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The dictionary problem 

 

Given: a set of objects (data) where each element can 

be identified by a unique key  

(integer, string, ... ). 

Goal: a structure for storing the set of keys such that at 

least the following operations (methods) are 

supported: 

• search (find, access) 

• insert 

• delete 

Intuition: english-german dictionary 
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The dictionary problem (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 Search(id) 

 Insert? 

 Delete? 
 
 

string SequentialSearch (int k){ 

    n = first; 

    while (n != null) { 

 if ( k == n.id) return n.name; 

 n = n.next; 

    } 

    return “not found”; 

} 
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class ListNode { 

    int id; 

    string name; 

    ListNode next; 

} 
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The dictionary problem (3) 

The following conditions can influence the choice of a solution to the dictionary 
problem:  

 

 the frequency of the operations: 
– mostly insertion and deletion (dynamic) 
– mostly search (static) 
– approximately the same frequencies 
 

 other operations to be implemented: 
– set operations: union, intersection, difference quantity, ... 
– enumerate the set in a certain order (e.g. ascending by key) 
 

 the complexity of the solution: average case, worst case, amortized worst case 

 

 the place where the data is stored: main memory, hard drive, WORM (write once 
read multiple)  

 



22.04.2012 Theory 1 - Search Trees 5 

The dictionary problem (3) 

Different approaches to the dictionary problem: 

 structuring the complete universe of all 

possible keys: hashing 

 structuring the set of the actually occurring 

keys: lists, trees, graphs, ... 
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Trees 

 

Trees are a generalisation of linked lists (each element can have 
more than one successor)  
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Trees as graphs (1) 

Trees are 

 special graphs: 
– in general, a graph G = (N,E) consists of a set N of nodes and 
   a set E  of edges 
– the edges are either directed or undirected 
– nodes and edges can be labelled 

 a tree is a connected acyclic graph, where: 
# nodes = # edges + 1 

 a general and central concept for the hierarchical structuring of 
information:  
– decision trees  
– code trees 
– syntax trees 
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Trees as graphs (2) 

Several kinds of trees can be distinguished: 

 undirected tree (with no designated root)  

 

 

 

 

 

 rooted tree (one node is designated as the root) 
 

 

 

 

 

 – from each node k there is exactly one path (a sequence of pairwise neighbouring edges) to 
the root 

 
– the parent (or: direct predecessor) of a node k is the first neighbour on   the path from k to 
the root 

 
– the children (or: direct successors) are the other neighbours of k 
 

 – the rank (or: outdegree) of a node k is the number of children of  k 
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Trees as graphs (3) 

 Rooted tree: 
– root: the only node that has no parent 
– leaf nodes (leaves): nodes that have no children 
– internal nodes: all nodes that are not leaves 
– order of a tree T: maximum rank of a node in T 
– the notion tree is often used as a synonym for rooted tree 

 Ordered (rooted) tree: among the children of each node there is 
an order e.g. the < relation among the keys of the nodes 

 

 

 

 

 

 Binary tree: ordered tree of order 2; the children of a node are 
referred to as left child and right child 

 Multiway tree: ordered tree of order > 2 
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Trees as graphs (4) 

A more precise definition of the set Md  of the ordered rooted trees of order d 
(d ≥ 1): 

 

 a single node is in Md 

 

 let t1, . . .,td  Md and w a node. Then w with the roots of t1, . . .,td as its 
children (from left to right) is a tree t  Md. The ti are subtrees of t. 

 

 – according to this definition each node has rank d (or rank 0) 

 
– in general, the rank can be  d 

 
– nodes of binary trees either have 0 or 2 children 

 
– nodes with exactly 1 child could also be permitted by allowing empty 
subtrees in the above definition 

w 

t1 t2 td 

.................. 
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Examples 

 

 

 

 

 

 

        tree                 not a tree                  not a tree 

                                                           (but two trees!) 
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Structural properties of trees 

 Depth of a node k: # edges from the tree root until k 

(distance of k to the root) 

 Height h(t) of a tree t: maximum depth of a leaf in t. 

