Real-Time Systems

Lecture 15: Automatic Verification of DC Properties for TA

2012-07-12

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- Extended Timed Automata
- Uppaal Query Language

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - How can we relate TA and DC formulae? What's a bit tricky about that?
 - Can we use Uppaal to check whether a TA satisfies a DC formula?

• Content:

- An evolution-of-observables semantics of TA
- A satisfaction relation between TA and DC
- Model-checking DC properties with Uppaal

Model-Checking DC Properties with Uppaal

- First Question: what is the "\=" here?
- Second Question: what kinds of DC formulae can we check with Uppaal?
 - Clear: Not every DC formula.

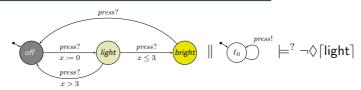
 (Otherwise contradicting underidability results.)

~ \LIX.11; ~~\Z7\LIXA

- Quite clear: $F = \Box \lceil \mathsf{off} \rceil$ or $F = \neg \diamondsuit \lceil \mathsf{light} \rceil$ (Use Uppaal's fragment of TCTL, something like $\forall \Box$ off, but not exactly (see later).)
- Maybe: $F = \square(\ell > 5 \implies \lozenge\lceil \mathsf{off} \rceil^5)$
- Not so clear: $F = \neg \Diamond (\lceil \mathsf{bright} \rceil; \lceil \mathsf{light} \rceil)$

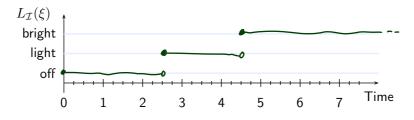
- 15 - 2012 07 12 - Sdesignatus

Example: Let's Start With Single Runs



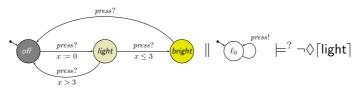
$$\xi = \langle \mathop{\mathsf{off}}_{0} \rangle, 0 \xrightarrow{2.5} \langle \mathop{\mathsf{off}}_{2.5} \rangle, 2.5 \xrightarrow{\tau} \langle \mathop{\mathsf{light}}_{0} \rangle, 2.5 \xrightarrow{2.0} \langle \mathop{\mathsf{light}}_{2.0} \rangle, 4.5 \xrightarrow{\tau} \langle \mathop{\mathsf{bright}}_{2.0} \rangle, 4.5 \dots$$

Construct interpretation $L_{\mathcal{I}}(\xi)$: Time $\to \{\text{off}, \text{light}, \text{bright}\}$:

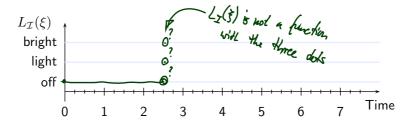


5/35

Example 2: Another Single Run

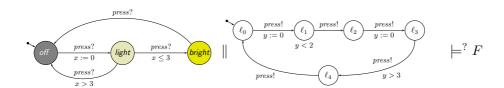


$$\xi = \langle \mathop{\mathsf{off}}_0 \rangle, 0 \xrightarrow{2.5} \langle \mathop{\mathsf{off}}_{2.5} \rangle, 2.5 \xrightarrow{\tau} \langle \mathop{\mathsf{light}}_0 \rangle, 2.5 \xrightarrow{\tau} \langle \mathop{\mathsf{bright}}_0 \rangle, 2.5 \xrightarrow{\tau} \langle \mathop{\mathsf{off}}_0 \rangle, 2.5 \xrightarrow{1.0} \dots$$



We know this problem from the exercises...

DC Properties of Timed Automata



Wanted: A satisfaction relation between networks of timed automata and DC formulae, a notion of \mathcal{N} satisfies F, denoted by $\mathcal{N} \models F$.

