
Real-TimeSystems

Lecture15: Automatic Verification of DC Properties for TA

2012-07-12

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1
5

–
2
0
1
2
-0

7
-1

2
–

m
a
in

–

Contents & Goals

Last Lecture:

• Extended Timed Automata

• Uppaal Query Language

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• How can we relate TA and DC formulae? What’s a bit tricky about that?

• Can we use Uppaal to check whether a TA satisfies a DC formula?

• Content:

• An evolution-of-observables semantics of TA

• A satisfaction relation between TA and DC

• Model-checking DC properties with Uppaal

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
p
re

li
m

–

2/35

Observer-based Automatic Verification of DC Properties
for TA

–
1
5

–
2
0
1
2
-0

7
-1

2
–

m
a
in

–

3/35

Model-CheckingDC Properties with Uppaal

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0

y < 2

press! press!

y := 0

press!

y > 3press!

|=? F

• First Question: what is the “|=” here?

• Second Question: what kinds of DC formulae can we check with Uppaal?

• Clear: Not every DC formula.
(Otherwise contradicting undecidability results.)

• Quite clear: F = �⌈off⌉ or F = ¬♦⌈light⌉

(Use Uppaal’s fragment of TCTL, something like ∀� off,
but not exactly (see later).)

• Maybe: F = �(ℓ > 5 =⇒ ♦⌈off⌉5)

• Not so clear: F = ¬♦(⌈bright⌉ ; ⌈light⌉)

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
cv

in
tr

o
–

4/35

Example: Let’sStart With SingleRuns

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖ ℓ0

press!

|=? ¬♦⌈light⌉

ξ = 〈
off
0
〉, 0

2.5
−−→ 〈

off
2.5

〉, 2.5
τ
−→ 〈

light
0

〉, 2.5
2.0
−−→ 〈

light
2.0

〉, 4.5
τ
−→ 〈

bright
2.0

〉, 4.5 . . .

Construct interpretation LI(ξ) : Time → {off, light, bright}:

LI(ξ)

Time

bright

light

off

0 1 2 3 4 5 6 7

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
cv

in
tr

o
–

5/35

Example 2: Another SingleRun

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖ ℓ0

press!

|=? ¬♦⌈light⌉

ξ = 〈
off
0
〉, 0

2.5
−−→ 〈

off
2.5

〉, 2.5
τ
−→ 〈

light
0

〉, 2.5
τ
−→ 〈

bright
0

〉, 2.5
τ
−→ 〈

off
0
〉, 2.5

1.0
−−→ . . .

LI(ξ)

Time

bright

light

off

0 1 2 3 4 5 6 7

We know this problem from the exercises...

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
cv

in
tr

o
–

6/35

Observing Timed Automata

–
1
5

–
2
0
1
2
-0

7
-1

2
–

m
a
in

–

7/35

DC Properties of Timed Automata

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press !

y := 0

y < 2

press ! press !

y := 0

press !

y > 3press !

|=? F

Wanted: A satisfaction relation between networks of timed automata and DC
formulae, a notion of N satisfies F , denoted by N |= F .

Plan:

• Consider network N consisting of TA

Ae,i = (Li, Ci, Bi, Ui, Xi, Vi, Ii, Ei, ℓini,i)

• Define observables Obs(N) of N .

• Define evolution Iξ of Obs(N) induced by computation path
ξ ∈ CompPaths(N) of N ,
CompPaths(N) = {ξ | ξ is a computation path of N}

• Say N |= F if and only if ∀ ξ ∈ CompPaths(N) : Iξ |=0 F.

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
ta

o
b
s

–

8/35

Observables of TA Network

Let N be a network of n extended timed automata

Ae,i = (Li, Ci, Bi, Ui, Xi, Vi, Ii, Ei, ℓini,i)

For simplicity: assume that the Li and Xi are pairwise disjoint and that each
Vi is pairwise disjoint to every Li and Xi (otherwise rename).

• Definition: The observables Obs(N) of N are

{ℓ1, . . . , ℓn} ∪
⋃

1≤i≤n

Vi

with

• D(ℓi) = Li,

• D(v) as given, v ∈ Vi.

