- 06 - 2012-05-24 - main -

Real-Time Systems

Lecture 06: DC Properties I

2012-05-24

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- DC Syntax and Semantics: Abbreviations ("almost everywhere")
- Satisfiable/Realisable/Valid (from 0)
- Semantical Correctness Proof

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What are obstacles on proving a design correct in the real-world, and how to overcome them?
 - Facts: decidability properties.
 - What's the idea of the considered (un)decidability proofs?

• Content:

• (Un-)Decidable problems of DC variants in discrete and continuous time

Methodology: The World is Not Ideal...

- (i) Choose a collection of **observables** 'Obs'.
- (ii) Provide specification 'Spec' (conjunction of DC formulae (over 'Obs')).
- (iii) Provide a description 'Ctrl' of the controller (DC formula (over 'Obs')).
- (iv) Prove 'Ctrl' is correct (wrt. 'Spec').

That looks too simple to be practical. Typical obstacles:

- (i) It may be impossible to realise 'Spec' if it doesn't consider properties of the plant.
- (ii) There are typically intermediate design levels between 'Spec' and 'Ctrl'.
- (iii) 'Spec' and 'Ctrl' may use different observables.
- (iv) Proving validity of the implication is not trivial.

- Often the controller will (or can) operate correctly only under some assumptions.
- For instance, with a level crossing
 - we may assume an upper bound on the speed of approaching trains, (otherwise we'd need to close the gates arbitrarily fast)
 - we may assume that trains are not arbitrarily slow in the crossing, (otherwise we can't make promises to the road traffic)
- We shall specify such assumptions as a DC formula 'Asm' on the **input observables** and verify correctness correctness of 'Ctrl' wrt. 'Spec' by proving validity (from 0) of the control of the contr
- Shall we care whether 'Asm' is satisfiable?

5/25

Obstacle (ii): Intermediate Design Levels

- A top-down development approach may involve
 - Spec specification/requirements
 - Des design
 - Ctrl implementation
- Then correctness is established by proving validity of

$$Ctrl \implies Des$$
 (1)

and

$$\mathsf{Des} \implies \mathsf{Spec} \tag{2}$$

(then concluding Ctrl \implies Spec by transitivity)

Any preference on the order?

Obstacle (iii): Different Observables

- Assume, 'Spec' uses more abstract observables Obs_A and 'Ctrl' more concrete ones Obs_C .
- Example:
 - in Obs_A : only consider gas valve open or closed

$$\mathcal{D}(G) = \{0, 1\}$$

• in Obs_C : may control two valves and care for intermediate positions, for instance, to react to different heating requests

$$\mathcal{D}(G_1) = \{0, 1, 2, 3\}, \quad \mathcal{D}(G_2) = \{0, 1, 2, 3\}$$

- To prove correctness, we need information how the observables are related an **invariant** which **links** the data values of Obs_A and Obs_C .
- Formally: If linking invariant is given as a DC formula, say 'Link $_{C,A}$ ', then proving correctness of 'Ctrl' wrt. 'Spec' amounts to proving

$$\models_0 \mathsf{Ctrl} \wedge \mathsf{Link}_{C,A} \Longrightarrow \mathsf{Spec}.$$

• Example for linking invariant:

$$\lim_{C,A} \int G \iff (G, 46170)$$

7/25

Obstacle (iv): How to Prove Correctness?

- by hand on the basis of DC semantics,
- maybe supported by proof rules,
- sometimes a general theorem may fit (e.g. cycle times of PLC automata),
- algorithms as in Uppaal.

06 - 2012-05-24 - Sdcobst

DC Properties

- 06 - 2012-05-24 - main -

9/25

Decidability Results: Motivation

Recall:

Given **assumptions** as a DC formula 'Asm' on the input observables, verifying **correctness** of 'Ctrl' wrt. 'Spec' amounts to proving

$$\models_0 \mathsf{Ctrl} \land \mathsf{Asm} \implies \mathsf{Spec}$$
 (1)

- If 'Asm' is **not satisfiable** then (1) is trivially valid, and thus each 'Ctrl' correct wrt. 'Spec'.
- So: strong interest in assessing the satisfiability of DC formulae.
- Question: is there an automatic procedure to help us out?
 (a.k.a.: is it decidable whether a given DC formula is satisfiable?)
- More interesting for 'Spec': is it realisable (from 0)?
- Question: is it decidable whether a given DC formula is realisable?