Plan:

ullet Consider network ${\mathcal N}$ consisting of TA

$$\mathcal{A}_{e,i} = (L_i, C_i, B_i, U_i, X_i, V_i, I_i, E_i, \ell_{ini,i})$$

- Define observables $Obs(\mathcal{N})$ of \mathcal{N} .
- Define evolution \mathcal{I}_{ξ} of $\mathsf{Obs}(\mathcal{N})$ induced by computation path $\xi \in CompPaths(\mathcal{N})$ of \mathcal{N} , $CompPaths(\mathcal{N}) = \{\xi \mid \xi \text{ is a computation path of } \mathcal{N}\}$
- Say $\mathcal{N} \models F$ if and only if $\forall \xi \in CompPaths(\mathcal{N}) : \mathcal{I}_{\xi} \models_{0} F$.

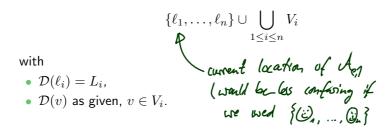
Observables of TA Network

Let ${\mathcal N}$ be a network of n extended timed automata

$$\mathcal{A}_{e,i} = (L_i, C_i, B_i, U_i, X_i, V_i, I_i, E_i, \ell_{ini,i})$$

For simplicity: assume that the L_i and X_i are pairwise disjoint and that each V_i is pairwise disjoint to every L_i and X_i (otherwise rename).

• **Definition**: The observables $\mathsf{Obs}(\mathcal{N})$ of \mathcal{N} are



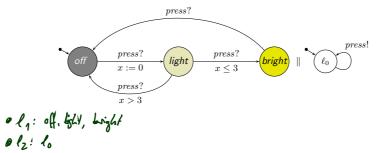
9/35

Observables of TA Network: Example

 $A_{e,i} = (L_i, C_i, B_i, U_i, X_i, V_i, I_i, E_i, \ell_{ini,i}).$

The observables $\mathsf{Obs}(\mathcal{N})$ of \mathcal{N} are $\{\ell_1,\ldots,\ell_n\}\cup\bigcup_{1\leq i\leq n}V_i$ with

- $\mathcal{D}(\ell_i) = L_i$,
- $\mathcal{D}(v)$ as given, $v \in V_i$.



. 15 - 2012-07-12 - Staobs -

Evolutions of TA Network

Recall: computation path

$$\xi = \langle \vec{\ell}_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_1} \langle \vec{\ell}_1, \nu_1 \rangle, \underbrace{t_1} \xrightarrow{\lambda_2} \langle \vec{\ell}_2, \nu_2 \rangle, \underbrace{t_2} \xrightarrow{\lambda_3} \dots$$
 of \mathcal{N} , $\vec{\ell}_{\pmb{k}}$ denotes a tuple $\langle \ell^1_{\pmb{k}}, \dots, \ell^n_{\pmb{k}} \rangle \in L_1 \times \dots \times L_n$.

Recall: Given ξ and $t \in \text{Time}$, we use $\xi(t)$ to denote the set

$$\{\langle \vec{\ell}, \nu \rangle \mid \exists i \in \mathbb{N}_0 : t_i \leq t \leq t_{i+1} \land \vec{\ell} = \vec{\ell}_i \land \nu = \nu_i + t - t_i \}.$$

of configurations at time t.

 $\text{New: } \bar{\xi}(t) \text{ denotes } \langle \vec{\ell_j}, \nu_j + t - t_j \rangle \text{ where } j = \max\{i \in \mathbb{N}_0 \mid t_i \leq t \land \vec{\ell} = \vec{\ell_i}\}.$

Our choice:

- Ignore configurations assumed for 0-time only.
- Extend finite computation paths to infinite length, staying in last configuration.

Yet clocks advance – see later.