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
ta

o
b
s

–

9/35

Observables of TA Network: Example

Ae,i = (Li, Ci, Bi, Ui, Xi, Vi, Ii, Ei, ℓini,i).

The observables Obs(N) of N are {ℓ1, . . . , ℓn} ∪
⋃

1≤i≤n Vi with

• D(ℓi) = Li,

• D(v) as given, v ∈ Vi.

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖ ℓ0

press!

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
ta

o
b
s

–

10/35

Evolutions of TA Network

Recall: computation path

ξ = 〈~ℓ0, ν0〉, t0
λ1−→ 〈~ℓ1, ν1〉, t1

λ2−→ 〈~ℓ2, ν2〉, t2
λ3−→ . . .

of N , ~ℓj denotes a tuple 〈ℓ1j , . . . , ℓ
n
j 〉 ∈ L1 × · · · × Ln.

Recall: Given ξ and t ∈ Time, we use ξ(t) to denote the set

{〈~ℓ, ν〉 | ∃ i ∈ N0 : ti ≤ t ≤ ti+1 ∧ ~ℓ = ~ℓi ∧ ν = νi + t − ti}.

of configurations at time t.

New: ξ̄(t) denotes 〈~ℓj , νi + t − ti〉 where j = max{i ∈ N0 | ti ≤ t ∧ ~ℓ = ~ℓi}.

Our choice:

• Ignore configurations assumed for 0-time only.

• Extend finite computation paths to infinite length, staying in last
configuration.
Yet clocks advance – see later.

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
ta

o
b
s

–

11/35

Evolutions of TA Network: Example

ξ̄(t) denotes 〈~ℓj , νi + t − ti〉 where j = max{i ∈ N0 | ti ≤ t ∧ ~ℓ = ~ℓi}.

Example:

ξ = 〈
off
0

〉, 0
2.5
−−→ 〈

off
2.5

〉, 2.5
τ
−→ 〈

light
0

〉, 2.5
τ
−→ 〈

bright
0

〉, 2.5
τ
−→ 〈

off
0

〉, 2.5
1.0
−−→ 〈

off
1

〉, 3.5
τ
−→ . . .

• ξ̄(0) =

• ξ̄(1.0) =

• ξ̄(2.5) =
off light bright

press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖ ℓ0

press!

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
ta

o
b
s

–

12/35

Evolutions of TA Network Cont’d

ξ̄ induces the unique interpretation

Iξ : Obs(N) → (Time → D)

of Obs(N) defined pointwise as follows:

Iξ(a)(t) =

{
ℓi , if a = ℓi, ξ̄(t) = 〈〈ℓ1, . . . , ℓn〉, ν〉

ν(a) , if a ∈ Vi, ξ̄(t) = 〈~ℓ, ν〉

Example: D(ℓ1) = {off, light, bright}

ξ = 〈
off
0

〉, 0
2.5
−−→ 〈

off
2.5

〉, 2.5
τ
−→ 〈

light
0

〉, 2.5
τ
−→ 〈

bright
0

〉, 2.5
τ
−→ 〈

off
0

〉, 2.5
1.0
−−→ 〈

off
1

〉, 3.5
τ
−→ . . .

Iξ

Time

bright

light

off

0 1 2 3 4 5 6 7

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
ta

o
b
s

–

13/35

Evolutions of TA Network Cont’d

ξ = 〈
off
0

〉, 0
2.5
−−→ 〈

off
2.5

〉, 2.5
τ
−→ 〈

light
0

〉, 2.5
τ
−→ 〈

bright
0

〉, 2.5
τ
−→ 〈

off
0

〉, 2.5
1.0
−−→ 〈

off
1

〉, 3.5
τ
−→ . . .

Abbreviations as usual:

• Iξ(ℓ1)(0) =

• I(ℓ1 = off)(0) = Iξ(ℓ1)(0)=̂I(off))

• I(off)(1.0) = I(ℓ1 = off)(1.0)
if Li pairwise disjoint.

