
Foundations of Programming Languages
and Software Engineering

Universität Freiburg

June 13, 2012

Foundations of Programming Languages and Software Engineering 1 / 25

Overview

Basics
Relations
Induction

Terms and All That
Syntax
Semantics

Foundations of Programming Languages and Software Engineering 2 / 25

Binary Relations

Definition
A binary relation on sets M1 and M2 is a set
R ⊆ M1 ×M2 of pairs of elements from M1 and M2,
respectively. If M1 = M2 = M, we simply call R a binary
relation on M.
We say that m1 ∈ M1 and m2 ∈ M2 are related by R iff
(m1,m2) ∈ R.
We often write m1 R m2 instead of (m1,m2) ∈ R.

Foundations of Programming Languages and Software Engineering 3 / 25

Properties of Binary Relations (1)

Definition
Let R be a binary relation on M.

R is reflexive iff m R m for all m ∈ M.
R is symmetric iff m R m′ implies m′ R m.
R is transitive iff m1 R m2 and m2 R m3 imply m1 R m3.
R is an equivalence relation iff it is reflexive, symmetric,
and transitive.

Foundations of Programming Languages and Software Engineering 4 / 25

Properties of Binary Relations (2)

Definition
Let R be a binary relation on M.

The reflexive closure of R is the smallest reflexive
relation R′ such that R ⊆ R′.
The transitive closure of R is the smallest transitive
relation R′ such that R ⊆ R′. It is often written R+.
The reflexive and transitive closure of R is the smallest
reflexive and transitive relation R′ such that R ⊆ R′. It is
often written R∗.

Foundations of Programming Languages and Software Engineering 5 / 25

Induction Principles
Suppose P is some property on natural numbers.

Principle of ordinary induction on natural numbers
If P(0) Base case
and, for all i ∈ N, P(i) implies P(i + 1), Induction step
then P(n) holds for all n ∈ N. Conclusion

The assumption “P(i)” in the induction step is called the
induction hypothesis (IH for short).

Principle of complete induction on natural numbers
If, for each n ∈ N,

given P(i) for all i < n
we can show P(n),

then P(n) holds for all n ∈ N.

Foundations of Programming Languages and Software Engineering 6 / 25

Induction Principles
Suppose P is some property on natural numbers.

Principle of ordinary induction on natural numbers
If P(0) Base case
and, for all i ∈ N, P(i) implies P(i + 1), Induction step
then P(n) holds for all n ∈ N. Conclusion

The assumption “P(i)” in the induction step is called the
induction hypothesis (IH for short).

Principle of complete induction on natural numbers
If, for each n ∈ N,

given P(i) for all i < n
we can show P(n),

then P(n) holds for all n ∈ N.

Foundations of Programming Languages and Software Engineering 6 / 25

Example

Lemma
For all n ∈ N, Σn

i=1(2i − 1) = n2.

Proof. The proof is by ordinary induction on n.
If n = 0, then both sides of the equation are 0.
Suppose the lemma holds for some k ∈ N. We then
have:

Σk+1
i=1 (2i − 1) = Σk

i=1(2i − 1) + (2(k + 1)− 1)

(IH)
= k2 + 2k + 1

= (k + 1)2

Foundations of Programming Languages and Software Engineering 7 / 25

Signatures

Definition
A signature Σ is a set of function symbols, where each
f ∈ Σ is associated with a natural number n called the
arity of f .
Σ(n) denotes the set of all n-ary elements of Σ.
The elements of Σ(0) are also called constant symbols.

Foundations of Programming Languages and Software Engineering 8 / 25

Example

Signature Σprop for propositional logic

Σprop = {T(0),F(0),¬(1),∧(2),∨(2)}
Σ

(0)
prop = {T,F}

Σ
(1)
prop = {¬}

Σ
(2)
prop = {∧,∨}

Foundations of Programming Languages and Software Engineering 9 / 25

Terms

Definition
Let Σ be a signature and X a set of variables such that
Σ ∩ X = ∅. The set T (Σ,X) of all Σ-terms over X is
inductively defined as

X ⊆ T (Σ,X),
for all n ∈ N, all f ∈ Σ(n), and all t1, . . . , tn ∈ T (Σ,X), we
have f (t1, . . . , tn) ∈ T (Σ,X)

Note:
For a constant symbol f ∈ Σ(0), we often write the term
f () as f .
From now on, we leave the variable set
X = {x , x1, x2, . . . , y , y1, y2, . . . , z, z1, z2 . . . } implicit

