— 15 — 2012-07-12 — main —

Real-Time Systems

Ledure 15: Automatic Verification o DC Properties for TA

201207-12

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 15 — 2012-07-12 — Sprelim —

Last Lecture:
o Extended Timed Automata

o Uppaal Query Language

This Lecture:

o Educational Objectives: Capabilities for following tasks/questions.
e How can we relate TA and DC formulae? What's a bit tricky about that?

o Can we use Uppaal to check whether a TA satisfies a DC formula?

o Content:
o An evolution-of-observables semantics of TA
o A satisfaction relation between TA and DC

o Model-checking DC properties with Uppaal

2/35

— 15 — 2012-07-12 — main

Observer-based Automatic Verification ad DC Properties
for TA

3/35

Model-Checkng DC Properties with Uppad

— 15 — 2012-07-12 — Sdcvintro —

O fonty

press?
! press! fl\ press! 6\ press!
0 1 2 :
y=0 _J 2/ y=0
press? y<2

= F

z:=0 press!

5?7
press! press! @ y>3
>3

o First Question: what is the “E=" here?

o Second Question: what kinds of DC formulae can we check with Uppaal?

e Clear: Not every DC formula.
(Otherwise contradicting undeeidability results.) ~\v0 ?J'[
o Quite clear: F' = [[off] or F' = —¢ [Iight]/—\ —~V01~‘(.94/?

(Use Uppaal’s fragment of TCTL, something like V[off,
but not exactly (see later).)

o Maybe: F=0(>5 = O[off]?)

o Not so clear: F'=—{([bright] ; [light])
435

Example: Let's Sart With Sngle Runs

— 15 — 2012-07-12 — Sdcvintro

press?

press!

I (D E' =0Tlight]

press? @ press?

x:=0 <3

press?

>3

off 2.5 , off

light

_ . T 2.0, light ~, bright
&= 0), 0 = <2.5>,2.5 — 0), 2.5 = 20), 4.5 — 9.0), 4.5
Construct interpretation Lz (&) : Time — {off, light, bright}:

Lz(§)
bright — -
light —

off"———\’\——olu

o 1 2 3 4 5 ¢ 7 [lime

Example 2: Anather Sngle Run

vintro

— 15 — 2012-07-12 — Sdc

press?

press!

|| =7 =0 light]

z:=0

press? @ press?

press?
>3

¢ off 2.5 , off

o T |Ight T
—<0>,0‘%<2i5>,2.5—>< 0), 2.5 — 0), 2.5 —

bright

Lz(¢) 77/\ 2&)5"“"{4 [aw@_,
s

bright 0’7 ol ¥, ‘,Q
light 0;
off &

o 1 2 3 4 5 ¢ 7 [lime

We know this problem from the exercises...

5/35

6/35

— 15 — 2012-07-12 — main

Observing Timed Automata

DC Properties of Timed Automata

— 15 — 2012-07-12 — Staobs —

press?

press! @ press! @ press!
vi=0 \/ 2/ v=0

press?

z:=0

press?
>3

press!

Wanted: A satisfaction relation between networks of timed automata and DC
formulae, a notion of A satisfies F, denoted by N |= F.

Plan:
Consider network N consisting of TA
Ae,i = (Lla Cia Bi7 Ui: Xi7 ‘/i> Ii7 Ei? élmﬂ)

Define observables Obs(\) of N.

Define evolution Z¢ of Obs(N) induced by computation path
¢ € CompPaths(N) of N,
CompPaths(N) = {£ | € is a computation path of N'}

Say N |= F if and only if V€ € CompPaths(N) : I¢ }=o F.

7/35

8/35

Observables of TA Network

— 15 — 2012-07-12 — Staobs

Let A be a network of n extended timed automata

Aci = (Li, Ci, By, Ui, X3, Vi, I, B i i)

For simplicity: assume that the L; and X are pairwise disjoint and that each
V; is pairwise disjoint to every L; and X; (otherwise rename).

« Definition: The observables Obs(\) of A are
{tr,.... 030 | Wi
& 1<i<n
with C""f“"{ locatio, 0/ A"ﬂ

:ggil))e:ljli/en vevV (rnld bl (W'b? %
Bivem " we wed fé)“ @_f

Observables of TA Network: Example

— 15 — 2012-07-12 — Staobs

Ae,i = (Li, Cz‘, Bi, Ui,Xi, ‘/i,Ii,Ei,éini,i)-

The observables Obs(N) of NV are {{1,...,¢n} U<, Vi with
« D) = L,
o D(v) as given, v € V;.