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
ta

o
b
s

–

14/35

Evolutions of TA Network Cont’d

• But what about clocks? Why not x ∈ Obs(N) for x ∈ Xi?

• We would know how to define Iξ(x)(t), namely

Iξ(x)(t) = νξ(t)(x) + (t − tξ(t)).

• But... Iξ(x)(t) changes too often.

Better (if wanted):

• add Φ(X1 ∪ · · · ∪ Xi) to Obs(N),
with D(ϕ) = {0, 1} for ϕ ∈ Φ(X1 ∪ · · · ∪ Xi).

• set

Iξ(ϕ)(t) =

{
1, if ν(x) |= ϕ, ξ̄(t) = 〈~ℓ, ν〉

0, otherwise

The truth value of constraint ϕ can endure over non-point intervals.

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
ta

o
b
s

–

15/35

SomeCheckableProperties

–
1
5

–
2
0
1
2
-0

7
-1

2
–

m
a
in

–

16/35

Model-CheckingDC Properties with Uppaal

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press !

y := 0

y < 2

press ! press !

y := 0

press !

y > 3press !

|=? F

• First Answer: N |= F if and only if ∀ ξ ∈ CompPaths(N) : Iξ |=0 F .

• Second Question: what kinds of DC formulae can we check with Uppaal?

• Clear: Not every DC formula.
(Otherwise contradicting undecidability results.)

• Quite clear: F = �⌈off⌉ or F = ¬♦⌈light⌉

(Use Uppaal’s fragment of TCTL, something like ∀� off,
but not exactly (see later).)

• Maybe: F = �(ℓ > 5 =⇒ ♦⌈off⌉5)

• Not so clear: F = ¬♦(⌈bright⌉ ; ⌈light⌉)

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
cv

ex
a

–

17/35

Model-CheckingDC Properties with Uppaal

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press !

y := 0

y < 2

press ! press !

y := 0

press !

y > 3press !

|=? F

• Second Question: what kinds of DC formulae can we check with Uppaal?

Wanted:

• a function f mapping DC formulae to Uppaal queries and

• a transformation ·̃ of networks of TA

such that

Ñ |=Uppaal f(F) ⇐⇒ N |= F

One step more general: an additional observer construction O(·) such that

Ñ ‖ O(F) |=Uppaal fO(F) ⇐⇒ N |= F

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
cv

ex
a

–

18/35

Model-Checking Invariantswith Uppaal

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0

y < 2

press! press!

y := 0

press!

y > 3press!

|=? F

• Quite clear: F = �⌈P ⌉.

• Unfortunately, we have

N |= ∀� P =⇒ N |= �⌈P ⌉

but in general not

N |= �⌈P ⌉ =⇒ N |= ∀� P,

because Uppaal also considers violations of P without duration, at points.

• Possible fix: measure duration explicitly, transform

ℓ to ℓ

ϕ ϕ
z := 0

z := 0
z := 0

Then check for N |= ∀�(z > 0 =⇒ P).

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
cv

ex
a

–

19/35

Model-CheckingCertain Durations with Uppaal

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0

y < 2

press! press!

y := 0

press!

y > 3press!

|=? F

• Maybe: F = �(ℓ > t0 =⇒ ♦⌈P ⌉t
1), t > 0

Check for

N |= ∀♦(P ∧ z0 > t0 ∧ z1 = t1).

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
cv

ex
a

–

20/35

Model-CheckingCertain Chopswith Uppaal

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0

y < 2

press! press!

y := 0

press!

y > 3press!

|=? F

• Not so clear: F = ¬♦(⌈bright⌉ ; ⌈light⌉) (Expectation? Holds or not?)

Off-hand approach:

• Add two auxiliary duration clocks zlight and zbright.

• Add auxiliary variable prev with D(prev) = {off, light, bright}
keeping track of where we came from.

• Observe: ⌈bright⌉ ; ⌈light⌉ means “get from bright directly to light”.

• Check for

N |= ∀♦(L.light ∧ zlight > 0 ∧ zbright > 0 ∧ prev = bright)

• Exercise: Prove N |= F ⇐⇒ Ñ |= f(F).

