Alternating Finite Automata

Matthias Hengel

Seminar: Automata Theory Software Engineering Albert-Ludwigs-Universität Freiburg

24. July, 2013

- Problem: DFA occurring in practice are often very big with a lot of states
- How can they be represented efficiently?
- Using alternating finite automata a DFA with 2^k states can be represented as a automaton with k + 1 states
- Problem: The "complexity" of the automaton is shifted to the transition function
- How can the transition function be represented efficiently?

- Problem: DFA occurring in practice are often very big with a lot of states
- How can they be represented efficiently?
- Using alternating finite automata a DFA with 2^k states can be represented as a automaton with k + 1 states
- Problem: The "complexity" of the automaton is shifted to the transition function
- How can the transition function be represented efficiently?

3 Construction from DFA to an equivalent AFA

4 Bit-wise implementation

5 Conclusion

Basic Definitions

Definition

- A *h*-AFA is a tuple (Q, Σ, g, h, f) , where
 - Q is a finite set of states,
 - Σ is the input alphabet,
 - $g: Q \times \Sigma \times B^Q \to B$ is the transition function, where B denotes the two-element Boolean algebra,
 - $h: B^Q \to B$ is the accepting function, and
 - $F \subseteq Q$ is the set of final states.

Definition

The transition function $g: Q \times \Sigma \times B^Q \to B$ is extended to a function $g: Q \times \Sigma^* \times B^Q \to B$ as follows:

•
$$g(s, \lambda, u) = u_s$$
, and

•
$$g(s, aw, u) = g(s, a, g(s, w, u)).$$

Definition

A word $w \in \Sigma^*$ is accepted by an AFA iff h(g(w, f)) = 1, where • $f \in B^Q$ and $f_q = 1$ iff $q \in F$, and • $g(w, f) = g(s, w, f)_{s \in Q}$.

Definition

The transition function $g: Q \times \Sigma \times B^Q \to B$ is extended to a function $g: Q \times \Sigma^* \times B^Q \to B$ as follows:

•
$$g(s, \lambda, u) = u_s$$
, and

•
$$g(s, aw, u) = g(s, a, g(s, w, u)).$$

Definition

A word $w \in \Sigma^*$ is accepted by an AFA iff h(g(w, f)) = 1, where

•
$$f\in B^Q$$
 and $f_q=1$ iff $q\in F$, and

•
$$g(w, f) = g(s, w, f)_{s \in Q}$$
.

Consider the automata $A = (Q_A, \Sigma, g, h, F_A)$ where

- $Q_A = \{s_0, s_1, s_2\}$
- $\Sigma = \{a, b\}$

•
$$h(s_0, s_1, s_2) = s_0$$

•
$$F_A = \emptyset$$

and g is defined by:

State	а	b
<i>s</i> ₀	$u_1 \wedge u_2$	<i>u</i> ₁
<i>s</i> ₁	$u_1 \wedge u_2$	$u_1 \vee u_2$
<i>s</i> ₂	1	<i>u</i> ₁

State	а	b
<i>s</i> ₀	$u_1 \wedge u_2$	<i>u</i> ₁
<i>s</i> 1	$u_1 \wedge u_2$	$u_1 \vee u_2$
<i>s</i> ₂	1	<i>u</i> ₁

Consider the word bba.

 $\begin{aligned} h(g(bba, f)) &= h(g(b, g(b, g(a, f)))) = h(g(b, g(b, g(a, (0, 0, 0))))) \\ &= h(g(b, g(b, (0, 0, 1)))) \\ &= h(g(b, (0, 1, 0)) \\ &= h(1, 1, 1) \\ &= 1 \end{aligned}$

State	а	b
<i>s</i> ₀	$u_1 \wedge u_2$	<i>u</i> ₁
<i>s</i> 1	$u_1 \wedge u_2$	$u_1 \vee u_2$
<i>s</i> ₂	1	<i>u</i> ₁

Consider the word bba.

$$\begin{aligned} h(g(bba, f)) &= h(g(b, g(b, g(a, f)))) = h(g(b, g(b, g(a, (0, 0, 0))))) \\ &= h(g(b, g(b, (0, 0, 1)))) \\ &= h(g(b, (0, 1, 0)) \\ &= h(1, 1, 1) \\ &= 1 \end{aligned}$$

Construction from DFA to an equivalent AFA

• Consider a DFA with 2^k states

- 2^k states can be encoded by Boolean vectors of length k
- Idea: Every state of the DFA is represented as an assignment of states of the AFA
- This corresponds to an encoding of the states of the DFA as Boolean vectors
- The transition function must be build accordingly
- The AFA accepts the reverse language