9/35

1035

Evolutions of TA Network

— 15 — 2012-07-12 — Staobs —

Recall: computation path

- PR Ao 7 A
& = (lo,), to = <51,V1>,t’1 = <f2,1/2>7fg =
\.\/Jﬂz

of NV, [k denotes a tuple (E}(,...,ZZ) €Ly x---xLy,.

Recall: Given £ and ¢t € Time, we use £(t) to denote the set
vy |FieNg:t; <t <t A=l Av=uv;+t—t;}
of configurations at time t.
New: £(t) denotes <l7j,1/j,+ t— tJ> where j = max{i € Ny | t; <t AL = 0;}.
Our choice:

» lgnore configurations assumed for O-time only.

o Extend finite computation paths to infinite length, staying in last
configuration.
Yet clocks advance — see later.

Evolutions of TA Network: Example

— 15 — 2012-07-12 — Staobs —

£(t) denotes <€_;,VI —|—t—t}> where j = max{i € Ny | t; < tAL =03}

Example:

off

11/35

025, (5‘?),2.5 z, (lighty 5 5 7, brighty o 5 7, (°(§F>,2.5 REIN (°f),3.5 .

12/35

Evolutions of TA Network Cont’d

obs

— Sta

—2012-07-12

-15

¢ induces the unique interpretation
Z¢ : Obs(N) — (Time — D)
of Obs(N) defined pointwise as follows:

0 Cifa=0;, E(t) = (04, ..., "), V)
Ze(a)(t) =) T
via) ,ifaeV, &)= (L)
Example: D(¢;) = {off, light, bright}
= (%),022 (M 05 = (T8N o5 2, (OB 55 1 (O, 25 10, (M) 55 1
Ze
bright
light
off

13/35

Evolutions of TA Network Cont’d

2012-07-12 — Staobs

— 15—

off 2.5 , off

£=(%)02%),2.5 L (lighty o 5 7, brighty o5 7 off 2.5&(°1ff>,3.5l>...

<2.5 0 0 ’ 0 b

auM/ [D(‘ 0}‘ 45'1 daﬁhxﬁ\q

Abbreviatighs as usual:
T(0)(0) = df (b D¥)
Ity = off)(0) = L(€)0) = T6F)
Z(off)(1.0) = I(li= oft) (10)

if L; pairwise disjoint.

14/35

Evolutions of TA Network Cont’d

— 15 — 2012-07-12 — Staobs

— 15 — 2012-07-12 — main

But what about clocks? Why not z € Obs(N) for z € X;?

We would know how to define Z¢(x)(t), namely

Te(2)(t) = veey () + (E — ter))-
But... Z¢(z)(t) changes too often.
O(T 2 xss)
Better (if wanted):

add (I)(Xl U-.-- UXI) to ObS(N),
with D(p) = {0,1} for p € ®(X; U--- U X;).

set
L if v(2) | 0. €(t) = (o)

0, otherwise

Ze(p)(t) = {

The truth value of constraint ¢ can endure over non-point intervals.

Same Checlkable Properties

15/35

16/35

Model-Checkng DC Properties with Uppad

— 15 — 2012-07-12 — Sdcvexa —

press?

press! 61\ press! @ press!
= G Gy

y<2

press? @ press?

x:=0 x <3

press?
>3

press!

o First Answer: N |= F if and only if V& € CompPaths(N) : Z¢ = F.

o Second Question: what kinds of DC formulae can we check with Uppaal?

o Clear: Not every DC formula.
(Otherwise contradicting undecidability results.)

o Quite clear: F' = O[off] or F = —={[light]
(Use Uppaal's fragment of TCTL, something like VI off,
but not exactly (see later).)

o Maybe: F=0(>5 = O[off]®)

o Not so clear: F = ={([bright] ; [light])
17/35

Model-Checkng DC Properties with Uppad

— 15 — 2012-07-12 — Sdcvexa —

press?

press! @ press! @ press!
v=0 2/ 2/ =0

press?

z:=0

press?
>3

press!

o Second Question: what kinds of DC formulae can we check with Uppaal?