11/35

Evolutions of TA Network: Example

$$\boxed{\bar{\xi}(t) \text{ denotes } \langle \vec{\ell_j}, \nu_j + t - t_j \rangle \text{ where } j = \max\{i \in \mathbb{N}_0 \mid t_i \leq t \land \vec{\ell} = \vec{\ell_i}\}.}$$

Example:

$$\xi = \underbrace{\langle \overset{\mathsf{off}}{0} \rangle, 0}_{0} \xrightarrow{2.5} \langle \overset{\mathsf{off}}{2.5} \rangle, 2.5 \xrightarrow{\tau} \langle \overset{\mathsf{light}}{0} \rangle, 2.5 \xrightarrow{\tau} \langle \overset{\mathsf{bright}}{0} \rangle, 2.5 \xrightarrow{\tau} \langle \overset{\mathsf{off}}{0} \rangle, 2.5 \xrightarrow{1.0} \langle \overset{\mathsf{off}}{0} \rangle, 3.5 \xrightarrow{\tau} \dots$$

$$\bullet \ \bar{\xi}(0) = \bullet \\ \bullet \ \bar{\xi}(1.0) = \underbrace{\langle \overset{\mathsf{off}}{0} \rangle, 2.5 \xrightarrow{\tau} \langle \overset{\mathsf{light}}{0} \rangle, 2.5 \xrightarrow{\tau} \langle \overset{\mathsf{bright}}{0} \rangle, 2.5 \xrightarrow{\tau} \langle \overset{\mathsf{off}}{0} \rangle, 2.5 \xrightarrow{\tau} \langle \overset{\mathsf{of$$

- 15 - 2012-07-12 - Staobs

Evolutions of TA Network Cont'd

 $ar{\xi}$ induces the unique interpretation

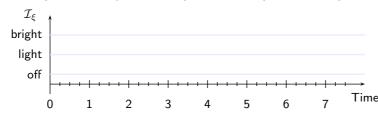
$$\mathcal{I}_{\xi}:\mathsf{Obs}(\mathcal{N}) o (\mathsf{Time} o \mathcal{D})$$

of $\mathsf{Obs}(\mathcal{N})$ defined pointwise as follows:

$$\mathcal{I}_{\xi}(a)(t) = \begin{cases} \ell^{i} & \text{, if } a = \ell_{i}, \ \bar{\xi}(t) = \langle \langle \ell^{1}, \dots, \ell^{n} \rangle, \nu \rangle \\ \nu(a) & \text{, if } a \in V_{i}, \ \bar{\xi}(t) = \langle \vec{\ell}, \nu \rangle \end{cases}$$

Example: $\mathcal{D}(\ell_1) = \{\text{off}, \text{light}, \text{bright}\}$

$$\xi = \langle \begin{smallmatrix} \mathsf{off} \\ 0 \end{smallmatrix} \rangle, 0 \xrightarrow{2.5} \langle \begin{smallmatrix} \mathsf{off} \\ 2.5 \end{smallmatrix} \rangle, 2.5 \xrightarrow{\tau} \langle \begin{smallmatrix} \mathsf{light} \\ 0 \end{smallmatrix} \rangle, 2.5 \xrightarrow{\tau} \langle \begin{smallmatrix} \mathsf{bright} \\ 0 \end{smallmatrix} \rangle, 2.5 \xrightarrow{\tau} \langle \begin{smallmatrix} \mathsf{off} \\ 0 \end{smallmatrix} \rangle, 2.5 \xrightarrow{1.0} \langle \begin{smallmatrix} \mathsf{off} \\ 1 \end{smallmatrix} \rangle, 3.5 \xrightarrow{\tau} \ldots$$



13/35

Evolutions of TA Network Cont'd

$$\begin{split} \xi &= \langle \stackrel{\text{off}}{0} \rangle, 0 \xrightarrow{2.5} \langle \stackrel{\text{off}}{2.5} \rangle, 2.5 \xrightarrow{\tau} \langle \stackrel{\text{light}}{0} \rangle, 2.5 \xrightarrow{\tau} \langle \stackrel{\text{bright}}{0} \rangle, 2.5 \xrightarrow{\tau} \langle \stackrel{\text{off}}{0} \rangle, 2.5 \xrightarrow{1.0} \langle \stackrel{\text{off}}{1} \rangle, 3.5 \xrightarrow{\tau} \dots \\ &\text{current loc. of 1st automaton} \end{split}$$
 Abbreviations as usual: $\mathcal{I}_{\xi}(\ell_{1})(0) = \text{ of (log D4.)}$

