Foundations of Programming Languages

and Software Engineering

Universitat Freiburg

June 13, 2012

Foundations of Programming Languages and Software Engineering 1/25

Overview

@ Basics
o Relations
@ |nduction

@ Terms and All That
e Syntax
e Semantics

Foundations of Programming Languages and Software Engineering 2/25

Binary Relations

@ A binary relation on sets M; and M, is a set
R C M; x M, of pairs of elements from M; and M,
respectively. If M; = M, = M, we simply call R a binary
relation on M.

@ We say that m; € M; and m, € M, are related by R iff
(my, my) € R.

@ We often write my R m, instead of (my, m,) € R.

Foundations of Programming Languages and Software Engineering 3/25

Properties of Binary Relations (1)

Let R be a binary relation on M.
@ Ris reflexive iff m R mfor all m € M.
@ Ris symmetric iff m R m’ implies m’ R m.
@ Ris transitive iff my R my and mx R ms imply my R ms.

@ Ris an equivalence relation iff it is reflexive, symmetric,
and transitive.

Foundations of Programming Languages and Software Engineering 4/25

Properties of Binary Relations (2)

Let R be a binary relation on M.

@ The reflexive closure of R is the smallest reflexive
relation R’ such that R C R'.

@ The transitive closure of R is the smallest transitive
relation R’ such that R C R'. It is often written R+.

@ The reflexive and transitive closure of R is the smallest
reflexive and transitive relation R’ suchthat R C R'. ltis
often written R*.

Foundations of Programming Languages and Software Engineering 5/25

Induction Principles

Suppose P is some property on natural numbers.

Principle of ordinary induction on natural numbers

If P(0) Base case
and, for all i € N, P(i) implies P(i + 1), Induction step
then P(n) holds for all n € N. Conclusion

The assumption “P(i)” in the induction step is called the
induction hypothesis (IH for short).

Foundations of Programming Languages and Software Engineering 6/25

Induction Principles

Suppose P is some property on natural numbers.

Principle of ordinary induction on natural numbers

If P(0) Base case
and, for all i € N, P(i) implies P(i + 1), Induction step
then P(n) holds for all n € N. Conclusion

The assumption “P(i)” in the induction step is called the
induction hypothesis (IH for short).

Principle of complete induction on natural numbers

If, for each n € N,
given P(i) forall i < n
we can show P(n),
then P(n) holds for all n € N.

Foundations of Programming Languages and Software Engineering 6/25

Forallne N, X7 ,(2i —1) = n.

Proof. The proof is by ordinary induction on n.
@ If n= 0, then both sides of the equation are 0.

@ Suppose the lemma holds for some k € N. We then
have:

Yl @i-1) =2k, 2i 1)+ (2k+1)—1)

D K2 4 2k + 1
=(k+1)P O

Foundations of Programming Languages and Software Engineering 7125

Signatures

Definition
@ A signature X is a set of function symbols, where each
f € X is associated with a natural number n called the

arity of f.
e Y (" denotes the set of all n-ary elements of ¥.
@ The elements of ¥(% are also called constant symbols.

v

Foundations of Programming Languages and Software Engineering 8/25

Example

Signature >, for propositional logic

T orop = {TO, FO, -0 7@/}
ZEJ?()JP = {Tv F}
1
me)vp = {ﬂ}
Z,g’c))p - {/\7 \/}

Foundations of Programming Languages and Software Engineering 9/25

Terms

Definition
Let > be a signature and X a set of variables such that
Y N X =0. The set T(X, X) of all -terms over X is
inductively defined as
@ X C T(X,X),
e forallncN,alfc ¥ andall t,...,t, € T(X, X), we
have f(t,...,t,) € T(X, X)

Note:
@ For a constant symbol f € (9 we often write the term
f() as f.
@ From now on, we leave the variable set
X={x,x1,X,....¥, Y1, Y2, 2,21, 22... } implicit

Foundations of Programming Languages and Software Engineering 10/25

Suppose ¥ = ¥ ;0. Then

\/(_|(X42), /\(T, X3)) < T(Z, X)

Foundations of Programming Languages and Software Engineering 11/25

Suppose ¥ = ¥ ;0. Then

\/(_|(X42), /\(T, X3)) < T(Z, X)

Alternative notation

Infix notation (with implicit operator precedence order):
—X40 V TA X3

Foundations of Programming Languages and Software Engineering 11/25

Unique Decomposition of Terms

@ In our current view, equality of terms means syntactic
equality.

@ Therefore, if t,s € T(X,X) and t = f(t,...,t,) and
s=9(sy,...,8m),and t = s, then f = g, n=m, and
ti=siforallie{1,...,n}.

Foundations of Programming Languages and Software Engineering 12/25

Unique Decomposition of Terms

@ In our current view, equality of terms means syntactic
equality.

@ Therefore, if t,s € T(X,X) and t = f(t,...,t,) and
s=9(sy,...,8m),and t = s, then f = g, n=m, and
ti=siforallie{1,...,n}.

@ Later, we consider a kind of semantic equality: +(1, 3)
might be equal to +(2, 2).

Foundations of Programming Languages and Software Engineering 12/25

Positions and Size of Terms

Suppose t € T(X, X).

@ The set of positions of term t is a set Pos(t) of strings
over the alphabet of natural numbers. It is inductively
defined as follows:

o If t = x € X, then Pos(t) := {¢}
o Ift=1(t,...,tn), then

n
Pos(t) :={e} U J{ip| p € Pos(t;)}
i=1
@ The position € is called the root position of ¢, the function

or variable at this position is called the root symbol of t.
@ The size |t| of t is the cardinality of Pos(t).

