
Algorithms and complexity:
2 The dictionary problem: search trees

22.04.2012 Theory 1 - Search Trees 2

The dictionary problem

Given: a set of objects (data) where each element can

be identified by a unique key

(integer, string, ...).

Goal: a structure for storing the set of keys such that at

least the following operations (methods) are

supported:

• search (find, access)

• insert

• delete

Intuition: english-german dictionary

22.04.2012 Theory 1 - Introduction 3

The dictionary problem (2)

 Search(id)

 Insert?

 Delete?

string SequentialSearch (int k){

 n = first;

 while (n != null) {

 if (k == n.id) return n.name;

 n = n.next;

 }

 return “not found”;

}

id
name

next

id
name

next

id
name

next
…

null

first

class ListNode {

 int id;

 string name;

 ListNode next;

}

22.04.2012 Theory 1 - Search Trees 4

The dictionary problem (3)

The following conditions can influence the choice of a solution to the dictionary
problem:

 the frequency of the operations:
– mostly insertion and deletion (dynamic)
– mostly search (static)
– approximately the same frequencies

 other operations to be implemented:
– set operations: union, intersection, difference quantity, ...
– enumerate the set in a certain order (e.g. ascending by key)

 the complexity of the solution: average case, worst case, amortized worst case

 the place where the data is stored: main memory, hard drive, WORM (write once
read multiple)

22.04.2012 Theory 1 - Search Trees 5

The dictionary problem (3)

Different approaches to the dictionary problem:

 structuring the complete universe of all

possible keys: hashing

 structuring the set of the actually occurring

keys: lists, trees, graphs, ...

22.04.2012 Theory 1 - Search Trees 6

Trees

Trees are a generalisation of linked lists (each element can have
more than one successor)

id
name

next

id
name

next

id
name

next
…

null

first

22.04.2012 Theory 1 - Search Trees 7

Trees as graphs (1)

Trees are

 special graphs:
– in general, a graph G = (N,E) consists of a set N of nodes and
 a set E of edges
– the edges are either directed or undirected
– nodes and edges can be labelled

 a tree is a connected acyclic graph, where:
nodes = # edges + 1

 a general and central concept for the hierarchical structuring of
information:
– decision trees
– code trees
– syntax trees

22.04.2012 Theory 1 - Search Trees 8

Trees as graphs (2)

Several kinds of trees can be distinguished:

 undirected tree (with no designated root)

 rooted tree (one node is designated as the root)

 – from each node k there is exactly one path (a sequence of pairwise neighbouring edges) to
the root

– the parent (or: direct predecessor) of a node k is the first neighbour on the path from k to
the root

– the children (or: direct successors) are the other neighbours of k

 – the rank (or: outdegree) of a node k is the number of children of k

Root

6
5

1

4

3

2

4

6 5

2

1
3

22.04.2012 Theory 1 - Search Trees 9

Trees as graphs (3)

 Rooted tree:
– root: the only node that has no parent
– leaf nodes (leaves): nodes that have no children
– internal nodes: all nodes that are not leaves
– order of a tree T: maximum rank of a node in T
– the notion tree is often used as a synonym for rooted tree

 Ordered (rooted) tree: among the children of each node there is
an order e.g. the < relation among the keys of the nodes

 Binary tree: ordered tree of order 2; the children of a node are
referred to as left child and right child

 Multiway tree: ordered tree of order > 2

1 < 2

3 < 5 <

4

6

22.04.2012 Theory 1 - Search Trees 10

Trees as graphs (4)

A more precise definition of the set Md of the ordered rooted trees of order d
(d ≥ 1):

 a single node is in Md

 let t1, . . .,td Md and w a node. Then w with the roots of t1, . . .,td as its
children (from left to right) is a tree t Md. The ti are subtrees of t.

 – according to this definition each node has rank d (or rank 0)

– in general, the rank can be  d

– nodes of binary trees either have 0 or 2 children

– nodes with exactly 1 child could also be permitted by allowing empty
subtrees in the above definition

w

t1 t2 td

..................

22.04.2012 Theory 1 - Search Trees 11

Examples

 tree not a tree not a tree

 (but two trees!)

22.04.2012 Theory 1 - Search Trees 12

Structural properties of trees

 Depth of a node k: # edges from the tree root until k

(distance of k to the root)

 Height h(t) of a tree t: maximum depth of a leaf in t.

Alternative (recursive) definition:

– h(leaf) = 0

– h(t) = 1 + max{ti | root of ti is a child of the root of t}

(ti is a subtree of t)

 Level i: all nodes of depth i

 Complete tree: tree where each non-empty level has

the maximum number of nodes.

 all leaves have the same depth.

