Foundations of Programming Languages and Software Engineering

Universität Freiburg

June 13, 2012

Overview

• Basics

- Relations
- Induction

• Terms and All That

- Syntax
- Semantics

- A binary relation on sets M_1 and M_2 is a set $R \subseteq M_1 \times M_2$ of pairs of elements from M_1 and M_2 , respectively. If $M_1 = M_2 = M$, we simply call R a binary relation on M.
- We say that $m_1 \in M_1$ and $m_2 \in M_2$ are related by R iff $(m_1, m_2) \in R$.
- We often write $m_1 R m_2$ instead of $(m_1, m_2) \in R$.

Properties of Binary Relations (1)

Definition

Let R be a binary relation on M.

- *R* is reflexive iff m R m for all $m \in M$.
- *R* is symmetric iff *m R m*' implies *m*' *R m*.
- *R* is transitive iff $m_1 R m_2$ and $m_2 R m_3$ imply $m_1 R m_3$.
- *R* is an equivalence relation iff it is reflexive, symmetric, and transitive.

Properties of Binary Relations (2)

Definition

Let R be a binary relation on M.

- The reflexive closure of *R* is the smallest reflexive relation *R*['] such that *R* ⊆ *R*['].
- The transitive closure of *R* is the smallest transitive relation *R*' such that *R* ⊆ *R*'. It is often written *R*⁺.
- The reflexive and transitive closure of *R* is the smallest reflexive and transitive relation *R*' such that *R* ⊆ *R*'. It is often written *R**.

Induction Principles

Suppose *P* is some property on natural numbers.

Principle of ordinary induction on natural numbers

If P(0)Base caseand, for all $i \in \mathbb{N}$, P(i) implies P(i + 1),Induction stepthen P(n) holds for all $n \in \mathbb{N}$.Conclusion

The assumption "P(i)" in the induction step is called the induction hypothesis (IH for short).

Induction Principles

Suppose P is some property on natural numbers.

Principle of ordinary induction on natural numbers

If P(0)Base caseand, for all $i \in \mathbb{N}$, P(i) implies P(i + 1),Induction stepthen P(n) holds for all $n \in \mathbb{N}$.Conclusion

The assumption "P(i)" in the induction step is called the induction hypothesis (IH for short).

Principle of complete induction on natural numbers

```
If, for each n \in \mathbb{N},
given P(i) for all i < n
we can show P(n),
then P(n) holds for all n \in \mathbb{N}.
```

Example

Lemma

For all
$$n \in \mathbb{N}$$
, $\sum_{i=1}^{n} (2i - 1) = n^2$.

Proof. The proof is by ordinary induction on *n*.

- If n = 0, then both sides of the equation are 0.
- Suppose the lemma holds for some k ∈ N. We then have:

$$egin{aligned} &\Sigma_{i=1}^{k+1}(2i-1) = \Sigma_{i=1}^{k}(2i-1) + (2(k+1)-1) \ &\stackrel{(\mathrm{IH})}{=} k^2 + 2k + 1 \ &= (k+1)^2 \quad \Box \end{aligned}$$

- A signature Σ is a set of function symbols, where each f ∈ Σ is associated with a natural number n called the arity of f.
- $\Sigma^{(n)}$ denotes the set of all *n*-ary elements of Σ .
- The elements of $\Sigma^{(0)}$ are also called constant symbols.

Signature Σ_{prop} for propositional logic

$$\begin{split} \boldsymbol{\Sigma}_{prop} &= \{ \mathbf{T}^{(0)}, \mathbf{F}^{(0)}, \neg^{(1)}, \wedge^{(2)}, \vee^{(2)} \} \\ \boldsymbol{\Sigma}_{prop}^{(0)} &= \{ \mathbf{T}, \mathbf{F} \} \\ \boldsymbol{\Sigma}_{prop}^{(1)} &= \{ \neg \} \\ \boldsymbol{\Sigma}_{prop}^{(2)} &= \{ \wedge, \vee \} \end{split}$$

Terms

Definition

Let Σ be a signature and X a set of variables such that $\Sigma \cap X = \emptyset$. The set $T(\Sigma, X)$ of all Σ -terms over X is inductively defined as

•
$$X \subseteq T(\Sigma, X)$$
,

• for all $n \in \mathbb{N}$, all $f \in \Sigma^{(n)}$, and all $t_1, \ldots, t_n \in T(\Sigma, X)$, we have $f(t_1, \ldots, t_n) \in T(\Sigma, X)$

Note:

- For a constant symbol $f \in \Sigma^{(0)}$, we often write the term f() as f.
- From now on, we leave the variable set $X = \{x, x_1, x_2, \dots, y, y_1, y_2, \dots, z, z_1, z_2 \dots\}$ implicit

