that interval.fynction f (x) its upper slope transforris defined as the func-

Therefore, each edge of the polygon can be mapped into @, s, : RY —» R and itslower slope transfornas the function
impulse of area equal to the length of the edge. The angle where. rd _, R for everyv € RY, such that [21]
this impulse appears is just the outer normal direction of the

(t),

herex denotes differentiation with respect to the parameter

corresponding edge. Thus we can write Sy(v) = sup{f(x) — (v,x)}, veR
xeRd
n
_ _ d
y(0) =Y 1500 ). [d] Sa(v) = Xlengd{f(x) (v,x)}, veR
i=1

where “sup” and “inf” denote supremum and infimum, respec
tively.

heMaragos, who proposed the scheme, has shown that the sl
transforms are closely related to the Legendre transformatic
To see the essence of his argument consider a cti¢xg in
R®. Let us further assume thai(x) is a differentiableconcave
4.4. The Normal Transform Representation function. (A function f (x) defined on some convex skt is

. ) _called concave if and only if
Thenormal transfornrepresentation [6, 18] is another vari-

ation of the extended circular image. But unlike the extended f(Axg 4+ (1 —2a)x2) = Af(x1) + (1 — 1) F(X2),

circular image, itincludes implicitly the exact position informa-

tion of the body. Let be any point on the boundary of a convexvhere xi, X, € K- and 0<i=<1. A typical example of a
bodyA, i.e.,ae boun(A) and the outer normal vector (not nec1-dimensional concave function is shown in Fig. 18a.)

whenn is the number of edges,is the length and; is the outer
normal direction of thath edge, and denotes the impulse
function. The slope diagram representation is nothing but t
representation of Eq. [d] in a diagrammatic way.

More details on the slope diagram can be found in [11].

essarily a unit vector) of the supporting hyperplana bev,.  In the 1-dimensional space the hyperplanex) becomes
The vectow, is then defined as a straight line, sawx, wherew, x € R. GeometricallyeX is a
straight line passing through the origin and having the stope
Wy = —Va ) (Fig. 18a). Now consider the upper slope transfdéinfe). It is
(Va, &) easy to see that if a straight line is drawn whose slope Bt

whosey-axis intercept is equal td (x;) — ax; for some point
X1, then that line will pass through the poin;( f (x;)) of the
curve. Therefore, asvaries the maximum dff (x) — ax} canbe

The vectowy, is called the normal transform af By perform-
ing the normal transform of eveg/e boun(A), one obtains the

normal transform representatidfi(A) of the bodyA. obtained when thg-axis intercept attains its maximum value.

Dorst and Boomgafard, who proposgd the representatLPHiS occurs when a line having the slopebecomegangent
scheme, proved some interesting properties of the normal traps

form and produced a number of demonstrative examples [6]:S?Ot£]: t?grqg:)\/rigu(g;i ix%.(l*r;at zf*aﬁh;?; ?V(i?; t_hz l;ﬁ:rir
\ — - ) X -

e Since(a, wy) = —1, itis easy to prove that the normal trans{4(x) = (d f(x))/dx). Clearly, S, is nothing but the Legendre
form is aninvolution i.e., N~ = A/. That means, if we perform transformation.
the normal transform ofV'(A), we get back the boundary &t Exactly in the same way, if one considers a differentiabl
o If Alis a polygon thenV(A) will also be a polygon. The convexfunction (a functionf is convex if— f is concave), it
edges ofA transform to points and vertices @&f transform to can be shown that the lower slope transfasit(«) becomes
lines by means of normal transform. equal to the Legendre transformation (Fig. 18b).
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FIG. 18. Demonstration of the upper and the lower slope transforms.

Note. The reader may take note of the following points. of some new geometric operations and (2) extension of “suppo
function-like” representation for nonconvex bodies.
e The slope transforms and the Legendre transformation are

not exactly the same representation. The Legendre transformai) Concerning the first point, we have observed that variou
tion is not well defined iffx =« cannot be solved fax, while algebraic manipulations of support functions may lead to the dis
slope transforms provide a representation even in such a casmrery of new and unsuspected geometric operations. Current
this representation, however, is not mathematically completevie have been investigating further into this direction and hop
the sense that it is not possible to recover the original functiom report the progress in near future. Here we merely mentio
from the slope transforms in such a case. The reader may refeo such examples.
to [21] for further detalils. e The first operation is essentially thplar dual of the

e In fact, the slope transform is more closely related to theum of reciprocals of two support functiohgt A andB be two
conjugateof a function. Letf (x) be any closed convex functionconvex polygons ifR? and let their respective support functions

onRY. The conjugatef ¢ of f is defined as be pa(0) andpg(p). We first form a functionf () = %(1/,0A +
1/p8). (The factor% is just a normalization factor to ensure
fS(v) = — inf {f(X) — (v,x)}, veRY thatif A=B, i.e.,pap = ps = p then f () becomes equal to the
XeRe reciprocal ¥ p.) The representation df(9) in thest-space gives
= sup{(v, x) — f(x)}, veRY. rise to a set of point® = { f (9) cosd, f(0)sind |6 €0, 2x]}.
xeRd The setP is a closed curve enclosing a region which may not

be, in general, a convex region. We take the convex hub of
For more details on the conjugate of a function the reader mg¥q then the polar dual of it, i.e., (com))*. Let us denote
refer to [26, 29]. (conv(P))* by the notationA ® B, where ‘©” is a binary oper-

e There is an implicit assumption, in all the previous repregiion. Note thatA® A= A. In Fig. 19 we show two examples
sentation schemes, that theentationof the boundary curve/ of the A B operation.
surface of the body is known so that one can distinguish, for 4 \We note thaiA © B is not equivalent to thpolar dual of
example, whether a boundary point has an orientaioor  the sum of polar duaisf AandB. We denote the latter 8@ B,