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
cv

ex
a

–

21/35

Model-CheckingCertain Chopswith Uppaal

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖ ℓ0

press!

|=? F

• Not so clear: F = ¬♦(⌈bright⌉ ; ⌈light⌉) (Expectation? Holds or not?)

Observer approach: (also off-hand) use following Ñ .

off C light C bright

C

C

press?

x := 0

A! press?

x ≤ 3 B!

press?

x > 3

D!

press?C!

‖ ℓ0

press!

‖

ℓ1

ℓ2

ℓ3

ℓ4

A?, B?, C?, D?

B? z := 0

C? z := 0

A? z = 0

Check for Ñ |= ∃♦O.ℓ4 (special case!).

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
cv

ex
a

–

22/35

TestableDC Properties

–
1
5

–
2
0
1
2
-0

7
-1

2
–

m
a
in

–

23/35

A MoreSystematic Approach

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖ ℓ0

press!

|=? F

• We have seen fO, ·̃ , and O(·) with

Ñ ‖ O(F) |=Uppaal fO(F) ⇐⇒ N |= F (∗)

for some particular F . Tedious: always have to prove (∗).

• Better:

• characterise a subset (or fragment) of DC,

• give procedures to construct fO(·), ·̃ , and O(·)

• prove once and for all that, if F is in this fragment, then

Ñ ‖ O(F) |=Uppaal fO(F) ⇐⇒ N |= F

• Even better: exact (syntactic) characterisation of the DC fragment that
is testable (not in the lecture).

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
ct

es
t

–

24/35

Testabilit y

Definition 6.1. A DC formula F is called testable if an observer
(or test automaton (or monitor)) AF exists such that for all net-
works N = C(A1, . . . ,An) it holds that

N |= F iff C(A′
1, . . . ,A

′
n,AF) |= ∀�¬(AF .qbad)

Otherwise it’s called untestable.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
ct

es
t

–

25/35

Untestable DC Formulae

A ¬A

B ¬B

C ¬C

[0, 1]

1

A

B

C

“Whenever we observe a change from A to ¬A at time tA,
the system has to produce a change from B to ¬B at some time tB ∈ [tA, tA + 1]

and a change from C to ¬C at time tB + 1.

Sketch of Proof: Assume there is AF such that, for all networks N , we have

N |= F iff C(A′
1, . . . ,A

′
n,AF) |= ∀�¬(AF .qbad)

Assume the number of clocks in AF is n ∈ N0.

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
ct

es
t

–

26/35

Untestable DC Formulae Cont’d

Consider the following time points:

• tA := 1

• tiB := tA + 2i−1
2(n+1) for i = 1, . . . , n + 1

• tiC ∈
]
tiB + 1 − 1

4(n+1) , t
i
B + 1 + 1

4(n+1)

[
for i = 1, . . . , n + 1

with tiC − tiB 6= 1 for 1 ≤ i ≤ n + 1.

Example: n = 3

Time

1

0
AI

1

0
BI

1

0
CI

0 1 2 3t1B t2B t3B t4B t1C t2C t3C t4C

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
ct

es
t

–

27/35

Untestable DC Formulae Cont’d

Example: n = 3

A ¬A

B ¬B

C ¬C

[0, 1]

1

A

B

C

Time

1

0
AI

1

0
BI

1

0
CI

0 1 2 3t1B t2B t3B t4B t1C t2C t3C t4C

• The shown interpretation I satisfies assumption of property.

• It has n + 1 candidates to satisfy commitment.

• By choice of ti
C , the commitment is not satisfied; so F not satisfied.

• Because AF is a test automaton for F , is has a computation path to qbad.

• Because n = 3, AF can not save all n + 1 time points ti
B.

• Thus there is 1 ≤ i0 ≤ n such that all clocks of AF have a valuation which is

not in 2 − t
i0
B + (− 1

4(n+1)
, 1

4(n+1)
)

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
ct

es
t

–

28/35

Untestable DC Formulae Cont’d

Example: n = 3

A ¬A

B ¬B

C ¬C

[0, 1]

1

A

B

C

Time

1

0
AI

1

0
BI

1

0
CI

0 1 2 3t1B t2B t3B t4B t1C t2C t3C t4C

• Because AF is a test automaton for F , is has a computation path to qbad.