• Consider a DFA with 2^k states

- 2^k states can be encoded by Boolean vectors of length k
- Idea: Every state of the DFA is represented as an assignment of states of the AFA
- This corresponds to an encoding of the states of the DFA as Boolean vectors
- The transition function must be build accordingly
- The AFA accepts the reverse language

- Consider a DFA with 2^k states
- 2^k states can be encoded by Boolean vectors of length k
- Idea: Every state of the DFA is represented as an assignment of states of the AFA
- This corresponds to an encoding of the states of the DFA as Boolean vectors
- The transition function must be build accordingly
- The AFA accepts the reverse language

- Consider a DFA with 2^k states
- 2^k states can be encoded by Boolean vectors of length k
- Idea: Every state of the DFA is represented as an assignment of states of the AFA
- This corresponds to an encoding of the states of the DFA as Boolean vectors
- The transition function must be build accordingly
- The AFA accepts the reverse language

- Consider a DFA with 2^k states
- 2^k states can be encoded by Boolean vectors of length k
- Idea: Every state of the DFA is represented as an assignment of states of the AFA
- This corresponds to an encoding of the states of the DFA as Boolean vectors
- The transition function must be build accordingly
- The AFA accepts the reverse language

- Consider a DFA with 2^k states
- 2^k states can be encoded by Boolean vectors of length k
- Idea: Every state of the DFA is represented as an assignment of states of the AFA
- This corresponds to an encoding of the states of the DFA as Boolean vectors
- The transition function must be build accordingly
- The AFA accepts the reverse language

Theorem

A language L is accepted by a DFA with 2^k states if and only if it's reversed language L^R is accepted by an AFA with k + 1 states.

Construction

Let $A = (Q_D, \Sigma, q_0, F_D, \delta)$, $Q_D = \{q_0, \dots, q_{2^k-1}\}$ be an DFA with 2^k states.

The set of states is constructed as $Q_A = \{s_0, s_1, \dots, s_k\}$.

The state *s*₀ has a special role as will be seen later.

The set of states is constructed as $Q_A = \{s_0, s_1, \dots, s_k\}$. The state s_0 has a special role as will be seen later.

The set of states is constructed as $Q_A = \{s_0, s_1, \dots, s_k\}$. The state s_0 has a special role as will be seen later.

The accepting function is constructed as $h(s_0, s_1, \ldots, s_k) = s_0$.

The accepting function is constructed as $h(s_0, s_1, \ldots, s_k) = s_0$.

The final states are constructed as
$$F_A = \begin{cases} \{s_0\} & \text{ if } q_0 \in F_D, \\ \emptyset & \text{ otherwise.} \end{cases}$$

Start state is q_0 and $F_D = \{q_3\}$, therefore $F_A = \emptyset$. The characteristic vector now is (0, 0, 0).

The final states are constructed as
$$F_A = \begin{cases} \{s_0\} & \text{ if } q_0 \in F_D, \\ \emptyset & \text{ otherwise.} \end{cases}$$
.

Start state is q_0 and $F_D = \{q_3\}$, therefore $F_A = \emptyset$. The characteristic vector now is (0, 0, 0).

$$(s_0)$$
 (s_1) (s_2)

Identify $\pi(a)$, $a \in Q_D$, with an assignment of the states s_1, \ldots, s_k .

- This represents an encoding scheme of the states of the DFA ${\cal A}$ in ${\cal B}^k$
- $\pi(s)$ is chosen as $(0,\ldots,0)$ because of the definition of F_A
- The state s_0 is not considered by π

State of A	0	1	2	3
Assignment of s_1 and s_2 under π	(0, 0)	(0, 1)	(1, 0)	(1, 1)

Identify $\pi(a)$, $a \in Q_D$, with an assignment of the states s_1, \ldots, s_k .

- This represents an encoding scheme of the states of the DFA A in B^k
- $\pi(s)$ is chosen as $(0,\ldots,0)$ because of the definition of F_A

• The state s_0 is not considered by π

State of A	0	1	2	3
Assignment of s_1 and s_2 under π	(0, 0)	(0, 1)	(1, 0)	(1, 1)

Identify $\pi(a)$, $a \in Q_D$, with an assignment of the states s_1, \ldots, s_k .

- This represents an encoding scheme of the states of the DFA *A* in *B^k*
- $\pi(s)$ is chosen as $(0,\ldots,0)$ because of the definition of F_A

• The state s_0 is not considered by π

State of A	0	1	2	3
Assignment of s_1 and s_2 under π	(0, 0)	(0, 1)	(1, 0)	(1, 1)

Identify $\pi(a)$, $a \in Q_D$, with an assignment of the states s_1, \ldots, s_k .