7 +6. No such assumption is made in case of the slope trang define it ad\ @ B = (%(A* @ B*))*. (The factor% is again a

forms. normalization factor to ensure thatdf= B, thenAQ B=A))
ig. 20 we show two examples of the" operation where

the input polygons are the same as considered in Fig. 19.

(2) The design of representation schemes for nonconvex bo
ies must be of an immediate concern. Note that a nonconvex d
main problem is often transformed into a convex domain prob
lem either by approximating a nonconvex object to a conve:
object, or, by decomposing the nonconvex object into its con

5. CONCLUDING REMARKS: NEW GEOMETRIC vex components. It is, however, more parsimonious to desig
OPERATIONS AND INVESTIGATION TOWARD schemes in which a nonconvex body is directly represented lik

A few other representation schemes which are also related
Young—Fenchel conjugai@r simply conjugateof a function
as mentioned above) [21, 2Gjedal curve dual curve[4, 6],
hodograph7], etc. We request the reader to look into them.

NONCONVEX BODIES asupport function. Here we give some hints toward that directio
by means of 2-dimensional examples.
After living with the subject for a long time we strongly feel e If Ais a nonconvex polygon then the support function

that the support function and its related representation scherdefinition, i.e., Eq. (1), cannot be used to repres&nThis is
should be investigated much further. The following two diredsecause H(Au) in this case will not contain the complete in-
tions, we suppose, will be of particular interest: (1) exploratidiormation of A, and therefore, the application of Eq. (2) will
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FIG.19. Two examples of &” operation: (a) The input polygon& andB are triangle and pentagon respectively; poly@a A © B is an octagon (drawn by
solid lines). (b) The input polygon& and B are diamond and square, respectiv€ly- A ® B is an octagon (drawn by solid lines).

yield not the original polygom, but the convex hull con) of  of curve will represent the valid support function of a conve
A. So instead of representing the entire nonconvex poinAsetpolygon which will be nothing but cony).
one method is to represent the boundary?baf the polygonA (b) Apart from many other important issues, the issueaf
which consists of vertices and edges. The idea is, exactly ligkisioncan be very clearly explained and dealt with by means
those of a convex polygon, a vertex of Bdcan be representedsuch a representation. Consider the origiais a vantage point
by a sinusoidal curve (in thp-space) oracircular arc (intls¢-  from where we look at the object. Then tbecluding contour
space), and an edge of Bdoy a point (in both the spaces). Suctof the object, i.e., those points where the outer normal of tt
a representation is depicted in Fig. 21 for a typical nonconverntour is at a right angle to the viewing direction, is simply
polygon. those points wherg = 0. In Fig. 22 we present a typical exam-
ple to demonstrate the basic idea. We refer the reader to [3
where an algorithm, to build aaspect graptof arbitrary 2- and
(a) Figure 21b (as well as Fig. 21c) is a self-crossing curv@-dimensional bodies, has been suggested which is based on
If we remove the self-crossing portion of the curve, the restethod.

Remark.
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FIG. 20. Two examples of ©" operation: (a) The input polygon& and B are triangle and pentagon, respectively, and polygea A @ B (drawn by solid
lines). (b) The input polygoné andB are diamond and square, respectively, @ A @ B (drawn by solid lines).
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FIG. 21. A support function-like representation of nonconvex polygon: (a) A typical nonconvex polpgdh) its representation in thép-space; (c) its
representation in thetspace.
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FIG. 22. Identification ofoccluding contouby p = 0 values: (a) Considering origimto be a vantage point, some of the directed edges bavé¢heir left and
some have in their right; (b) such a situation can be clearly brought out by means of the support function-like representation of the polyggnspabe.



402 GHOSH AND KUMAR

e The domain of convex bodies can be considerably enlargied n > 2, we obtain an interesting nonconvex domain some ¢
by means of a representation, calledrdial function whichis whose representative elements are shown in Fig. 23. This ¢
closely related to the support function. The essential differenc®in is one kind of generalization of tteeiperquadricgi.e.,
is, whereas the support function is defined for convex sets, theperellipse irR?) objects.
radial function is defined for the more genestdr-shapedets.

A setAin RY is star-shaped relative to a poif for each point

a € A, the line segment betwee@nanda lies entirely withinA. ACKNOWLEDGMENTS

If Ais a star-shaped body et its radial functionD(A, x) is
defined by

We thank the anonymous referees of this paper for their valuable suggestio

D(A,x) =max{x > 0|Ax € A}, forx e R%\{o}. (20)
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