22.04.2012 Theory 1 - Search Trees 13

Applications of trees

Use of trees for the dictionary problem:

 node: stores one key

 tree: stores a set of keys

 enumeration of the complete set of data

22.04.2012 Theory 1 - Search Trees 14

Standard binary search trees (1)

Goal: Storage, retrieval of data (more general: dictionary problem)

Two alternative ways of storage:

 search trees: keys are stored in internal nodes leaf nodes are empty
(usually = null), they represent intervals between the keys

 leaf search trees: keys are stored in the leaves internal nodes contain
information in order to direct the search for a key

Search tree condition:
For each internal node k: all keys in the left subtree tl of k are less (<)
than the key in k and all keys in the right subtree tr of k are greater (>)
than the key in k

k

t l t r

22.04.2012 Theory 1 - Search Trees 15

Standard binary search trees (2)

How can the search for key s be implemented? (leaf  null)

 k = root;

while (k != null) {

 if (s == k.key) return true;

 if (s < k.key) k = k.left;

 else k = k.right

}

return false;

9

3 12

4

22.04.2012 Theory 1 - Search Trees 16

Example (without stop mode)

Search for key s ends in the internal node k with k.key == s or in the leaf

whose interval contains s

 Root 27

39 3

15

14

1

22.04.2012 Theory 1 - Search Trees 17

Standard binary search trees (3)

Leaf search tree:

 keys are stored in leaf nodes

 clues (routers) are stored in internal nodes, such that sl ≤ sk ≤ sr

(sl : key in left subtree, sk : router in k, sr : key in right subtree)

“=“ should not occur twice in the above inequality

 choice of s: either maximum key in tl (usual) or minimum key in tr.

22.04.2012 Theory 1 - Search Trees 18

Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.

22.04.2012 Theory 1 - Search Trees 19

Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.

1

5 6

9 12

22.04.2012 Theory 1 - Search Trees 20

Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.

1

5 6

9 12

1

5

9

6

22.04.2012 Theory 1 - Search Trees 21

Standard binary search trees (4)

How is the search for key s implemented in a leaf search tree?
(leaf = node with 2 null pointers)

 k = root;
 if (k == null) return false;
 while (k.left != null) { // thus also k.right != null
 if (s <= k.key) k = k.left;
 else k = k.right;
 } // now in the leaf
 return s==k.key;

 In the following we always talk about search trees (not leaf search
trees).

1

5 6

9 12

1

5

9

6

22.04.2012 Theory 1 - Search Trees 22

Standard binary search trees (5)

class SearchNode {
 int content;
 SearchNode left;
 SearchNode right;
 SearchNode (int c){ // Constructor for a node
 content = c; // without successor
 left = right = null;
 }
} //class SearchNode

 class SearchTree {
 SearchNode root;
 SearchTree () { // Constructor for empty tree
 root = null;
 }
 // ...

 }

22.04.2012 Theory 1 - Search Trees 23

Standard binary search trees (6)

/* Search for c in the tree */

boolean search (int c) {

 return search (root, c);

}

boolean search (SearchNode n, int c){

 while (n != null) {

 if (c == n.content) return true;

 if (c < n.content) n = n.left;

 else n = n.right;

 }

 return false;

}

22.04.2012 Theory 1 - Search Trees 24

Standard binary search trees (7)

Alternative tree structure:

 instead of leaf null, set leaf pointer to a

special “stop node” b

 for searching, store the search key s in b to

save comparisons in internal nodes.

Use of a stop node for searching!

22.04.2012 Theory 1 - Search Trees 25

Example (with stop mode)

27

39 3

15

14

1

Wurzel

x

22.04.2012 Theory 1 - Search Trees 26

Standard binary search trees (7)

Insertion of a node with key s in search tree t.

Search for s:

1. search for s ends in a node with s: don‘t

insert (otherwise, there would be duplicated

keys)

2. search ends in leaf b: make b an internal

node with s as its key and two new leaves.

 tree remains a search tree!

22.04.2012 Theory 1 - Search Trees 27

Standard binary search trees (8)

 Tree structure depends on the order of insertions into the initially empty

tree

 Height can increase linearly, but it can also be in O(log n),

more precisely [log2 (n+1)] .