- This represents an encoding scheme of the states of the DFA *A* in *B^k*
- $\pi(s)$ is chosen as $(0,\ldots,0)$ because of the definition of F_A
- The state s_0 is not considered by π

State of A	0	1	2	3
Assignment of s_1 and s_2 under π	(0, 0)	(0, 1)	(1, 0)	(1, 1)

Identify $\pi(a)$, $a \in Q_D$, with an assignment of the states s_1, \ldots, s_k .

- This represents an encoding scheme of the states of the DFA *A* in *B^k*
- $\pi(s)$ is chosen as $(0,\ldots,0)$ because of the definition of F_A
- The state s_0 is not considered by π

Example				
State of A	0	1	2	3
Assignment of s_1 and s_2 under π	(0, 0)	(0, 1)	(1, 0)	(1, 1)
Choose an arbitrary bijection $\pi: Q_D \to B^k$ such that $\pi(q_0) = (0, \ldots, 0)$.

Identify $\pi(a)$, $a \in Q_D$, with an assignment of the states s_1, \ldots, s_k .

- This represents an encoding scheme of the states of the DFA *A* in *B^k*
- $\pi(s)$ is chosen as $(0,\ldots,0)$ because of the definition of F_A
- The state s_0 is not considered by π

Example				
State of A	0	1	2	3
Assignment of s_1 and s_2 under π	(0,0)	(0,1)	(1,0)	(1, 1)

Let
$$\theta_1(x) = x$$
 and $\theta_0(x) = \overline{x}$.

For s_i , $i \neq 0$, the transition function is constructed as:

$$g(s_i, a, u) = \bigvee_{v \in B^k} (\pi(\delta(\pi^{-1}(v), a))_i \wedge \theta_{v_1}(u_1) \wedge \cdots \wedge \theta_{v_k}(u_k)).$$

Let $\theta_1(x) = x$ and $\theta_0(x) = \overline{x}$.

For s_i , $i \neq 0$, the transition function is constructed as:

$$g(s_i, a, u) = \bigvee_{v \in B^k} (\pi(\delta(\pi^{-1}(v), a))_i \wedge \theta_{v_1}(u_1) \wedge \cdots \wedge \theta_{v_k}(u_k)).$$

Let
$$z, x \in B$$
. Then $\theta_z(x) = 1$ if and only if $z = x$.

",
$$\Rightarrow$$
": Let $\theta_z(x)$ be 1.
• $z = 1$: Then $\theta_z(x) = x$ and therefore $x = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$, therefore $\overline{x} = 1$ and thus $x = 0$.
", \Leftarrow ": Let $z = x$:
• $z = 1$: Then $\theta_z(x) = x$ and therefore $\theta_z(x) = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$ and therefore $\theta_z(x) = \overline{0} = 1$.

Let
$$z, x \in B$$
. Then $\theta_z(x) = 1$ if and only if $z = x$.

",⇒": Let
$$\theta_z(x)$$
 be 1.
• $z = 1$: Then $\theta_z(x) = x$ and therefore $x = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$, therefore $\overline{x} = 1$ and thus $x = 0$.
", ⇐": Let $z = x$:
• $z = 1$: Then $\theta_z(x) = x$ and therefore $\theta_z(x) = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$ and therefore $\theta_z(x) = \overline{0} = 1$.

Let
$$z, x \in B$$
. Then $\theta_z(x) = 1$ if and only if $z = x$.

",
$$\Rightarrow$$
": Let $\theta_z(x)$ be 1.
• $z = 1$: Then $\theta_z(x) = x$ and therefore $x = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$, therefore $\overline{x} = 1$ and thus $x = 0$.
", \Leftarrow ": Let $z = x$:
• $z = 1$: Then $\theta_z(x) = x$ and therefore $\theta_z(x) = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$ and therefore $\theta_z(x) = \overline{0} = 1$.

Let
$$z, x \in B$$
. Then $\theta_z(x) = 1$ if and only if $z = x$.

",
$$\Rightarrow$$
": Let $\theta_z(x)$ be 1.
• $z = 1$: Then $\theta_z(x) = x$ and therefore $x = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$, therefore $\overline{x} = 1$ and thus $x = 0$.
", \Leftarrow ": Let $z = x$:
• $z = 1$: Then $\theta_z(x) = x$ and therefore $\theta_z(x) = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$ and therefore $\theta_z(x) = \overline{0} = 1$.

Let
$$z, x \in B$$
. Then $\theta_z(x) = 1$ if and only if $z = x$.

",
$$\Rightarrow$$
": Let $\theta_z(x)$ be 1.
• $z = 1$: Then $\theta_z(x) = x$ and therefore $x = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$, therefore $\overline{x} = 1$ and thus $x = 0$.
", \Leftarrow ": Let $z = x$:
• $z = 1$: Then $\theta_z(x) = x$ and therefore $\theta_z(x) = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$ and therefore $\theta_z(x) = \overline{0} = 1$.