Foundations of Programming Languages and Software Engineering 10 / 25

Example

Suppose Σ = Σprop. Then

∨(¬(x42),∧(T, x3)) ∈ T (Σ,X)

Alternative notation
Infix notation (with implicit operator precedence order):
¬x42 ∨ T ∧ x3

Foundations of Programming Languages and Software Engineering 11 / 25

Example

Suppose Σ = Σprop. Then

∨(¬(x42),∧(T, x3)) ∈ T (Σ,X)

Alternative notation
Infix notation (with implicit operator precedence order):
¬x42 ∨ T ∧ x3

Foundations of Programming Languages and Software Engineering 11 / 25

Unique Decomposition of Terms

In our current view, equality of terms means syntactic
equality.
Therefore, if t , s ∈ T (Σ,X) and t = f (t1, . . . , tn) and
s = g(s1, . . . , sm), and t = s, then f = g, n = m, and
ti = si for all i ∈ {1, . . . , n}.

Later, we consider a kind of semantic equality: +(1, 3)
might be equal to +(2, 2).

Foundations of Programming Languages and Software Engineering 12 / 25

Unique Decomposition of Terms

In our current view, equality of terms means syntactic
equality.
Therefore, if t , s ∈ T (Σ,X) and t = f (t1, . . . , tn) and
s = g(s1, . . . , sm), and t = s, then f = g, n = m, and
ti = si for all i ∈ {1, . . . , n}.
Later, we consider a kind of semantic equality: +(1, 3)
might be equal to +(2, 2).

Foundations of Programming Languages and Software Engineering 12 / 25

Positions and Size of Terms

Definition
Suppose t ∈ T (Σ,X).

The set of positions of term t is a set Pos(t) of strings
over the alphabet of natural numbers. It is inductively
defined as follows:

If t = x ∈ X , then Pos(t) := {ε}
If t = f (t1, ..., tn), then

Pos(t) := {ε} ∪
n⋃

i=1

{ip | p ∈ Pos(ti)}

The position ε is called the root position of t , the function
or variable at this position is called the root symbol of t.
The size |t | of t is the cardinality of Pos(t).

Foundations of Programming Languages and Software Engineering 13 / 25

Subterms and Replacing

Definition (Subterm)
For p ∈ Pos(t), the subterm of t at position p, denoted by t |p,
is defined by induction on the length of p:

t |ε := t
f (t1, . . . , tn)|ip:= ti |p

(ip ∈ Pos(t) implies that t = f (t1, . . . , tn) with 0 ≤ i ≤ n.)

Definition (Replacing)
For p ∈ Pos(t), we denote by t [s]p the term that is obtained
from t by replacing the subterm at position p by s, i.e.

t [s]ε := s
f (t1, . . . , tn)[s]ip:= f (t1, ..., ti [s]p, . . . , tn)

Foundations of Programming Languages and Software Engineering 14 / 25

Subterms and Replacing

Definition (Subterm)
For p ∈ Pos(t), the subterm of t at position p, denoted by t |p,
is defined by induction on the length of p:

t |ε := t
f (t1, . . . , tn)|ip:= ti |p

(ip ∈ Pos(t) implies that t = f (t1, . . . , tn) with 0 ≤ i ≤ n.)

Definition (Replacing)
For p ∈ Pos(t), we denote by t [s]p the term that is obtained
from t by replacing the subterm at position p by s, i.e.

t [s]ε := s
f (t1, . . . , tn)[s]ip:= f (t1, ..., ti [s]p, . . . , tn)

Foundations of Programming Languages and Software Engineering 14 / 25

Examples

Suppose t = ∨(¬(x42),∧(T, x3))

Pos(t) = {ε, 1, 11, 2, 21, 22}
|t | = 6 (number of nodes in the tree)
t |2 = ∧(T, x3)

t [¬(F)]|2 = ∨(¬(x42),¬(F))

Foundations of Programming Languages and Software Engineering 15 / 25

An Induction Principle for Terms

Term Induction
To prove that a property P holds for all t ∈ T (Σ,X), we have
to show the following properties:

Base case
P(x) holds for all x ∈ X and P(f) holds for all f ∈ Σ(0).
Induction step
Suppose n > 0, f ∈ Σ(n), and t1, . . . , tn ∈ T (Σ,X).
Then P(f (t1, . . . , tn)) holds assuming P(t1), . . . ,P(tn).