Alternative (recursive) definition: 

– h(leaf) = 0 

– h(t) = 1 + max{ti | root of ti is a child of the root of t}  

(ti is a subtree of t) 

 Level i: all nodes of depth i 

 Complete tree: tree where each non-empty level has 

the maximum number of nodes. 

 all leaves have the same depth. 
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Applications of trees 

 

Use of trees for the dictionary problem: 

 node: stores one key 

 tree: stores a set of keys 

 enumeration of the complete set of data  
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Standard binary search trees (1) 

Goal: Storage, retrieval of data (more general: dictionary problem)  

Two alternative ways of storage: 

 search trees: keys are stored in internal nodes leaf nodes are empty 
(usually = null), they represent intervals between the keys 

 leaf search trees: keys are stored in the leaves internal nodes contain 
information in order to direct the search for a key 

 

Search tree condition: 
For each internal node k: all keys in the left subtree tl of k are less (<) 
than the key in k and all keys in the right subtree tr of k are greater (>) 
than the key in k 

 
k 

t l t r 
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Standard binary search trees (2) 

 

 

 

 

 

 

 

How can the search for key s be implemented? (leaf  null) 

 k = root; 

while (k != null) { 

    if (s == k.key) return true; 

    if (s < k.key)  k = k.left; 

    else   k = k.right 

} 

return false; 
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Example (without stop mode) 

Search for key s ends in the internal node k with k.key == s or in the leaf 

whose interval contains s  

 Root 27 

39 3 

15 

14 

1 
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Standard binary search trees (3) 

Leaf search tree: 

 keys are stored in leaf nodes 

 clues (routers) are stored in internal nodes, such that sl ≤ sk ≤ sr  

(sl : key in left subtree, sk : router in k, sr : key in right subtree) 

“=“ should not occur twice in the above inequality 

 choice of s: either maximum key in tl (usual) or minimum key in tr. 
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Example: leaf search tree 

Leaf nodes store keys, internal nodes contain routers. 
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Example: leaf search tree 

Leaf nodes store keys, internal nodes contain routers. 
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Example: leaf search tree 

Leaf nodes store keys, internal nodes contain routers. 
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Standard binary search trees (4) 

How is the search for key s implemented in a leaf search tree?  
(leaf = node with 2 null pointers) 

 

     k = root; 
  if (k == null) return false; 
  while (k.left != null) {   // thus also k.right != null 
      if (s <= k.key) k = k.left; 
      else k = k.right; 
  }      // now in the leaf 
  return s==k.key; 

 In the following we always talk about search trees (not leaf search 
trees). 
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Standard binary search trees (5) 

 

 

class SearchNode { 
    int content; 
    SearchNode left; 
    SearchNode right; 
    SearchNode (int c){  // Constructor for a node 
        content = c;  // without successor 
        left = right = null; 
    } 
} //class SearchNode 

 class SearchTree { 
    SearchNode root; 
    SearchTree () {  // Constructor for empty tree 
        root = null; 
    } 
    // ... 

   } 
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Standard binary search trees (6) 

 

 

/* Search for c in the tree */ 

boolean search (int c) { 

    return search (root, c); 

} 

boolean search (SearchNode n, int c){ 

    while (n != null) { 

        if (c == n.content) return true; 

        if (c < n.content) n = n.left; 

        else n = n.right; 

    } 

    return false; 

} 
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Standard binary search trees (7) 

Alternative tree structure: 

 instead of leaf  null, set leaf  pointer to a 

special “stop node” b 

 for searching, store the search key s in b to 

save comparisons in internal nodes. 

 

Use of a stop node for searching! 
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Example (with stop mode) 

27 

39 3 

15 

14 

1 

Wurzel 

x 
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Standard binary search trees (7) 

Insertion of a node with key s in search tree t. 

Search for s: 

1. search for s ends in a node with s: don‘t 

insert (otherwise, there would be  duplicated 

keys)  

2. search ends in leaf b: make b an internal 

node with s as its key and two new leaves. 

 

  tree remains a search tree! 
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Standard binary search trees (8) 

 

 

 

 

 

 

 

 

 

 

 Tree structure depends on the order of insertions into the initially empty 

tree 

 Height can increase linearly, but it can also be in O(log n),  

more precisely [log2 (n+1)] .  