Insert 5

3

9

12

4

5

3

9

12

4

22.04.2012 Theory 1 - Search Trees 28

Standard binary search trees (9)

int height() {

 return height(root);

}

int height(SearchNode n){

 if (n == null) return 0;

 else return 1 + Math.max(height(n.left),

height(n.right));

}

/* Insert c into tree; return true if successful

 and false if c was in tree already */

boolean insert (int c) { // insert c

 if (root == null){

 root = new SearchNode (c);

 return true;

 } else return insert (root, c);

}

22.04.2012 Theory 1 - Search Trees 29

Standard binary search trees (10)

boolean insert (SearchNode n, int c){

 while (true){

 if (c == n.content) return false;

 if (c < n.content){

 if (n.left == null) {

 n.left = new SearchNode (c);

 return true;

 } else n = n.left;

 } else { // c > n.content

 if (n.right == null) {

 n.right = new SearchNode (c);

 return true;

 } else n = n.right;

 }

 }

}

22.04.2012 Theory 1 - Search Trees 30

Special cases

 The structure of the resulting tree depends on the order, in which the

keys are inserted. The minimal height is [log2 (n+1)] and the maximal

height is n.

 Resulting search trees for the sequences 15, 39, 3, 27, 1, 14 and

1, 3, 14, 15, 27, 39:

15

39 3

14
27 1

1

3

14

15

27

39

22.04.2012 Theory 1 - Search Trees 31

Standard binary search trees (11)

A standard tree is created by iterative insertions

in an initially empty tree.

 Which trees are more frequent/typical: the

balanced or the degenerate ones?

 How costly is an insertion?

22.04.2012 Theory 1 - Search Trees 32

Standard binary search trees (11)

Deletion of a node with key s from a tree (while retaining the search tree
property)

Search for s:
if search fails: done.
otherwise search ends in node k with k.key == s and

k has no child, one child or two children:

a) no child: done (set the parent’s pointer to null instead of k)

b) only one child: let k’s parent v point to k’s child instead of k

c) two children: search for the smallest key in k’s right subtree, i.e. go right
and then to the left as far as possible until you reach p (the symmetrical
successor of k); copy p.key to k, delete p (which has at most one child,
so follow step (a) or (b))

22.04.2012 Theory 1 - Search Trees 33

Symmetrical successor

Definition: A node q is called the symmetrical successor of a node p

if q contains the smallest key greater than or equal to the key of

p.

Observations:

 the symmetrical successor q of p is leftmost node in the right
subtree of p.

 the symmetrical successor has at most one child, which is the
right child.

22.04.2012 Theory 1 - Search Trees 34

Finding the symmetrical successor

Observation: If p has a right child, the symmetrical successor always

exists.

 First go to the right child of p.

 From there, always proceed to the left child until you find a node

without a left child.

p

q

22.04.2012 Theory 1 - Search Trees 35

Idea of the delete operation

 Delete p by replacing its content with the content of its symmetrical successor q.

Then delete q.

 Deletion of q is easy because q has at most one child.

x p

y q

x p

y q

22.04.2012 Theory 1 - Search Trees 36

Example

k has no internal child, one internal child or two internal children:

v

v

t l

v

t r

v

s k

t r

v

s k

v

s k

t l

v

s k

t l

t r
p

a)

b)

c) d)

22.04.2012 Theory 1 - Search Trees 37

Standard binary search trees (12)

boolean delete(int c) {
 return delete(null, root, c);
}
// delete c from the tree rooted in n, whose parent is vn
boolean delete(SearchNode vn, SearchNode n, int c) {
 if (n == null) return false;
 if (c < n.content) return delete(n, n.left, c);
 if (c > n.content) return delete(n, n.right, c);
 // now we have: c == n.content
 if (n.left == null) {
 point (vn, n, n.right);
 return true;
 }
 if (n.right == null) {
 point (vn, n, n.left);
 return true;
 }
 // ...

22.04.2012 Theory 1 - Search Trees 38

Standard binary search trees (13)

// now n.left != null and n.right != null
 SearchNode q = pSymSucc(n);
 if (n == q) { // right child of q is SymSucc(n)
 n.content = q.right.content;
 q.right = q.right.right;
 return true;
 } else { // left child of q is SymSucc(n)
 n.content = q.left.content;
 q.left = q.left.right;
 return true;
 }
} // boolean delete(SearchNode vn, SearchNode n, int c)

// returns the parent of the symmetrical successor
SearchNode pSymSucc(SearchNode n) {
 if (n.right.left != null) {
 n = n.right;
 while (n.left.left != null) n = n.left;
 }
 return n;
}

22.04.2012 Theory 1 - Search Trees 39

Standard binary search trees (14)

// let vn point to m instead of n;

// if vn == null, set root pointer to m

void point(SearchNode vn, SearchNode n, SearchNode m) {

 if (vn == null) root = m;

 else if (vn.left == n) vn.left = m;

 else vn.right = m;

}