Let
$$z, x \in B$$
. Then $\theta_z(x) = 1$ if and only if $z = x$.

",
$$\Rightarrow$$
": Let $\theta_z(x)$ be 1.
• $z = 1$: Then $\theta_z(x) = x$ and therefore $x = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$, therefore $\overline{x} = 1$ and thus $x = 0$.
", \Leftarrow ": Let $z = x$:
• $z = 1$: Then $\theta_z(x) = x$ and therefore $\theta_z(x) = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$ and therefore $\theta_z(x) = \overline{0} = 1$.

Let
$$z, x \in B$$
. Then $\theta_z(x) = 1$ if and only if $z = x$.

",
$$\Rightarrow$$
": Let $\theta_z(x)$ be 1.
• $z = 1$: Then $\theta_z(x) = x$ and therefore $x = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$, therefore $\overline{x} = 1$ and thus $x = 0$.
", \Leftarrow ": Let $z = x$:
• $z = 1$: Then $\theta_z(x) = x$ and therefore $\theta_z(x) = 1$.
• $z = 0$: Then $\theta_z(x) = \overline{x}$ and therefore $\theta_z(x) = \overline{0} = 1$.

Using the lemma the transition function can be rearranged as following:

$$g(s_i, a, u) = \bigvee_{v \in B^k} (\pi(\delta(\pi^{-1}(v), a))_i \wedge \theta_{v_1}(u_1) \wedge \dots \wedge \theta_{v_k}(u_k))$$
$$= \pi(\delta(\pi^{-1}(u_1, \dots, u_k), a))_i$$

- The transition function g directly represents the transitions of A in the encoding scheme!
- The reason for the initial notation is that in this way it can be represented more easily as a Boolean function.

Using the lemma the transition function can be rearranged as following:

$$g(s_i, a, u) = \bigvee_{v \in B^k} (\pi(\delta(\pi^{-1}(v), a))_i \wedge \theta_{v_1}(u_1) \wedge \dots \wedge \theta_{v_k}(u_k))$$
$$= \pi(\delta(\pi^{-1}(u_1, \dots, u_k), a))_i$$

- The transition function g directly represents the transitions of A in the encoding scheme!
- The reason for the initial notation is that in this way it can be represented more easily as a Boolean function.

Using the lemma the transition function can be rearranged as following:

$$g(s_i, a, u) = \bigvee_{v \in B^k} (\pi(\delta(\pi^{-1}(v), a))_i \wedge \theta_{v_1}(u_1) \wedge \dots \wedge \theta_{v_k}(u_k))$$
$$= \pi(\delta(\pi^{-1}(u_1, \dots, u_k), a))_i$$

- The transition function g directly represents the transitions of A in the encoding scheme!
- The reason for the initial notation is that in this way it can be represented more easily as a Boolean function.

For s_0 the transition function is constructed as:

$$g(s_0, a, u) = \bigvee_{q \in F_D} heta_{\pi(q)_1}(g(s_1, a, u)) \wedge \cdots \wedge heta_{\pi(q)_k}(g(s_k, a, u))$$

- Again we consider the lemma: $g(s_0, a, u)$ is true iff the encoding of at least one of the final states of A is the current assignment of the AFA.
- Because of $h(s_0, s_1, \ldots, s_k) = s_0$, the state s_0 is the only state which needs to be considered for acceptance.

For s_0 the transition function is constructed as:

$$g(s_0, a, u) = \bigvee_{q \in F_D} \theta_{\pi(q)_1}(g(s_1, a, u)) \wedge \cdots \wedge \theta_{\pi(q)_k}(g(s_k, a, u))$$

- Again we consider the lemma: $g(s_0, a, u)$ is true iff the encoding of at least one of the final states of A is the current assignment of the AFA.
- Because of $h(s_0, s_1, \ldots, s_k) = s_0$, the state s_0 is the only state which needs to be considered for acceptance.