- $\mathcal{I}(\ell_1 = \mathsf{off})(0) = \mathcal{I}_{\mathsf{s}}(\ell_1)(0) = \mathcal{I}(\mathsf{off})$
- $\mathcal{I}(\mathsf{off})(1.0) = \mathcal{I}(\ell_1 = \mathsf{off})(1.0)$ if L_i pairwise disjoint.

- But what about clocks? Why not $x \in Obs(\mathcal{N})$ for $x \in X_i$?
- We would know how to define $\mathcal{I}_{\xi}(x)(t)$, namely

$$\mathcal{I}_{\xi}(x)(t) = \nu_{\xi(t)}(x) + (t - t_{\xi(t)}).$$

• But... $\mathcal{I}_{\xi}(x)(t)$ changes too often.

$$\mathcal{I}_{\xi}(x)(t) = \nu_{\xi(t)}(x) + (t - t_{\xi(t)}).$$
 about anges too often.
$$\square \text{ (Folf 7 =) } \text{ (Folf 7 =) }$$

Better (if wanted):

- add $\Phi(X_1 \cup \cdots \cup X_i)$ to $\mathsf{Obs}(\mathcal{N})$, with $\mathcal{D}(\varphi) = \{0,1\}$ for $\varphi \in \Phi(X_1 \cup \cdots \cup X_i)$.
- set

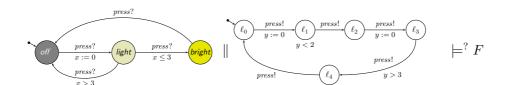
$$\mathcal{I}_{\xi}(\varphi)(t) = \begin{cases} 1 \text{, if } \nu(x) \models \varphi, \bar{\xi}(t) = \langle \vec{\ell}, \nu \rangle \\ 0 \text{, otherwise} \end{cases}$$

The truth value of constraint φ can endure over non-point intervals.

15/35

Some Checkable Properties

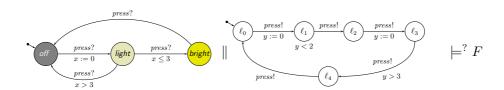
Model-Checking DC Properties with Uppaal



- First Answer: $\mathcal{N} \models F$ if and only if $\forall \xi \in CompPaths(\mathcal{N}) : \mathcal{I}_{\xi} \models_{0} F$.
- Second Question: what kinds of DC formulae can we check with Uppaal?
 - Clear: Not every DC formula. (Otherwise contradicting undecidability results.)
 - Quite clear: F = □[off] or F = ¬◊[light]
 (Use Uppaal's fragment of TCTL, something like ∀□ off, but not exactly (see later).)
 - Maybe: $F = \square(\ell > 5 \implies \lozenge[\mathsf{off}]^5)$
 - Not so clear: $F = \neg \Diamond (\lceil \mathsf{bright} \rceil; \lceil \mathsf{light} \rceil)$

17/35

Model-Checking DC Properties with Uppaal



• Second Question: what kinds of DC formulae can we check with Uppaal?

Wanted:

- ullet a function f mapping DC formulae to Uppaal queries and
- ullet a transformation $\stackrel{\sim}{\cdot}$ of networks of TA

such that

$$\widetilde{\mathcal{N}} \models_{\mathsf{Uppaal}} f(F) \iff \mathcal{N} \models F$$

One step more general: an additional **observer** construction $\mathcal{O}(\cdot)$ such that

$$\widetilde{\mathcal{N}} \parallel \mathcal{O}(F) \models_{\mathsf{Uppaal}} f_{\mathcal{O}}(F) \iff \mathcal{N} \models F$$

Model-Checking Invariants with Uppaal



- Quite clear: $F = \Box \lceil P \rceil$.
 - Unfortunately, we have

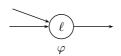
$$\mathcal{N} \models \forall \Box \, P \implies \mathcal{N} \models \Box \lceil P \rceil$$

but in general not

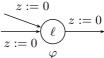
$$\mathcal{N} \models \Box \lceil P \rceil \implies \mathcal{N} \models \forall \Box P,$$

because Uppaal also considers violations of P without duration, at points.