Foundations of Programming Languages and Software Engineering

13/25

Subterms and Replacing

Definition (Subterm)

For p € Pos(t), the subterm of t at position p, denoted by ¢|,,
is defined by induction on the length of p:

tle:=t
f(tr, ...)= tilp

(ip € Pos(t) implies that t = f(t;,..., t) with0 </ < n.)

Foundations of Programming Languages and Software Engineering 14/25

Subterms and Replacing

Definition (Subterm)

For p € Pos(t), the subterm of t at position p, denoted by ¢|,,
is defined by induction on the length of p:

tle:=t
f(tr, ...)= tilp

(ip € Pos(t) implies that t = f(t, ..., t;) with 0 < i < n.)

Definition (Replacing)

For p € Pos(t), we denote by t[s], the term that is obtained
from t by replacing the subterm at position p by s, i.e.

t[s]c :=s
f(t, ... t)[Slip:=f(tr,.... ti[Slp, - - -, tn)

Foundations of Programming Languages and Software Engineering 14/25

Suppose t = V(—(xs2), A(T, X3))
@ Pos(t) = {e,1,11,2,21,22}
@ |t| = 6 (number of nodes in the tree)
o t|o = A(T, x3)
© t[=(F)ll2 = V(=(xa2), ~(F))

Foundations of Programming Languages and Software Engineering 15/25

An Induction Principle for Terms

Term Induction

To prove that a property P holds for all t € T(X, X), we have
to show the following properties:
@ Base case
P(x) holds for all x € X and P(f) holds for all f € £(©).
@ Induction step
Suppose n >0, fc X and t;,..., t, € T(X, X).
Then P(f(t, ..., t,)) holds assuming P(t), ..., P(t,).

Foundations of Programming Languages and Software Engineering 16/25

Example for Term Induction

For all terms ¢, the set Pos(t) is prefix closed, i.e. if
wv € Pos(t) then w € Pos(t).

Foundations of Programming Languages and Software Engineering 17/25

Substitutions

Let > be a signature.

@ A T(X, X)-substitution is a function o : X — T(X, X)
such that o(x) # x for only finitely many xs.

@ The domain of o is Dom(o) := {x € X | o(x) # x}.
@ We write {x; — t;,..., X, — t,} for a substitution that
maps X; to t; and has domain Dom(c) = {x1,..., Xp}.

Foundations of Programming Languages and Software Engineering 18/25

Substitutions

Let > be a signature.

@ A T(X, X)-substitution is a function o : X — T(X, X)
such that o(x) # x for only finitely many xs.

@ The domain of o is Dom(o) := {x € X | o(x) # x}.
@ We write {x; — t;,..., X, — t,} for a substitution that
maps X; to t; and has domain Dom(c) = {x1,..., Xp}.

@ A T(X, X)-substitution o is extended to a mapping
o: T(X,X)— T(X, X) on arbitrary terms as follows:

o(f(ty,... tn)) = f(o(t),...,o(t))

Foundations of Programming Languages and Software Engineering 18/25

Substitutions. Explanation

Applying the extension of a substitution o to a term
simultaneously replaces all occurrences of a variable by their
respective o-image.

Foundations of Programming Languages and Software Engineering 19/25

A substitution on terms from T(Xp0p, X)

5 = e

o={x—-z,y— xVF}

t=xVyAz
o(t)y=-zV(xVF)Az

Foundations of Programming Languages and Software Engineering 20/25

Composing Substitutions

The composition o1 of two substitutions ¢ and 7 is defined
as o7(x) := o(7(x)).

| A

Lemma
Composition of substitutions is an associative operation
where the identity substitution is the unit.

Foundations of Programming Languages and Software Engineering 21/25

2> -Algebras

Definition

Let X be a signature. A >-algebra A = (A, J) consists of
@ a carrier set A, and

@ an interpretation function J that associates with each
function symbol f € £(" a function J(f) : A" — A.

Foundations of Programming Languages and Software Engineering 22/25

Example

The Zprop'Algebra Aprop

Aprop = (Apropa Jprop)
Aprop = {0, 1}
jprop() =0
Tprop(T) =
Tprop(7)(X) =1 —x
Torop(V)(X y) = max(x, y)
Torop(N) (X, y) = min(x, y))

Foundations of Programming Languages and Software Engineering 23/25

Term Interpretation

Let A = (A, J) be a X-algebra.

@ A variable assignment is a function o : X — A that
assigns every variable a value in the carrier set.

@ Given a variable assignment «, the interpretation
function J is extended to a function on terms,
Jo s T(X, X) — A, as follows:

Ja(X) = a(x) (x € X)
Ta(f(tr, .. 1)) = T(F)(Ta(tr), - - - Taltn))
@ The restriction of 7, to variable free-terms,

Jo o T(X,0) — A, is usually denoted by 7 since the «
does not matter.

Foundations of Programming Languages and Software Engineering

24 /25

Example

Interpretation of V(—(xa2), A(T, X3)) € T(Xprop, X)
Suppose a : X — Aprp is a function such that

(X42) 0
a(xz) =1

Then we have

Ta(V(=(Xa2), A(T, 35))) = T (V)(Ta(~(Xa2)), Tul(A(T, X))
= max(J (—)(Ja(Xa2)),
T (N(Ta(T), Ta(x3)))
= max(1 — a(Xg2), m n(j(T) a(x3)))
= max(1 — 0, min(1,1))

v

Foundations of Programming Languages and Software Engineering

25/25

	Basics
	Relations
	Induction

	Terms and All That
	Syntax
	Semantics