Wanted:

e a function f mapping DC formulae to Uppaal queries and
e a transformation ~ of networks of TA

such that N
N 'Zuppaa| f(F) <~ ./\/":F

One step more general: an additional observer construction O(-) such that
N || O(F) Fuppa foF) <= N = F

1835

Model-Checkng Invariants with Uppad

— 15 — 2012-07-12 — Sdcvexa —

press?

press! @ press! @ press!
y:=0 U U y:=0

y<2

press?

z:=0

press?
x >3

press!

o Quite clear: F' =[[P].
o Unfortunately, we have

NEVOP = N =0O[P]

but in general not

NEO[P] = N vVOP,

because Uppaal also considers violations of P without duration, at points.

o Possible fix: measure duration explicitly, transform

z:=0
=) 0 T
O/ L= 0/
@ ®

Then check for N EVO(z >0 = P).

Model-Checkng Certain Durations with Uppad

— 15 — 2012-07-12 — Sdcvexa —

press?

press! 61\ press! @ press!
y:=0 \/ U y:=0

y<2

press!

press! y>3

o Maybe: F =0 >ty = O[P]}),t>0

Check for
N':VQ(P/\ZO >t N\ 21 Ztl).

19/35

20/35

Model-Checking Certain Chops with Uppad

— 15 — 2012-07-12 — Sdcvexa —

press?

press!

A=

II S FF
press!
press? press! y>3
T >3
o Not so clear: F' = ={([bright] ; [light]) (Expectation? Holds or not?)

Off-hand approach:

o Add two auxiliary duration clocks ziight and Zprignt.

o Add auxiliary variable prev with D(prev) = {off, light, bright}
keeping track of where we came from.

o Observe: [bright] ; [light] means “get from bright directly to light”.

o Check for
N EVO(L.light A zight > 0 A Zbright > 0 A prev = bright)

o Exercise: Prove N = F <= N = f(F).
21/35

Model-Checkng Certain Chops with Uppad

— 15 — 2012-07-12 — Sdcvexa —

press?

press? @ press?

=0 z<3

press?
z>3

o Not so clear: F' = ={([bright] ; [light]) (Expectation? Holds or not?)

Observer approach: (also off-hand) use following N.
O: A?,B?,C?,D?

. N
press? 2:=0

K/
g
Check for ' = 30 O.4, (special case!). Oha,

— 15 — 2012-07-12 — main

Testable DC Properties

— 15 — 2012-07-12 — Sdctest —

A More Systematic Approach
Pl I @D K F
et obotves (S
We have seen fo, =, and O(-) with b ey
heabion _
W"i‘("‘x /—PNH O(F) ':Uppaal f(’)(F) p— N ': F (*)

for some particular F'. Tedious: always have to prove (x).

Better:
characterise a subset (or fragment) of DC,
give procedures to construct fo(-), =, and O(-)
prove once and for all that, if F'is in this fragment, then

N || O(F) Euppant fo(F) <= N EF

Even better: exact (syntactic) characterisation of the DC fragment that
is testable (not in the lecture).

2335

2435

Testability

— 15 — 2012-07-12 — Sdctest —

Definition 6.1. A DC formula F' is called testable if an observer
(or test automaton (or monitor)) Ap exists such that for all net-
works V' = C(A,...,A,) it holds that

N':F iff C(Il,,.A;L,.AF) |:V|:|_‘(-AF(]bad)

Otherwise it's called untestable.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.

25/35

— 15 — 2012-07-12 — Sdctest —

Untestable DC Formulae
A —-A
Ar-——+4——+—t+-———-—————- g
B F————- k= — =
C F-—————==-- == —

“Whenever we observe a change from A to —A at time ¢4,
the system has to produce a change from B to =B at some time ¢ € [ta,ta + 1]
and a change from C to =C' at time tp + 1.

Sketch of Proof: Assume there is Ar such that, for all networks A/, we have
N':F iff C(/1,...,./4/,”./4}7) I:VDﬁ(Ap.qbad)

Assume the number of clocks in Ar is n € INg.

