Theory I

Programming language, such as C_{++} Basic knowledge on data structures, algorithms, logic and mathematics

Get an in-depth knowledge on:

- design and analyse algorithms
- the key problems underlying the foundations of programming languages and database systems Improve the problem solving ability by doing the exercises
- One exercise sheet every week
- exercises posted one week ahead of the lectures about the topic of the exercises
- exercise classes take place on each Monday (one hour)
- hand in your solution before the exercise class starts or at the designated lockbox in building 51
- Final exam
- Web page for the lecture:
https://swt.informatik.uni-freiburg.de/teaching/SS2012/theoryl

Area Topics

Algorithms and Search trees, AVL trees complexity

Hashing chaining, Hashing open addressing
Dynamic tables, amortized analysis
Randomized algorithms, primality testing
Text search
Edit distance

Principles of
programming languages

Foundations of database systems

Basic terms
Abstract data types
The word problem
Relational algebra
Relational calculus
Formal design

Algorithms and complexity: 1 Introduction

- Example: sorting problem
- input: sequence of n numbers $<a_{1}, a_{2}, \ldots, a_{n}>$
- output: permutation $<a_{1}^{\prime}, a^{\prime}{ }_{2}, \ldots, a^{\prime}{ }_{n}>$ such that $a_{1}^{\prime} \leq a^{\prime}{ }_{2} \leq \cdots \leq a_{n}^{\prime}$
- An algorithm describes
- solution to a problem
- how to get from the input to the output by a sequence of basic operations
- Length of sequence of basic operations depends on
- size of the input
- structure of the input
- The Internet enables people all around the world to quickly access and retrieve large amounts of information. In order to do so, clever algorithms are employed to manage and manipulate this large volume of data.
- Electronic commerce enables goods and services to be negotiated and exchanged electronically. Public-key cryptography and digital signatures core technologies used and are based on numerical algorithms and number theory.
- The Human Genome Project has the goals of identifying all the 100,000 genes in human DNA, determining the sequences of the 3 billion chemical base pairs that make up human DNA, storing this information in databases, and developing tools for data analysis.

Issues:

- correctness
- time efficiency
- space efficiency

Approaches:

- theoretical analysis
- empirical analysis

Cost $\mathrm{C}_{\text {... }}(\mathrm{n})=$ number of computation steps for inputs of size n

- Worst case: $\quad \mathrm{C}_{\text {worst }}(n)=$ maximum cost over inputs of size n
- Best case: $\quad \mathrm{C}_{\text {best }}(n)=$ minimum cost over inputs of size n
- Average case: $\mathrm{C}_{\text {avg }}(n)=$ average cost over inputs of size n

ALGORITHM SequentialSearch (A[0..n-1],K)
//Searches for a given value in a given array by sequential search //Input: An array $A[0 . . n-1]$ and a search key K
//Output: The index of the first element of A that matches K
$/ / \quad$ or -1 if there are no matching elements
$i \leftarrow 0$
while $i<n$ and $A[i] \neq K$ do

$$
i \leftarrow i+1
$$

if $i<n$ return i
else return -1

- Worst case?
- Best case?
- Average case?

Exact formula

$$
\text { e.g., } \mathrm{C}(n)=n(n-1) / 2
$$

Formula indicating order of growth with specific multiplicative constant

$$
\text { e.g., } \mathrm{C}(n) \approx 0.5 n^{2}
$$

- Formula indicating order of growth with unknown multiplicative constant c

$$
\text { e.g., } \mathrm{C}(n) \approx c n^{2}
$$

Order of growth of a cost function with input size n

Example,

- How much faster will algorithm run on computer that is twice as fast?
- How much longer does it take to solve problem of double input size?

n	$\log _{2} n$	n	$n \log _{2} n$	n^{2}	n^{3}	2^{n}	$n!$
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^{6}$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^{2}$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^{4}$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^{5}$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^{6}$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^{7}$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

A way of comparing functions that ignores constant factors and small input sizes

- $O(g(n))$: class of functions $f(n)$ that grow no faster than $g(n)$ e.g., $10 \mathrm{n} \in O\left(n^{2}\right), 2^{2 n} \notin O\left(2^{n}\right)$
- $\Theta(g(n))$: class of functions $f(n)$ that grow at same rate as $g(n)$ e.g., $2^{32} n^{3} \in \Theta\left(n^{3}\right), 2^{32} n^{3} \notin \Theta\left(n^{2}\right)$
- $\Omega(g(n))$: class of functions $f(n)$ that grow at least as fast as $g(n)$ e.g., $n^{3} \in \Omega\left(n^{2}\right), n \notin \Omega\left(n^{2}\right)$

$$
\begin{aligned}
& \sum_{I \leq i \leq n} 1=1+1+\ldots+1=n-I+1 \\
& \quad \text { In particular, } \sum_{1 \leq i \leq n} 1=n-1+1=n \in \Theta \quad(n) \\
& \sum_{1 \leq i \leq n} i=1+2+\ldots+n=n(n+1) / 2 \approx n^{2} / 2 \in \Theta\left(n^{2}\right) \\
& \sum_{1 \leq i \leq n} I^{2}=1^{2}+2^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6 \approx n^{3} / 3 \in \Theta\left(n^{3}\right) \\
& \sum_{0 \leq i \leq n} a^{i}=1+a+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1) \text { for any } a \neq 1 \\
& \quad \text { In particular, } \sum_{0 \leq i \leq n} 2^{i}=2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1 \in \Theta\left(2^{n}\right) \\
& \left.\sum_{\left(a_{i} \pm\right.} b_{i}\right)=\sum a_{i} \pm \sum b_{i} \quad \sum c a_{i}=c \sum a_{i} \\
& \sum_{k i \leq u} a_{i}=\sum_{l \leq i \leq m} a_{i}+\sum_{m+1 \leq i \leq u} a_{i}
\end{aligned}
$$