- 06 - 2012-05-24 - Smotiv -

restricted		
Fragment	Discrete Time	Continous Time
RDC	decidable	decidable
$RDC + \ell = r$	decidable for $r \in \mathbb{N}$	$\hbox{undecidable for } r \in \mathbb{R}^+$
$RDC + \int P_1 = \int P_2$	undecidable	undecidable
$RDC + \ell = x, \forall x$	undecidable	undecidable
DC	undecidaSe	undecidable

11/25

RDC in Discrete Time

Restricted DC (RDC)

$$F ::= \lceil P \rceil \mid \neg F_1 \mid F_1 \lor F_2 \mid F_1$$
; F_2

where P is a state assertion, but with **boolean** observables **only**.

Note:

- No global variables, thus don't need \mathcal{V} .
- · chop is there
- NO J. no l (in general)

 NO function and predicate symbols
- OF ...?
- · [7...?

13/25

Discrete Time Interpretations

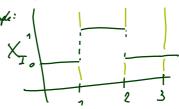
• An interpretation \mathcal{I} is called **discrete time interpretation** if and only if, for each state variable X,

 $X_{\mathcal{I}}: \mathsf{Time} o \mathcal{D}(X)$

with

- Time $= \mathbb{R}_0^+$,
- all discontinuities are in \mathbb{N}_0 .





Discrete Time Interpretations

• An interpretation $\mathcal I$ is called **discrete time interpretation** if and only if, for each state variable X,

 $X_{\mathcal{I}}: \mathsf{Time} o \mathcal{D}(X)$. We say $\mathsf{I}, \mathsf{Lb}_{\mathcal{K}} \} \not \models \mathsf{IPI}$ if $\mathsf{IP}_{\mathcal{I}} = \mathsf{IPI}_{\mathcal{I}} = \mathsf{IPI}_{\mathcal{I}}$ in \mathbb{N}_0 .

with

- Time $= \mathbb{R}_0^+$,
- \bullet all discontinuities are in ${\rm I}\!{\rm N}_0.$
- An interval $[b,e] \in \text{Intv}$ is called **discrete** if and only if $b,e \in \mathbb{N}_0$.
- ullet We say (for a discrete time interpretation ${\mathcal I}$ and a discrete interval [b,e])

$$\mathcal{I}, [b,e] \models F_1$$
; F_2

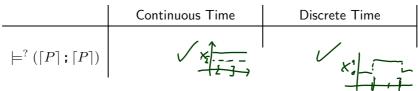
if and only if there exists $m \in [b,e] \cap \mathbb{N}_0$ such that

$$\mathcal{I}, [b, m] \models F_1$$
 and $\mathcal{I}, [m, e] \models F_2$

14/25

Differences between Continuous and Discrete Time

• Let P be a state assertion, e.g. X=1



Differences between Continuous and Discrete Time

• Let P be a state assertion.

	Continuous Time	Discrete Time
$\models^{?}(\lceil P \rceil; \lceil P \rceil)$ $\implies \lceil P \rceil$	✓	~
$\models^? \lceil P \rceil \implies (\lceil P \rceil; \lceil P \rceil)$	✓	× 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

• In particular: $\ell=1\iff (\lceil 1\rceil \land \neg (\lceil 1\rceil \ ; \lceil 1\rceil))$ (in discrete time).

15/25

OF: the jF; the

Expressiveness of RDC

•
$$\ell = 1$$
 $\iff \lceil 1 \rceil \land \neg (\lceil 1 \rceil; \lceil 1 \rceil)$

•
$$\ell = 1$$
 \iff $|1| \land \neg (|1|; |1|$
• $\ell = 0$, $?$ \iff $\neg [1]$

•
$$\int P = 0$$
 $\iff \lceil \gamma \rceil$ $V = 0$

•
$$\int P = k + 1 \iff (\int P = k) ; (\int P = 1)$$

•
$$\int P \ge k$$
 \iff $\left(\int \rho = k\right)$; then

•
$$\int P > k$$
 $\iff \int P \ge k + 1$

•
$$\int P \leq k \iff \neg (\int f > k)$$

•
$$\int P \le k$$
 $\iff \neg (\int P > k)$
• $\int P < k$ $\iff \int P \le k - 1$

where $k \in \mathbb{N}$.

Theorem 3.6.

The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9.

The realisability problem for RDC with discrete time is decidable.