 

Insert 5 

3 

9 

12 

4 

5 

3 

9 

12 

4 



22.04.2012 Theory 1 - Search Trees 28 

Standard binary search trees (9) 

int height() { 

    return height(root); 

} 

int height(SearchNode n){ 

    if (n == null) return 0; 

    else return 1 + Math.max(height(n.left), 

height(n.right)); 

} 

/* Insert c into tree; return true if successful 

   and false if c was in tree already */ 

boolean insert (int c) {  // insert c 

    if (root == null){ 

        root = new SearchNode (c); 

        return true; 

    } else return insert (root, c); 

} 
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Standard binary search trees (10) 

boolean insert (SearchNode n, int c){ 

    while (true){ 

        if (c == n.content) return false; 

        if (c < n.content){ 

            if (n.left == null) { 

                n.left = new SearchNode (c); 

                return true; 

            } else n = n.left; 

        } else {  // c > n.content 

            if (n.right == null) { 

                n.right = new SearchNode (c); 

                return true; 

            } else n = n.right; 

        } 

    } 

} 
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Special cases 

 The structure of the resulting tree depends on the order, in which the 

keys are inserted. The minimal height is  [log2 (n+1)] and the maximal 

height is n. 

 Resulting search trees for the sequences 15, 39, 3, 27, 1, 14 and  

1, 3, 14, 15, 27, 39: 

 

15 

39 3 

14 
27 1 

1 

3 

14 

15 

27 

39 



22.04.2012 Theory 1 - Search Trees 31 

Standard binary search trees (11) 

A standard tree is created by iterative insertions 

in an initially empty tree. 

 Which trees are more frequent/typical: the 

balanced or the degenerate ones? 

 How costly is an insertion? 
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Standard binary search trees (11) 

Deletion of a node with key s from a tree (while retaining the search tree 
property) 

Search for s:  
if search fails: done. 
otherwise search ends in node k with k.key == s and 

k has no child, one child or two children: 

a) no child: done (set the parent’s pointer to null instead of k) 

b) only one child: let k’s parent v point to k’s child instead of k 

c) two children: search for the smallest key in k’s right subtree, i.e. go right 
and then to the left as far as possible until you reach p (the symmetrical 
successor of k); copy p.key to k, delete p (which has at most one child, 
so follow step (a) or (b)) 
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Symmetrical successor 

Definition: A node q is called the symmetrical successor of a node p 

if q contains the smallest key greater than or equal to the key of 

p. 

 

Observations: 

 the symmetrical successor q of p is leftmost node in the right 
subtree of p. 

 the symmetrical successor has at most one child, which is the 
right child. 
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Finding the symmetrical successor 

Observation: If p has a right child, the symmetrical successor always 

exists. 

 

 First go to the right child of p. 

 

 From there, always proceed to the left child until you find a node 

without a  left child. 

 

p 

q 
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Idea of the delete operation 

 Delete p by replacing its content with the content of its symmetrical successor q.  

Then delete q. 

 Deletion of q is easy because q has at most one child. 

 

x p 

y q 

x p 

y q 
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Example 

k has no internal child, one internal child or two internal children:  
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Standard binary search trees (12) 

boolean delete(int c) { 
    return delete(null, root, c); 
} 
// delete c from the tree rooted in n, whose parent is vn  
boolean delete(SearchNode vn, SearchNode n, int c) { 
    if (n == null) return false; 
    if (c < n.content) return delete(n, n.left, c); 
    if (c > n.content) return delete(n, n.right, c); 
    // now we have: c == n.content 
    if (n.left == null) { 
        point (vn, n, n.right); 
        return true; 
    } 
    if (n.right == null) { 
        point (vn, n, n.left); 
        return true; 
    } 
    // ... 
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Standard binary search trees (13) 

// now n.left != null and n.right != null 
    SearchNode q = pSymSucc(n); 
    if (n == q) {  // right child of q is SymSucc(n) 
        n.content = q.right.content; 
        q.right = q.right.right; 
        return true; 
    } else {  // left child of q is SymSucc(n) 
        n.content = q.left.content; 
        q.left = q.left.right; 
        return true; 
    } 
} // boolean delete(SearchNode vn, SearchNode n, int c) 

 

 

// returns the parent of the symmetrical successor 
SearchNode pSymSucc(SearchNode n) { 
    if (n.right.left != null) { 
        n = n.right; 
        while (n.left.left != null) n = n.left; 
    } 
    return n; 
} 
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Standard binary search trees (14) 

// let vn point to m instead of n;  

// if vn == null, set root pointer to m 

void point(SearchNode vn, SearchNode n, SearchNode m) { 

    if (vn == null) root = m; 

    else if (vn.left == n) vn.left = m; 

    else vn.right = m; 

} 

 


