Theory I, Sheet 4

- The solutions should be submitted in English.
- JUST FOR FUN exercises are not mandatory.
- Your solutions should be delivered to the lockbox in building 051 floor 00, or right before the start of the tutorial (May 21, 4:00 p.m.).
- You are allowed to discuss your solutions with each other. Nevertheless, you are required to write down the answers in your own words.

Exercise 4.1 - Hashing: chaining

Insert the keys $8,12,15,16,19,38,27,5,21,49,65,42$ into a hash table with collisions resolved by chaining. Let the table have 15 slots and let the hash function be $h(k)=k \bmod 15$. Show the resulting table.

Exercise 4.2 - Hashing: open addressing

Consider an empty hash table of size 15 . Insert the following keys

$$
8,12,15,16,19,38,27,5,21,49,65,42
$$

using $h(k)=k \bmod 15$ and:

1. Linear probing.
2. Quadratic probing.
3. Double hashing with $h^{\prime}(k)=1+(k \bmod 13)$.

Give the resulting tables.

Exercise 4.3 - Universal Hashing

JUST FOR FUN. Let $U=\{0, \ldots, N-1\}$, where N is 49 and m is 35 . Let $a_{i}=42 \cdot i$ and $b_{i}=28 \cdot i$. Now consider the following class of hash functions.

$$
\mathcal{H}=\left\{h_{i}(k)=\left(\left(a_{i} \cdot k+b_{i}\right) \quad \bmod N\right) \bmod m\right\} \text { for } i \in\{1, \ldots, N(N-1)\}
$$

Is \mathcal{H} universal? Prove your answer.