17/25

Sketch: Proof of Theorem 3.6

- give a procedure to construct, given a formula F,
 - a **regular** language $\mathcal{L}(F)$ such that

$$\mathcal{I}, [0, n] \models F$$
 if and only if $w \in \mathcal{L}(F)$ (1)

$$\mathcal{L}, [0, n] \models I$$
 if and only if $w \in \mathcal{L}(I)$ (1

where word w describes \mathcal{I} on [0, n](procedure: in a minute)

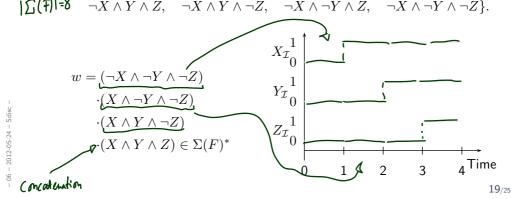
(procedure has property (1): Lemma 3.4)

- ullet then F is **satisfiable** in discrete time if and only if $\mathcal{L}(F)$ is **not empty** (Lemma 3.5)
- Theorem 3.6 follows because
 - $\mathcal{L}(F)$ can **effectively** be constructed (by that procedure),
 - the emptyness problem is decidable for regular languages.

Construction of $\mathcal{L}(F)$

- Idea:
 - alphabet $\Sigma(F)$ consists of basic conjuncts of the state variables in F,
 - a letter corresponds to an interpretation of Obs on an interval of length 1,
 - a word of length n describes an interpretation of Obs on interval [0, n].
- Example: Assume F contains exactly state variables X, Y, Z, then

$$\Sigma(F) = \{ \underbrace{X \wedge Y \wedge Z}_{}, \quad X \wedge Y \wedge \neg Z, \quad X \wedge \neg Y \wedge Z, \quad X \wedge \neg Y \wedge \neg Z, \\ \text{Is (7) = 8} \quad \neg X \wedge Y \wedge Z, \quad \neg X \wedge Y \wedge \neg Z, \quad \neg X \wedge \neg Y \wedge Z, \quad \neg X \wedge \neg Y \wedge \neg Z \}.$$



Construction of $\mathcal{L}(F)$ more Formally

Definition 3.2. A word $w = a_1 \dots a_n \in \Sigma(F)^*$ with $n \geq 0$ **describes** a **discrete** interpretation \mathcal{I} on [0, n] if and only if

$$\forall j \in \{1, ..., n\} \ \forall t \in [j-1, j[: \mathcal{I}[a_i]](t) = 1.$$

For n=0 we put $w=\varepsilon$.

- Each state assertion P can be transformed into an equivalent disjunctive **normal form** $\bigvee_{i=1}^{m} a_i$ with $a_i \in \Sigma(F)$.
- Set $DNF(P) := \{a_1, \ldots, a_m\} \subseteq \Sigma(F)$.

• Define $\mathcal{L}(F)$ inductively:

in
$$P$$
 can be transformed into an equivalent disjunctive a_i with $a_i \in \Sigma(F)$.
$$1, \ldots, a_m\} \ (\subseteq \Sigma(F)).$$
 word of length at bot 1 ively:
$$\mathcal{L}(\lceil P \rceil) = \text{DNF}(P)^{+}, \qquad \text{(ngular)}$$

$$\mathcal{L}(\neg F_1) = \Sigma(\mp)^{\times} \setminus \mathcal{L}(\mp_1), \qquad \text{(again, regular)}$$

$$\mathcal{L}(F_1 \vee F_2) = \mathcal{L}(\mp_1) \cup \mathcal{L}(\mp_2), \qquad \qquad -1$$

$$\mathcal{L}(F_1; F_2) = \mathcal{L}(\mp_1) \cdot \mathcal{L}(\mp_1). \qquad \qquad 20/2$$

Lemma 3.4. For all RDC formulae F, discrete interpretations \mathcal{I} , $n\geq 0$, and all words $w\in \Sigma(F)^*$ which **describe** \mathcal{I} on [0,n], $\mathcal{I},[0,n]\models F \text{ if and only if } w\in \mathcal{L}(F).$

Proof: Shructural induction

Save F = [P]: assume $W = a_1 \dots a_n$ describes I on I = [0, n] $I = [0, n] \neq [P] \Leftrightarrow I = [0, n] \neq [P]$ and I = [0, n] $I = [0, n] \neq [P] \Leftrightarrow I = [0, n] \neq [P] = [0, n] \neq [P]$ $I = [0, n] \neq [0, n] \neq [P] = [0, n] = [0,$

Sketch: Proof of Theorem 3.9

Theorem 3.9.

The realisability problem for RDC with discrete time is decidable.

- kern(L) contains all words of L whose prefixes are again in L.
- If L is regular, then kern(L) is also regular.
- $kern(\mathcal{L}(F))$ can effectively be constructed.
- We have

Lemma 3.8. For all RDC formulae F, F is realisable from 0 in discrete time if and only if $kern(\mathcal{L}(F))$ is infinite.

• Infinity of regular languages is decidable.

- 06 - 2012-05-24 - Sdisc -

06 - 2012-05-24 - main -

24/25

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.

06 - 2012-05-24 - main -