Suppose $\Sigma = \Sigma_{prop}$. Then

$$\vee(\neg(x_{42}), \wedge(\mathbf{T}, x_3)) \in T(\Sigma, X)$$

Suppose $\Sigma = \Sigma_{prop}$. Then

$$\vee(\neg(x_{42}), \wedge(\mathbf{T}, x_3)) \in T(\Sigma, X)$$

Alternative notation

Infix notation (with implicit operator precedence order):

 $\neg x_{42} \lor \mathbf{T} \land x_3$

Unique Decomposition of Terms

- In our current view, equality of terms means syntactic equality.
- Therefore, if $t, s \in T(\Sigma, X)$ and $t = f(t_1, \ldots, t_n)$ and $s = g(s_1, \ldots, s_m)$, and t = s, then f = g, n = m, and $t_i = s_i$ for all $i \in \{1, \ldots, n\}$.

Unique Decomposition of Terms

- In our current view, equality of terms means syntactic equality.
- Therefore, if $t, s \in T(\Sigma, X)$ and $t = f(t_1, \ldots, t_n)$ and $s = g(s_1, \ldots, s_m)$, and t = s, then f = g, n = m, and $t_i = s_i$ for all $i \in \{1, \ldots, n\}$.
- Later, we consider a kind of semantic equality: +(1,3) might be equal to +(2,2).

Positions and Size of Terms

Definition

Suppose $t \in T(\Sigma, X)$.

 The set of positions of term t is a set Pos(t) of strings over the alphabet of natural numbers. It is inductively defined as follows:

• If
$$t = x \in X$$
, then $Pos(t) := \{\epsilon\}$

• If
$$t = f(t_1, ..., t_n)$$
, then

$$\textit{Pos}(t) := \{\epsilon\} \cup \bigcup_{i=1}^{n} \{\textit{ip} \mid p \in \textit{Pos}(t_i)\}$$

- The position ϵ is called the root position of *t*, the function or variable at this position is called the root symbol of t.
- The size |t| of t is the cardinality of Pos(t).

Subterms and Replacing

Definition (Subterm)

For $p \in Pos(t)$, the subterm of *t* at position *p*, denoted by $t|_p$, is defined by induction on the length of *p*:

$$t|_{\epsilon} := t$$

$$f(t_1, \ldots, t_n)|_{ip} := t_i|_p$$

 $(ip \in Pos(t) \text{ implies that } t = f(t_1, \ldots, t_n) \text{ with } 0 \le i \le n.)$

Subterms and Replacing

Definition (Subterm)

For $p \in Pos(t)$, the subterm of *t* at position *p*, denoted by $t|_p$, is defined by induction on the length of *p*:

$$t|_{\epsilon} := t$$

$$f(t_1, \ldots, t_n)|_{ip} := t_i|_p$$

 $(ip \in Pos(t) \text{ implies that } t = f(t_1, \ldots, t_n) \text{ with } 0 \le i \le n.)$

Definition (Replacing)

For $p \in Pos(t)$, we denote by $t[s]_p$ the term that is obtained from *t* by replacing the subterm at position *p* by *s*, i.e.

$$t[\boldsymbol{s}]_{\epsilon} := \boldsymbol{s}$$

$$f(t_1, \ldots, t_n)[\boldsymbol{s}]_{i\rho} := f(t_1, \ldots, t_i[\boldsymbol{s}]_{\rho}, \ldots, t_n)$$

Suppose
$$t = \lor (\neg(x_{42}), \land (\mathsf{T}, x_3))$$

- $Pos(t) = \{\epsilon, 1, 11, 2, 21, 22\}$
- |t| = 6 (number of nodes in the tree)

•
$$t|_2 = \wedge (\mathbf{T}, x_3)$$

•
$$t[\neg(\mathbf{F})]|_2 = \lor(\neg(x_{42}), \neg(\mathbf{F}))$$

Term Induction

To prove that a property *P* holds for all $t \in T(\Sigma, X)$, we have to show the following properties:

- Base case P(x) holds for all $x \in X$ and P(f) holds for all $f \in \Sigma^{(0)}$.
- Induction step

Suppose n > 0, $f \in \Sigma^{(n)}$, and $t_1, \ldots, t_n \in T(\Sigma, X)$. Then $P(f(t_1, \ldots, t_n))$ holds assuming $P(t_1), \ldots, P(t_n)$.

Lemma

For all terms *t*, the set Pos(t) is prefix closed, i.e. if $wv \in Pos(t)$ then $w \in Pos(t)$.

Let Σ be a signature.