• Possible fix: measure duration explicitly, transform



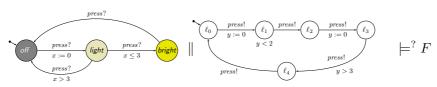
to



Then check for $\mathcal{N} \models \forall \Box (z > 0 \implies P)$.

19/35

Model-Checking Certain Durations with Uppaal

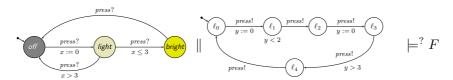


• Maybe: $F = \Box(\ell > t_0 \implies \Diamond \lceil P \rceil_1^t)$, t > 0

Check for

$$\mathcal{N} \models \forall \Diamond (P \land z_0 > t_0 \land z_1 = t_1).$$

Model-Checking Certain Chops with Uppaal



• Not so clear: $F = \neg \lozenge(\lceil \mathsf{bright} \rceil; \lceil \mathsf{light} \rceil)$ (Expectation? Holds or not?)

Off-hand approach:

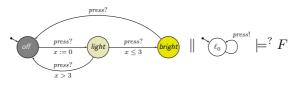
- Add two auxiliary duration clocks $z_{\rm light}$ and $z_{\rm bright}$.
- Add auxiliary variable prev with $\mathcal{D}(\mathtt{prev}) = \{\mathtt{off}, \mathtt{light}, \mathtt{bright}\}$ keeping track of where we came from.
- Observe: [bright]; [light] means "get from bright directly to light".
- Check for

$$\mathcal{N} \models \forall \Diamond (\mathcal{L}.\mathsf{light} \land z_{\mathsf{light}} > 0 \land z_{\mathsf{bright}} > 0 \land \mathsf{prev} = \mathsf{bright})$$

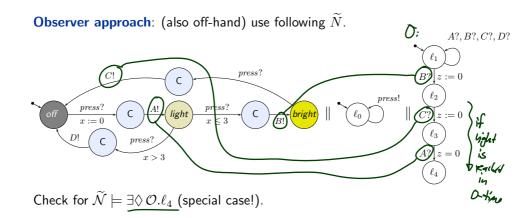
• Exercise: Prove $\mathcal{N} \models F \iff \widetilde{\mathcal{N}} \models f(F)$.

21/35

Model-Checking Certain Chops with Uppaal



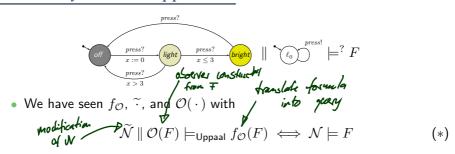
• Not so clear: $F = \neg \lozenge(\lceil bright \rceil; \lceil light \rceil)$ (Expectation? Holds or not?)



- 15 - 2012-07-12 - Sdeveys -

23/35

A More Systematic Approach



for some particular F. Tedious: always have to prove (*).

- Better:
 - characterise a subset (or fragment) of DC,
 - give procedures to construct $f_{\mathcal{O}}(\,\cdot\,)$, $\widetilde{\,\cdot\,}$, and $\mathcal{O}(\,\cdot\,)$
 - ullet prove once and for all that, if F is in this fragment, then

$$\widetilde{\mathcal{N}} \parallel \mathcal{O}(F) \models_{\mathsf{Uppaal}} f_{\mathcal{O}}(F) \iff \mathcal{N} \models F$$

• **Even better**: exact (syntactic) characterisation of the DC fragment that is testable (not in the lecture).