For s_0 the transition function is constructed as:

$$g(s_0, a, u) = \bigvee_{q \in F_D} \theta_{\pi(q)_1}(g(s_1, a, u)) \wedge \cdots \wedge \theta_{\pi(q)_k}(g(s_k, a, u))$$

- Again we consider the lemma: $g(s_0, a, u)$ is true iff the encoding of at least one of the final states of A is the current assignment of the AFA.
- Because of $h(s_0, s_1, \ldots, s_k) = s_0$, the state s_0 is the only state which needs to be considered for acceptance.

$$g(s_{1}, a, u) = \bigvee_{v \in B^{k}} (\pi(\delta(\pi^{-1}(v), a))_{1} \land \theta_{v_{1}}(u_{1}) \land \theta_{v_{2}}(u_{2}))$$

$$= (\pi(\delta(\pi^{-1}(00), a))_{1} \land \theta_{0}(u_{1}) \land \theta_{0}(u_{2}))$$

$$\lor (\pi(\delta(\pi^{-1}(01), a))_{1} \land \theta_{0}(u_{1}) \land \theta_{1}(u_{2}))$$

$$\lor (\pi(\delta(\pi^{-1}(10), a))_{1} \land \theta_{1}(u_{1}) \land \theta_{0}(u_{2}))$$

$$\lor (\pi(\delta(\pi^{-1}(11), a))_{1} \land \theta_{1}(u_{1}) \land \theta_{1}(u_{2}))$$

$$= (0 \land \overline{u_{1}} \land \overline{u_{2}}) \lor (0 \land \overline{u_{1}} \land u_{2})$$

$$\lor (0 \land u_{1} \land \overline{u_{2}}) \lor (1 \land u_{1} \land u_{2})$$

$$= u_{1} \land u_{2}$$

Overall the transition function is:

g	а	Ь
<i>s</i> ₀	$u_1 \wedge u_2$	<i>u</i> ₁
s_1	$u_1 \wedge u_2$	$u_1 \lor u_2$
<i>s</i> ₂	1	<i>u</i> ₁

Construction: Transition function

Consider the word w = abb.

- w is accepted by $A \Leftrightarrow w^R$ is accepted by the constructed AFA
- The word w is accepted iff $h(g(w^R, f)) = 1$, where f is the characteristic vector (0, 0, 0)
- Only the last two numbers of a vector encode the state, the first represents the state of *s*₀

$$h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0)))))$$

Consider the word w = abb.

- w is accepted by $A \Leftrightarrow w^R$ is accepted by the constructed AFA
- The word w is accepted iff $h(g(w^R, f)) = 1$, where f is the characteristic vector (0, 0, 0)
- Only the last two numbers of a vector encode the state, the first represents the state of s_0

$$h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0)))))$$

Consider the word w = abb.

- w is accepted by $A \Leftrightarrow w^R$ is accepted by the constructed AFA
- The word w is accepted iff $h(g(w^R, f)) = 1$, where f is the characteristic vector (0, 0, 0)

• Only the last two numbers of a vector encode the state, the first represents the state of *s*₀

$$h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0)))))$$

Consider the word w = abb.

- w is accepted by $A \Leftrightarrow w^R$ is accepted by the constructed AFA
- The word w is accepted iff $h(g(w^R, f)) = 1$, where f is the characteristic vector (0, 0, 0)
- Only the last two numbers of a vector encode the state, the first represents the state of s_0

h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0)))))

Consider the word w = abb.

- w is accepted by $A \Leftrightarrow w^R$ is accepted by the constructed AFA
- The word w is accepted iff $h(g(w^R, f)) = 1$, where f is the characteristic vector (0, 0, 0)
- Only the last two numbers of a vector encode the state, the first represents the state of s_0

$$h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0)))))$$

h(g(bba, f)) = h(g(b, g(b, (0, 0, 1))))

h(g(bba, f)) = h(g(b, (0, 1, 0)))

$$h(g(bba, f)) = h(1, 1, 1) = 1$$

Bit-wise implementation

Transformation DFA to AFA: Observations

- Complexity of states of the DFA is transformed to complexity of the transition function of the AFA
- How can the transition function be represented efficiently?
- Is there a efficient representation of Boolean functions?

- Complexity of states of the DFA is transformed to complexity of the transition function of the AFA
- How can the transition function be represented efficiently?
- Is there a efficient representation of Boolean functions?

- Complexity of states of the DFA is transformed to complexity of the transition function of the AFA
- How can the transition function be represented efficiently?
- Is there a efficient representation of Boolean functions?

Let
$$S = \{x_1, \ldots, x_n\}$$
 a set of Boolean variables, and $\overline{S} = \{\overline{x_1}, \ldots, \overline{x_n}\}.$

Definition

A term *t* defined on $S \cup \overline{S}$ is a conjunction

$$t = y_1 \wedge \cdots \wedge y_k, \ 1 \leq k \leq n$$

where $y_i \in S \cup \overline{S}$, $y_i \neq y_j$, $y_i \neq \overline{y_j}$ for $1 \le i < j \le k$, or t is constant.

Definition

A Boolean expression f is said to be in disjunctive normal form if $f = \bigvee_{i=1}^{k} t_i$, where t_i , i = 1, ..., k, is a term defined on $S \cup \overline{S}$.