26/35

Untestable DC Formulae Cont’d

— 15 — 2012-07-12 — Sdctest —

Consider the following time points:
ta =1

th ::tA+%fom‘=1,...,n+1

15 — 2012-07-12 — Sdctest —

i i 1 i 1 S
tCE]tB+17m7tB+1+m|:forZ—l,77’L+1
with t&, —t #£1for 1 <i<n+1.
Example: n =3
1 _
AI .
0
1 A —] s s
Br -
O — — —
1t il = =
oy HIB
0 —_— — —_—
0 1ty By th ootk 2k thz Time
) P A
Untestable DC Formulae Cont’'d
B F————- e N it
[cINIl - [-c]
Example: n =3 S T
1 _
Az :
0
1 A —] s s
By —
0 — — —
IRE 5 = B
oy i mn
0 —_— — —_—
0 1ty B 8)2k 2 B, i3 Time

The shown interpretation 7 satisfies assumption of property.

It has n 4+ 1 candidates to satisfy commitment.

By choice of tic, the commitment is not satisfied; so I' not satisfied.

Because Ar is a test automaton for F, is has a computation path to gpad.

Because n = 3, Ar can not save all n + 1 time points t%.

Thus there is 1 < 79 < n such that all clocks of Ar have a valuation which is

not in 2 =t + (~ 351y 1t

Untestable DC Formulae Cont’'d *

— 15 — 2012-07-12 — Sdctest —

B -+
Example: n =3 Cp o oo
1 —
Az
0
Br R
0 — — —
Cr R DR I
0 —_— — —_—
T
0 1ty 3 ot ot 2tl t2 8 th3 me

Because Apr is a test automaton for I, is has a computation path to gpaq.

Thus there is 1 < 79 < n such that all clocks of Ar have a valuation which is

not in 2~ 15 + (~34my» 700 T))

Modify the computation to Z’ such that ¢9 := 19 + 1.
Then I’ = F, but A reaches quqq via the same path.
That is: Ap claims Z" (£ F.

Thus AFr is not a test automaton. Contradiction.

Testable DC Formulae

— 15 — 2012-07-12 — Sdctest —

Theorem 6.4. DC implementables are testable.

Initialisation:
Sequencing;:
Progress:

Synchronisation:
<6

[TV [r];true

[7] — [f VT V-V,]

(7] = [

[7 Al -5 [

Bounded Stability:
Unbounded Stability:

Bounded initial stability:

Unbounded initial stability:

Proof Sketch:

|_—|7r-|;|_7r/\gp-| —>|_7r\/7T1\/"'
] A gl — v Ve
[rAp] <%0 [rVm V.-

[T Ap]l—0o[mVm V.-

For each implementable F', construct Ap.

Prove that Ap is a test automaton.

VT |
V |
V T, |
V T |

29/35

30/35

Proof of Theorem 6.4:; Preliminaries

— 15 — 2012-07-12 — Sdctest —

Note: DC does not refer to communication between TA in the network,
but only to data variables and locations(e clock f”’g"“‘{s, i addid),

Example:

O(fv =073 [v=1])

Recall: transitions of TA are only triggered by syncronisation, not by
changes of data-variables.

Approach: have auxiliary step action.
Technically, replace each

A

by Cmini'

\ ™~
/w step! \{/\

Note: the observer sees the data variables after the update.

Proof of Theorem 6.4;: Sketch

— 15 — 2012-07-12 — Sdctest —

Example: [7] 2, [—-7]

step? @/.

step?

true

A

0

step?, 77@
x

>0 step?
step?, —m

step?| (Qbad

3135

32/35

Courterexample Formulae

— 15 — 2012-07-12 — Sdctest

— 15 — 2012-07-12 — main

/

L

\

Definition 6.5.

A counterexample formula (CE for short) is a DC formula
of the form:

true; ([m | ALET)s...; ([mr] AL E I); true

where for 1 <7 <k,
m; are state assertions,
I; are non-empty, and open, half-open, or closed time
intervals of the form
(b,e) or [b,e) with b € QF and e € QF U {0},
(b, e] or [b,e] with be € QF .
(b,0) and [b, c0) denote unbounded sets.
Let F' be a DC formula. A DC formula F¢gg is called coun-
terexample formula for F if = F <= —(F¢g) holds.

Theorem 6.7. CE formulae are testable.

References

3335

3435

— 15 — 2012-07-12 — main —

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems
- Formal Specification and Automatic Verification. Cambridge University Press.

35/35