- 15 - 2012-07-12 - Sdctest -

Definition 6.1. A DC formula F is called **testable** if an observer (or test automaton (or monitor)) \mathcal{A}_F exists such that for all networks $\mathcal{N} = \mathcal{C}(\mathcal{A}_1, \dots, \mathcal{A}_n)$ it holds that

$$\mathcal{N} \models F \quad \text{ iff } \quad \mathcal{C}(\mathcal{A}'_1, \dots, \mathcal{A}'_n, \mathcal{A}_F) \models \forall \Box \neg (\mathcal{A}_F.q_{bad})$$

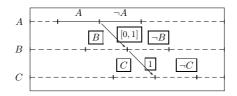
Otherwise it's called untestable.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.

25/35

Untestable DC Formulae



"Whenever we observe a change from A to $\neg A$ at time t_A , the system has to produce a change from B to $\neg B$ at some time $t_B \in [t_A, t_A + 1]$ and a change from C to $\neg C$ at time $t_B + 1$.

Sketch of Proof: Assume there is A_F such that, for all networks N, we have

$$\mathcal{N} \models F$$
 iff $\mathcal{C}(\mathcal{A}'_1, \dots, \mathcal{A}'_n, \mathcal{A}_F) \models \forall \Box \neg (\mathcal{A}_F.q_{bad})$

Assume the number of clocks in A_F is $n \in \mathbb{N}_0$.

- 15 - 2012-07-12 - Sdctest -

- 15 - 2012-07-12 - Sdctast -

Untestable DC Formulae Cont'd

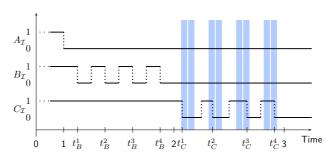
Consider the following time points:

•
$$t_A := 1$$

•
$$t_B^i:=t_A+\frac{2i-1}{2(n+1)}$$
 for $i=1,\ldots,n+1$

$$\begin{array}{l} \bullet \ t_C^i \in \left] t_B^i + 1 - \frac{1}{4(n+1)}, t_B^i + 1 + \frac{1}{4(n+1)} \right[\ \text{for} \ i = 1, \ldots, n+1 \\ \text{with} \ t_C^i - t_B^i \neq 1 \ \text{for} \ 1 \leq i \leq n+1. \end{array}$$

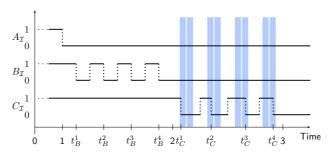
Example: n=3



Untestable DC Formulae Cont'd

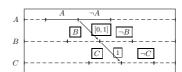
A A A B B O T A B C T

Example: n=3

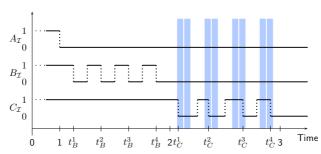


- The shown interpretation \mathcal{I} satisfies assumption of property.
- It has n+1 candidates to satisfy commitment.
- ullet By choice of t_C^i , the commitment is not satisfied; so F not satisfied.
- Because A_F is a test automaton for F, is has a computation path to q_{bad} .
- Because n=3, \mathcal{A}_F can not save all n+1 time points t_B^i .
- Thus there is $1 \leq i_0 \leq n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2-t_B^{i_0}+(-\frac{1}{4(n+1)},\frac{1}{4(n+1)})$

Untestable DC Formulae Cont'd



Example: n=3



- Because A_F is a test automaton for F, is has a computation path to $q_{\it bad}$.
- Thus there is $1 \leq i_0 \leq n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2-t_B^{i_0}+\left(-\frac{1}{4(n+1)},\frac{1}{4(n+1)}\right)$
- Modify the computation to \mathcal{I}' such that $t_C^{i_0} := t_B^{i_0} + 1.$
- Then $\mathcal{I}' \models F$, but \mathcal{A}_F reaches q_{bad} via the same path.
- That is: A_F claims $\mathcal{I}' \not\models F$.
- Thus A_F is not a test automaton. Contradiction.