Let
$$S = \{x_1, \ldots, x_n\}$$
 a set of Boolean variables, and $\overline{S} = \{\overline{x_1}, \ldots, \overline{x_n}\}.$

Definition

A term *t* defined on $S \cup \overline{S}$ is a conjunction

$$t = y_1 \wedge \cdots \wedge y_k, \ 1 \leq k \leq n$$

where $y_i \in S \cup \overline{S}$, $y_i \neq y_j$, $y_i \neq \overline{y_j}$ for $1 \le i < j \le k$, or t is constant.

Definition

A Boolean expression f is said to be in disjunctive normal form if $f = \bigvee_{i=1}^{k} t_i$, where t_i , i = 1, ..., k, is a term defined on $S \cup \overline{S}$.

Theorem

For every Boolean function f defined on S that can be expressed as a single term, there exist two n-bit vectors α and β such that for all $u \in B^n$

$$f(u) = 1 \Leftrightarrow (\alpha \& u) \uparrow \beta = 0$$

where & is the bit-wise AND operator, \uparrow the bit-wise exclusive-or operator, and 0 is the zero vector $(0, \ldots, 0) \in B^n$.

Using this theorem we can represent a term of a Boolean function as two n-bit integers.

Theorem

For every Boolean function f defined on S that can be expressed as a single term, there exist two n-bit vectors α and β such that for all $u \in B^n$

$$f(u) = 1 \Leftrightarrow (\alpha \& u) \uparrow \beta = 0$$

where & is the bit-wise AND operator, \uparrow the bit-wise exclusive-or operator, and 0 is the zero vector $(0, \ldots, 0) \in B^n$.

Using this theorem we can represent a term of a Boolean function as two n-bit integers.

Proof.

Let $f = y_{i_1} \wedge \cdots \wedge y_{i_k}$, where $y_{i_i} = x_{i_i}$ or $\overline{x_{i_i}}$, $i_j \neq i_{j'}$ for $j \neq j'$. • $\alpha_i = 1$ iff x_i or $\overline{x_i}$ appears in f • $\beta_i = 1$ iff x_i appears in f • Case 1: Neither x_i nor $\overline{x_i}$ appear in f, then $((\alpha \& u) \uparrow \beta)_i = 0$ • Case 2: x_i appears in f, then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 1$ • Case 3: $\overline{x_i}$ appears in f, then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 0$
Let $f = y_{i_1} \wedge \cdots \wedge y_{i_k}$, where $y_{i_j} = x_{i_j}$ or $\overline{x_{i_j}}$, $i_j \neq i_{j'}$ for $j \neq j'$. Let $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$ be defined as follows:				
• $\alpha_i = 1$ iff x_i or $\overline{x_i}$ appears in f				
• $\beta_i = 1$ iff x_i appears in f				
Then $(\alpha \& u)_i = 1 \Leftrightarrow u_i = 1$ and $(x_i \text{ or } \overline{x_i} \text{ appears in } f)$.				
• Case 1: Neither x_i nor $\overline{x_i}$ appear in f , then $((\alpha \& u) \uparrow \beta)_i = 0$				
• Case 2: x_i appears in f , then $((lpha\&u)\uparroweta)_i=0$ iff $u_i=1$				
• Case 3: $\overline{x_i}$ appears in f , then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 0$				
All in all $f(u) = 1$ iff $(\alpha \& u) \uparrow \beta = 0$.				

Let
$$f = y_{i_1} \land \dots \land y_{i_k}$$
, where $y_{i_j} = x_{i_j}$ or $\overline{x_{i_j}}$, $i_j \neq i_{j'}$ for $j \neq j'$.
Let $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$ be defined as follows:
• $\alpha_i = 1$ iff x_i or $\overline{x_i}$ appears in f
• $\beta_i = 1$ iff x_i appears in f
Then $(\alpha \& u)_i = 1 \Leftrightarrow u_i = 1$ and $(x_i \text{ or } \overline{x_i} \text{ appears in } f)$.
• Case 1: Neither x_i nor $\overline{x_i}$ appear in f , then $((\alpha \& u) \uparrow \beta)_i = 0$
• Case 2: x_i appears in f , then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 1$
• Case 3: $\overline{x_i}$ appears in f , then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 0$
All in all $f(u) = 1$ iff $(\alpha \& u) \uparrow \beta = 0$.

