Theory I, Sheet 1

- The solutions should be submitted in English.
- JUST FOR FUN exercises are not mandatory.
- Your solutions should be delivered to the lockbox in building 051 floor 00, or right before the start of the tutorial (April 30, 4:00 p.m.).
- You are allowed to discuss your solutions with each other. Nevertheless, you are required to write down the answers in your own words.

Exercise 1.1 - Proof by induction

1. Prove by induction that

$$
\sum_{i=0}^{n} i=\frac{n}{2} \cdot(n+1)
$$

for any $n \in \mathbb{N}$.
2. JUST FOR FUN. Prove by induction that

$$
\sum_{i=0}^{n} i^{2}=\frac{n \cdot(n+1) \cdot(2 n+1)}{6}
$$

for any $n \in \mathbb{N}$.

Exercise 1.2-Complexity

Characterize the relationship between $f(n)$ and $g(n)$ in the following examples using the \mathcal{O}-, Θ or Ω-notation. Do we have case a, b or c where: a) $g \in \mathcal{O}(f)$, b) $g \in \Theta(f)$, c) $\Omega(f)$?.

Example: $f(n)=n^{2} \quad g(n)=n \log n$. Solution: $\mathcal{O}(f) \ni g$.

1. $f(n)=n^{0.99998} \quad g(n)=\sqrt{n}$
2. $f(n)=2^{\log ^{2}(n)} \quad g(n)=\sum_{k=1}^{n^{2}} \frac{n}{2^{k}}$
3. $f(n)=\sqrt{n} \quad g(n)=1000 n$

Exercise 1.3 - Complexity

JUST FOR FUN. In order to solve a certain problem, five different algorithms A_{1}, \ldots, A_{5} were developed. Algorithm A_{i} needs $T_{i}(n)$ time steps to solve the problem for an instance of size n.

1. $T_{1}(n)=1000 n$
2. $T_{2}(n)=500 n \log _{2}(n)$
3. $T_{3}(n)=n \sqrt{n}$
4. $T_{4}(n)=10 n^{3}$
5. $T_{5}(n)=2^{n}$

The algorithms will be executed on a Pentium 1 GHz processor. For simplicity, we assume that the processor executes exactly 10^{9} computations per second.
Compute for any i the input size n, for which the problem can be solved by algorithm A_{i} within 1 h .

Exercise 1.4 - Complexity classes

JUST FOR FUN. Order the following classes according to set inclusion: DLOG, PSPACE, PTIME, NP, coNP, NLOG. Example: NLOG \subseteq PTIME.