29/35

Testable DC Formulae

Theorem 6.4. DC implementables are testable.

Initialisation:

 $\lceil \rceil \vee \lceil \pi \rceil$; true

Sequencing:

 $\lceil \pi \rceil \longrightarrow \lceil \pi \vee \pi_1 \vee \cdots \vee \pi_n \rceil$

Progress:

 $\lceil \pi \rceil \stackrel{\theta}{\longrightarrow} \lceil \neg \pi \rceil$

• Synchronisation:

 $[\pi \land \varphi] \xrightarrow{\theta} [\neg \pi]$

- Bounded Stability:
- $\lceil \neg \pi \rceil$; $\lceil \pi \land \varphi \rceil \xrightarrow{\leq \theta} \lceil \pi \lor \pi_1 \lor \dots \lor \pi_n \rceil$
- Unbounded Stability:
- $\lceil \neg \pi \rceil$; $\lceil \pi \land \varphi \rceil \longrightarrow \lceil \pi \lor \pi_1 \lor \cdots \lor \pi_n \rceil$
- Bounded initial stability:
- $\lceil \pi \wedge \varphi \rceil \xrightarrow{\leq \theta}_0 \lceil \pi \vee \pi_1 \vee \cdots \vee \pi_n \rceil$
- Unbounded initial stability:
- $\lceil \pi \wedge \varphi \rceil \longrightarrow_0 \lceil \pi \vee \pi_1 \vee \cdots \vee \pi_n \rceil$

Proof Sketch:

- For each implementable F, construct A_F .
- Prove that \mathcal{A}_F is a test automaton.

Proof of Theorem 6.4: Preliminaries

• Note: DC does not refer to communication between TA in the network, but only to data variables and locations (and clock constraints, if added).

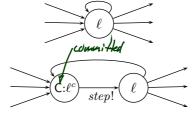
Example:

$$\Diamond(\lceil v=0 \rceil; \lceil v=1 \rceil)$$

- **Recall**: transitions of TA are only triggered by syncronisation, not by changes of data-variables.
- Approach: have auxiliary step action.

Technically, replace each

by

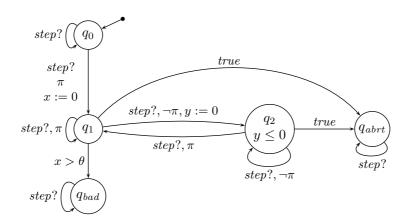


Note: the observer sees the data variables after the update.

31/35

Proof of Theorem 6.4: Sketch

• Example: $\lceil \pi \rceil \xrightarrow{\theta} \lceil \neg \pi \rceil$



11

Definition 6.5.

 A counterexample formula (CE for short) is a DC formula of the form:

$$true$$
; $(\lceil \pi_1 \rceil \land \ell \in I_1)$; ...; $(\lceil \pi_k \rceil \land \ell \in I_k)$; $true$

where for $1 \le i \le k$,

- π_i are state assertions,
- I_i are non-empty, and open, half-open, or closed time intervals of the form
 - $\bullet \ (b,e) \ {\rm or} \ [b,e) \ {\rm with} \ b \in \mathbb{Q}^+_0 \ {\rm and} \ e \in \mathbb{Q}^+_0 \ \dot{\cup} \ \{\infty\},$
 - $\bullet \ \ (b,e] \ \text{or} \ [b,e] \ \text{with} \ b,e \in \mathbb{Q}_0^+.$

 (b,∞) and $[b,\infty)$ denote unbounded sets.

• Let F be a DC formula. A DC formula F_{CE} is called **counterexample formula for** F if $\models F \iff \neg(F_{CE})$ holds.

Theorem 6.7. CE formulae are testable.

33/35

References

- 15 - 2012-07-12 - Sdctest -

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.

15 - 2012-07-12 - main -

35/35