Let
$$f = y_{i_1} \land \dots \land y_{i_k}$$
, where $y_{i_j} = x_{i_j}$ or $\overline{x_{i_j}}$, $i_j \neq i_{j'}$ for $j \neq j'$.
Let $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$ be defined as follows:
• $\alpha_i = 1$ iff x_i or $\overline{x_i}$ appears in f
• $\beta_i = 1$ iff x_i appears in f
Then $(\alpha \& u)_i = 1 \Leftrightarrow u_i = 1$ and $(x_i \text{ or } \overline{x_i} \text{ appears in } f)$.
• Case 1: Neither x_i nor $\overline{x_i}$ appear in f , then $((\alpha \& u) \uparrow \beta)_i = 0$
• Case 2: x_i appears in f , then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 1$
• Case 3: $\overline{x_i}$ appears in f , then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 0$
All in all $f(u) = 1$ iff $(\alpha \& u) \uparrow \beta = 0$.

Let
$$f = y_{i_1} \land \dots \land y_{i_k}$$
, where $y_{i_j} = x_{i_j}$ or $\overline{x_{i_j}}$, $i_j \neq i_{j'}$ for $j \neq j'$.
Let $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$ be defined as follows:
• $\alpha_i = 1$ iff x_i or $\overline{x_i}$ appears in f
• $\beta_i = 1$ iff x_i appears in f
Then $(\alpha \& u)_i = 1 \Leftrightarrow u_i = 1$ and $(x_i \text{ or } \overline{x_i} \text{ appears in } f)$.
• Case 1: Neither x_i nor $\overline{x_i}$ appear in f , then $((\alpha \& u) \uparrow \beta)_i = 0$
• Case 2: x_i appears in f , then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 1$
• Case 3: $\overline{x_i}$ appears in f , then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 0$
All in all $f(u) = 1$ iff $(\alpha \& u) \uparrow \beta = 0$.

Let
$$f = y_{i_1} \land \dots \land y_{i_k}$$
, where $y_{i_j} = x_{i_j}$ or $\overline{x_{i_j}}$, $i_j \neq i_{j'}$ for $j \neq j'$.
Let $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$ be defined as follows:
• $\alpha_i = 1$ iff x_i or $\overline{x_i}$ appears in f
• $\beta_i = 1$ iff x_i appears in f
Then $(\alpha \& u)_i = 1 \Leftrightarrow u_i = 1$ and $(x_i \text{ or } \overline{x_i} \text{ appears in } f)$.
• Case 1: Neither x_i nor $\overline{x_i}$ appear in f , then $((\alpha \& u) \uparrow \beta)_i = 0$
• Case 2: x_i appears in f , then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 1$
• Case 3: $\overline{x_i}$ appears in f , then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 0$
All in all $f(u) = 1$ iff $(\alpha \& u) \uparrow \beta = 0$.

Let
$$f = y_{i_1} \land \dots \land y_{i_k}$$
, where $y_{i_j} = x_{i_j}$ or $\overline{x_{i_j}}$, $i_j \neq i_{j'}$ for $j \neq j'$.
Let $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$ be defined as follows:
• $\alpha_i = 1$ iff x_i or $\overline{x_i}$ appears in f
• $\beta_i = 1$ iff x_i appears in f
Then $(\alpha \& u)_i = 1 \Leftrightarrow u_i = 1$ and $(x_i \text{ or } \overline{x_i} \text{ appears in } f)$.
• Case 1: Neither x_i nor $\overline{x_i}$ appear in f , then $((\alpha \& u) \uparrow \beta)_i = 0$
• Case 2: x_i appears in f , then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 1$
• Case 3: $\overline{x_i}$ appears in f , then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 0$
All in all $f(u) = 1$ iff $(\alpha \& u) \uparrow \beta = 0$.

Consider $f(u_1, u_2) = u_1 \wedge \overline{u_2}$. Then: • $\alpha = (1, 1)$ • $\beta = (1, 0)$

Consider $f(u_1, u_2) = u_1 \wedge \overline{u_2}$. Then: • $\alpha = (1, 1)$ • $\beta = (1, 0)$ Therefore: $f(1, 0) = (\alpha \& (1, 0)) \uparrow \beta$ $= ((1, 1) \& (1, 0)) \uparrow (0)$

$$egin{aligned} &= ((1,1)\&(1,0)) \uparrow (1,0) \ &= (1,0) \uparrow (1,0) \ &= (0,0) \end{aligned}$$

Consider $f(u_1, u_2) = u_1 \land \overline{u_2}$. Then: • $\alpha = (1, 1)$ • $\beta = (1, 0)$ Therefore:

$$egin{aligned} f(1,0) &= (lpha\&(1,0)) \uparrow eta \ &= ((1,1)\&(1,0)) \uparrow (1,0) \ &= (1,0) \uparrow (1,0) \ &= (0,0) \end{aligned}$$

Consider $f(u_1, u_2) = u_1 \wedge \overline{u_2}$. Then: • $\alpha = (1, 1)$ • $\beta = (1, 0)$