- A T(Σ, X)-substitution is a function σ : X → T(Σ, X) such that σ(x) ≠ x for only finitely many xs.
- The domain of σ is $Dom(\sigma) := \{x \in X \mid \sigma(x) \neq x\}.$
- We write $\{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$ for a substitution that maps x_i to t_i and has domain $Dom(\sigma) = \{x_1, \ldots, x_n\}$.

Let Σ be a signature.

- A T(Σ, X)-substitution is a function σ : X → T(Σ, X) such that σ(x) ≠ x for only finitely many xs.
- The domain of σ is $Dom(\sigma) := \{x \in X \mid \sigma(x) \neq x\}.$
- We write $\{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$ for a substitution that maps x_i to t_i and has domain $Dom(\sigma) = \{x_1, \ldots, x_n\}$.
- A $T(\Sigma, X)$ -substitution σ is extended to a mapping $\sigma : T(\Sigma, X) \to T(\Sigma, X)$ on arbitrary terms as follows: $\sigma(f(t_1, \ldots, t_n)) := f(\sigma(t_1), \ldots, \sigma(t_n))$

Note

Applying the extension of a substitution σ to a term simultaneously replaces all occurrences of a variable by their respective σ -image.

A substitution on terms from $T(\Sigma_{prop}, X)$

$$\Sigma = \Sigma_{prop}$$

$$\sigma = \{ x \mapsto \neg z, y \mapsto x \lor \mathbf{F} \}$$

$$t = x \lor y \land z$$

$$\sigma(t) = \neg z \lor (x \lor \mathbf{F}) \land z$$

The composition $\sigma\tau$ of two substitutions σ and τ is defined as $\sigma\tau(\mathbf{x}) := \sigma(\tau(\mathbf{x}))$.

Lemma

Composition of substitutions is an associative operation where the identity substitution is the unit.

Let Σ be a signature. A Σ -algebra $\mathcal{A} = (\mathcal{A}, \mathcal{J})$ consists of

- a carrier set A, and
- an interpretation function *J* that associates with each function symbol *f* ∈ Σ⁽ⁿ⁾ a function *J*(*f*) : *Aⁿ* → *A*.

The Σ_{prop} -Algebra \mathcal{A}_{prop}

$$egin{aligned} \mathcal{A}_{prop} &= (\mathcal{A}_{prop}, \mathcal{J}_{prop})\ \mathcal{A}_{prop} &= \{0,1\}\ \mathcal{J}_{prop}(\mathbf{F}) &= 0\ \mathcal{J}_{prop}(\mathbf{T}) &= 1\ \mathcal{J}_{prop}(\neg)(x) &= 1-x\ \mathcal{J}_{prop}(\lor)(x,y) &= \max(x,y)\ \mathcal{J}_{prop}(\land)(x,y) &= \min(x,y) \end{aligned}$$

Term Interpretation

Definition

Let $\mathcal{A} = (\mathcal{A}, \mathcal{J})$ be a Σ -algebra.

- A variable assignment is a function α : X → A that assigns every variable a value in the carrier set.
- Given a variable assignment α , the interpretation function \mathcal{J} is extended to a function on terms, $\mathcal{J}_{\alpha}: T(\Sigma, X) \to A$, as follows: $\mathcal{J}_{\alpha}(x) = \alpha(x)$ $(x \in X)$ $\mathcal{J}_{\alpha}(f(t_1, \dots, t_n)) = \mathcal{J}(f)(\mathcal{J}_{\alpha}(t_1), \dots, \mathcal{J}_{\alpha}(t_n))$
- The restriction of *J*_α to variable free-terms,
 *J*_α : *T*(Σ, Ø) → *A*, is usually denoted by *J* since the α does not matter.

Example

Interpretation of $\lor (\neg(x_{42}), \land (\mathsf{T}, x_3)) \in T(\Sigma_{prop}, X)$

Suppose $\alpha: \mathbf{X} \to \mathbf{A}_{prop}$ is a function such that

 $\alpha(x_{42}) = \mathbf{0}$ $\alpha(x_3) = \mathbf{1}$

Then we have

$$\begin{aligned} \mathcal{J}_{\alpha}(\lor(\neg(x_{42}),\land(\mathbf{T},x_{3}))) &= \mathcal{J}(\lor)(\mathcal{J}_{\alpha}(\neg(x_{42})),\mathcal{J}_{\alpha}(\land(\mathbf{T},x_{3}))) \\ &= \max(\mathcal{J}(\neg)(\mathcal{J}_{\alpha}(x_{42})), \\ \mathcal{J}(\land)(\mathcal{J}_{\alpha}(\mathbf{T}),\mathcal{J}_{\alpha}(x_{3}))) \\ &= \max(1-\alpha(x_{42}),\min(\mathcal{J}(\mathbf{T}),\alpha(x_{3}))) \\ &= \max(1-0,\min(1,1)) = 1 \end{aligned}$$