Foundations of Programming Languages and Software Engineering 16 / 25

Example for Term Induction

Lemma
For all terms t , the set Pos(t) is prefix closed, i.e. if
wv ∈ Pos(t) then w ∈ Pos(t).

Foundations of Programming Languages and Software Engineering 17 / 25

Substitutions

Definition
Let Σ be a signature.

A T (Σ,X)-substitution is a function σ : X → T (Σ,X)
such that σ(x) 6= x for only finitely many xs.
The domain of σ is Dom(σ) := {x ∈ X | σ(x) 6= x}.
We write {x1 7→ t1, . . . , xn 7→ tn} for a substitution that
maps xi to ti and has domain Dom(σ) = {x1, . . . , xn}.

A T (Σ,X)-substitution σ is extended to a mapping
σ : T (Σ,X)→ T (Σ,X) on arbitrary terms as follows:
σ(f (t1, . . . , tn)) := f (σ(t1), . . . , σ(tn))

Foundations of Programming Languages and Software Engineering 18 / 25

Substitutions

Definition
Let Σ be a signature.

A T (Σ,X)-substitution is a function σ : X → T (Σ,X)
such that σ(x) 6= x for only finitely many xs.
The domain of σ is Dom(σ) := {x ∈ X | σ(x) 6= x}.
We write {x1 7→ t1, . . . , xn 7→ tn} for a substitution that
maps xi to ti and has domain Dom(σ) = {x1, . . . , xn}.
A T (Σ,X)-substitution σ is extended to a mapping
σ : T (Σ,X)→ T (Σ,X) on arbitrary terms as follows:
σ(f (t1, . . . , tn)) := f (σ(t1), . . . , σ(tn))

Foundations of Programming Languages and Software Engineering 18 / 25

Substitutions. Explanation

Note
Applying the extension of a substitution σ to a term
simultaneously replaces all occurrences of a variable by their
respective σ-image.

Foundations of Programming Languages and Software Engineering 19 / 25

Example

A substitution on terms from T (Σprop,X)

Σ = Σprop

σ = {x 7→ ¬ z, y 7→ x ∨ F}
t = x ∨ y ∧ z

σ(t) = ¬z ∨ (x ∨ F) ∧ z

Foundations of Programming Languages and Software Engineering 20 / 25

Composing Substitutions

Definition
The composition στ of two substitutions σ and τ is defined
as στ(x) := σ(τ(x)).

Lemma
Composition of substitutions is an associative operation
where the identity substitution is the unit.

Foundations of Programming Languages and Software Engineering 21 / 25

Σ-Algebras

Definition
Let Σ be a signature. A Σ-algebra A = (A,J) consists of

a carrier set A, and
an interpretation function J that associates with each
function symbol f ∈ Σ(n) a function J (f) : An → A.

Foundations of Programming Languages and Software Engineering 22 / 25

Example

The Σprop-Algebra Aprop

Aprop = (Aprop,Jprop)

Aprop = {0, 1}
Jprop(F) = 0
Jprop(T) = 1

Jprop(¬)(x) = 1− x
Jprop(∨)(x , y) = max(x , y)

Jprop(∧)(x , y) = min(x , y)

Foundations of Programming Languages and Software Engineering 23 / 25

Term Interpretation

Definition
Let A = (A,J) be a Σ-algebra.

A variable assignment is a function α : X → A that
assigns every variable a value in the carrier set.
Given a variable assignment α, the interpretation
function J is extended to a function on terms,
Jα : T (Σ,X)→ A, as follows:

Jα(x) = α(x) (x ∈ X)

Jα(f (t1, . . . , tn)) = J (f)(Jα(t1), . . . ,Jα(tn))

The restriction of Jα to variable free-terms,
Jα : T (Σ, ∅)→ A, is usually denoted by J since the α
does not matter.

Foundations of Programming Languages and Software Engineering 24 / 25

Example

Interpretation of ∨(¬(x42),∧(T, x3)) ∈ T (Σprop,X)

Suppose α : X → Aprop is a function such that

α(x42) = 0
α(x3) = 1

Then we have

Jα(∨(¬(x42),∧(T, x3))) = J (∨)(Jα(¬(x42)),Jα(∧(T, x3)))

= max(J (¬)(Jα(x42)),
J (∧)(Jα(T),Jα(x3)))

= max(1− α(x42),min(J (T), α(x3)))

= max(1− 0,min(1, 1)) = 1

Foundations of Programming Languages and Software Engineering 25 / 25

	Basics
	Relations
	Induction

	Terms and All That
	Syntax
	Semantics