Therefore:

$$egin{aligned} f(1,0) &= (lpha\&(1,0)) \uparrow eta \ &= ((1,1)\&(1,0)) \uparrow (1,0) \ &= (1,0) \uparrow (1,0) \ &= (0,0) \end{aligned}$$

Consider again the transition function (and the transition function of the DFA):

~	2	6	State	а	b
<u> </u>		<i>D</i>	q_0	q_1	q_0
<u>s</u> 0	$u_1 \wedge u_2$	u_1	q_1	q_1	q ₂
<u>s</u> 1	$u_1 \wedge u_2$	$u_1 \lor u_2$	q ₂	q_1	q 3
52		u_1	<i>q</i> 3	q 3	q 3

This gives the following representation (compared to the DFA):

Consider again the transition function (and the transition function of the DFA):

	æ	2	6	State	а	b
-	g	d	D	q_0	q_1	q_0
_	<i>s</i> 0	$u_1 \wedge u_2$	u_1	 []	<i>d</i> ₁	a
	s_1	$u_1 \wedge u_2$	$u_1 \vee u_2$	91	91	92
	50	1	1/1	<u> </u>	91	<i>4</i> 3
	52	-	u1	q_3	<i>q</i> ₃	<i>q</i> ₃

This gives the following representation (compared to the DFA):

g	а	b
<i>s</i> 0	((11), (11))	((10), (10))
<i>s</i> ₁	((11), (11))	((10), (10)), ((01), (01))
<i>s</i> ₂	((00), (00))	((10), (10))

- A DFA A with 2³² states can be represented as an AFA A' with 32 states
- The transition function g of A' can be represented as a $32 \times |\Sigma|$ -Matrix, where Σ is the input alphabet of A and A'
- Every entry of the matrix representation of g can be represented as a List of pairs of integers
- All this results in an efficient way for representing DFAs

- A DFA A with 2³² states can be represented as an AFA A' with 32 states
- The transition function g of A' can be represented as a $32 \times |\Sigma|$ -Matrix, where Σ is the input alphabet of A and A'
- Every entry of the matrix representation of g can be represented as a List of pairs of integers
- All this results in an efficient way for representing DFAs

- A DFA A with 2³² states can be represented as an AFA A' with 32 states
- The transition function g of A' can be represented as a $32 \times |\Sigma|$ -Matrix, where Σ is the input alphabet of A and A'
- Every entry of the matrix representation of g can be represented as a List of pairs of integers
- All this results in an efficient way for representing DFAs

- A DFA A with 2³² states can be represented as an AFA A' with 32 states
- The transition function g of A' can be represented as a $32 \times |\Sigma|$ -Matrix, where Σ is the input alphabet of A and A'
- Every entry of the matrix representation of g can be represented as a List of pairs of integers
- All this results in an efficient way for representing DFAs

Conclusion

• AFAs are an efficient way to represent DFAs

• It is even more efficient using a bit-wise representation of the transition function

Furthermore:

• Operations like the star operation, concatenation or reversal can also be implemented more efficiently

- AFAs are an efficient way to represent DFAs
- It is even more efficient using a bit-wise representation of the transition function

Furthermore:

• Operations like the star operation, concatenation or reversal can also be implemented more efficiently

- AFAs are an efficient way to represent DFAs
- It is even more efficient using a bit-wise representation of the transition function

Furthermore:

• Operations like the star operation, concatenation or reversal can also be implemented more efficiently

Literatur

- CHAMPARNAUD, JEAN-MARC, DENIS MAUREL und DJELLOUL ZIADI (Herausgeber): Automata Implementation, Third International Workshop on Implementing Automata, WIA'98, Rouen, France, September 17-19, 1998, Revised Papers, Band 1660 der Reihe Lecture Notes in Computer Science. Springer, 1999.
- HUERTER, SANDRA, KAI SALOMAA, XIUMING WU und SHENG YU: Implementing Reversed Alternating Finite Automaton (r-AFA) Operations.
 In: CHAMPARNAUD, JEAN-MARC et al. [CMZ99], Seiten 69–81.
- SALOMAA, KAI, XIUMING WU und SHENG YU: Efficient Implementation of Regular Languages Using R-AFA.
 In: WOOD, DERICK und SHENG YU [WY98], Seiten 176–184.

- WOOD, DERICK und SHENG YU (Herausgeber): Automata Implementation, Second International Workshop on Implementing Automata, WIA '97, London, Ontario, Canada, September 18-20, 1997, Revised Papers, Band 1436 der Reihe Lecture Notes in Computer Science. Springer, 1998.
- YU, SHENG: Regular languages, Band 1 der Reihe Handbook of formal languages, Seiten 41–110.
 Springer-Verlag New York, Inc., New York, NY, USA, 1997.