• Thus there is 1 ≤ i0 ≤ n such that all clocks of AF have a valuation which is
not in 2 − t

i0
B + (− 1

4(n+1)
, 1

4(n+1)
)

• Modify the computation to I′ such that t
i0
C := t

i0
B + 1.

• Then I′ |= F , but AF reaches qbad via the same path.

• That is: AF claims I′ 6|= F .

• Thus AF is not a test automaton. Contradiction.–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
ct

es
t

–

29/35

Testable DC Formulae

Theorem 6.4. DC implementables are testable.

• Initialisation: ⌈⌉ ∨ ⌈π⌉ ; true

• Sequencing: ⌈π⌉ −→ ⌈π ∨ π1 ∨ · · · ∨ πn⌉

• Progress: ⌈π⌉
θ

−→ ⌈¬π⌉

• Synchronisation: ⌈π ∧ ϕ⌉
θ

−→ ⌈¬π⌉

• Bounded Stability: ⌈¬π⌉ ; ⌈π ∧ ϕ⌉
≤θ
−→ ⌈π ∨ π1 ∨ · · · ∨ πn⌉

• Unbounded Stability: ⌈¬π⌉ ; ⌈π ∧ ϕ⌉−→⌈π ∨ π1 ∨ · · · ∨ πn⌉

• Bounded initial stability: ⌈π ∧ ϕ⌉
≤θ
−→0 ⌈π ∨ π1 ∨ · · · ∨ πn⌉

• Unbounded initial stability: ⌈π ∧ ϕ⌉−→0⌈π ∨ π1 ∨ · · · ∨ πn⌉

Proof Sketch:

• For each implementable F , construct AF .

• Prove that AF is a test automaton.

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
ct

es
t

–

30/35

Proof of Theorem 6.4: Preliminaries

• Note: DC does not refer to communication between TA in the network,
but only to data variables and locations.

Example:

♦(⌈v = 0⌉ ; ⌈v = 1⌉)

• Recall: transitions of TA are only triggered by syncronisation, not by
changes of data-variables.

• Approach: have auxiliary step action.

Technically, replace each

ℓ

by

C:ℓc ℓ
step!

Note: the observer sees the data variables after the update.

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
ct

es
t

–

31/35

Proof of Theorem 6.4: Sketch

• Example: ⌈π⌉
θ

−−→ ⌈¬π⌉

q0

q1
q2

y ≤ 0
qabrt

qbad

step?

step?
π

x := 0

step?, π

x > θ

step?,¬π, y := 0

true

step?,¬π

true

step?, π

step?

step?

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
ct

es
t

–

32/35

Counterexample Formulae

Definition 6.5.

• A counterexample formula (CE for short) is a DC formula
of the form:

true ; (⌈π1⌉ ∧ ℓ ∈ I1) ; . . . ; (⌈πk⌉ ∧ ℓ ∈ Ik) ; true

where for 1 ≤ i ≤ k,

• πi are state assertions,

• Ii are non-empty, and open, half-open, or closed time
intervals of the form
• (b, e) or [b, e) with b ∈ Q+

0 and e ∈ Q+
0 ∪̇ {∞},

• (b, e] or [b, e] with b, e ∈ Q+
0 .

(b,∞) and [b,∞) denote unbounded sets.

• Let F be a DC formula. A DC formula FCE is called coun-

terexample formula for F if |= F ⇐⇒ ¬(FCE) holds.

Theorem 6.7. CE formulae are testable.

–
1
5

–
2
0
1
2
-0

7
-1

2
–

S
d
ct

es
t

–

33/35

References

–
1
5

–
2
0
1
2
-0

7
-1

2
–

m
a
in

–

34/35

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems

- Formal Specification and Automatic Verification. Cambridge University Press.

–
1
5

–
2
0
1
2
-0

7
-1

2
–

m
a
in

–

35/35

