
Alternating Finite Automata

Matthias Hengel

Seminar: Automata Theory
Software Engineering

Albert-Ludwigs-Universität Freiburg

24. July, 2013

Motivation

Problem: DFA occurring in practice are often very big with a
lot of states

How can they be represented efficiently?

Using alternating finite automata a DFA with 2k states can be
represented as a automaton with k + 1 states

Problem: The “complexity” of the automaton is shifted to the
transition function

How can the transition function be represented efficiently?

Matthias Hengel Alternating Finite Automata 2/40

Motivation

Problem: DFA occurring in practice are often very big with a
lot of states

How can they be represented efficiently?

Using alternating finite automata a DFA with 2k states can be
represented as a automaton with k + 1 states

Problem: The “complexity” of the automaton is shifted to the
transition function

How can the transition function be represented efficiently?

Matthias Hengel Alternating Finite Automata 2/40

Content

1 Motivation

2 Basic definitions

3 Construction from DFA to an equivalent AFA

4 Bit-wise implementation

5 Conclusion

Matthias Hengel Alternating Finite Automata 3/40

Basic Definitions

Matthias Hengel Alternating Finite Automata 4/40

AFA: Definition

Definition

A h-AFA is a tuple (Q,Σ, g , h, f), where

Q is a finite set of states,

Σ is the input alphabet,

g : Q × Σ× BQ → B is the transition function, where B
denotes the two-element Boolean algebra,

h : BQ → B is the accepting function, and

F ⊆ Q is the set of final states.

Matthias Hengel Alternating Finite Automata 5/40

AFA: Further definitions

Definition

The transition function g : Q × Σ× BQ → B is extended to a
function g : Q × Σ∗ × BQ → B as follows:

g(s, λ, u) = us , and

g(s, aw , u) = g(s, a, g(s,w , u)).

Definition

A word w ∈ Σ∗ is accepted by an AFA iff h(g(w , f)) = 1, where

f ∈ BQ and fq = 1 iff q ∈ F , and

g(w , f) = g(s,w , f)s∈Q .

Matthias Hengel Alternating Finite Automata 6/40

AFA: Further definitions

Definition

The transition function g : Q × Σ× BQ → B is extended to a
function g : Q × Σ∗ × BQ → B as follows:

g(s, λ, u) = us , and

g(s, aw , u) = g(s, a, g(s,w , u)).

Definition

A word w ∈ Σ∗ is accepted by an AFA iff h(g(w , f)) = 1, where

f ∈ BQ and fq = 1 iff q ∈ F , and

g(w , f) = g(s,w , f)s∈Q .

Matthias Hengel Alternating Finite Automata 6/40

Example

Example

Consider the automata A = (QA,Σ, g , h,FA) where

QA = {s0, s1, s2}
Σ = {a, b}
h(s0, s1, s2) = s0

FA = ∅
and g is defined by:

State a b

s0 u1 ∧ u2 u1

s1 u1 ∧ u2 u1 ∨ u2

s2 1 u1

Matthias Hengel Alternating Finite Automata 7/40

Example

s0 s1 s2

∧
a

b

∨

b

∧

a

1
a

b

Matthias Hengel Alternating Finite Automata 8/40

Example

s0 s1 s2

∧
a

b

∨

b

∧

a

1
a

b

Matthias Hengel Alternating Finite Automata 8/40

Example

s0 s1 s2

∧
a

b

∨

b

∧

a

1
a

b

Matthias Hengel Alternating Finite Automata 8/40

Example

s0 s1 s2

∧
a

b

∨

b

∧

a

1
a

b

Matthias Hengel Alternating Finite Automata 8/40

Example run

Example

State a b

s0 u1 ∧ u2 u1

s1 u1 ∧ u2 u1 ∨ u2

s2 1 u1

Consider the word bba.

h(g(bba, f)) = h(g(b, g(b, g(a, f)))) = h(g(b, g(b, g(a, (0, 0, 0)))))

= h(g(b, g(b, (0, 0, 1))))

= h(g(b, (0, 1, 0))

= h(1, 1, 1)

= 1

Matthias Hengel Alternating Finite Automata 9/40

Example run

Example

State a b

s0 u1 ∧ u2 u1

s1 u1 ∧ u2 u1 ∨ u2

s2 1 u1

Consider the word bba.

h(g(bba, f)) = h(g(b, g(b, g(a, f)))) = h(g(b, g(b, g(a, (0, 0, 0)))))

= h(g(b, g(b, (0, 0, 1))))

= h(g(b, (0, 1, 0))

= h(1, 1, 1)

= 1

Matthias Hengel Alternating Finite Automata 9/40

Construction from DFA to an equivalent AFA

Matthias Hengel Alternating Finite Automata 10/40

Idea

Consider a DFA with 2k states

2k states can be encoded by Boolean vectors of length k

Idea: Every state of the DFA is represented as an assignment
of states of the AFA

This corresponds to an encoding of the states of the DFA as
Boolean vectors

The transition function must be build accordingly

The AFA accepts the reverse language

Matthias Hengel Alternating Finite Automata 11/40

Idea

Consider a DFA with 2k states

2k states can be encoded by Boolean vectors of length k

Idea: Every state of the DFA is represented as an assignment
of states of the AFA

This corresponds to an encoding of the states of the DFA as
Boolean vectors

The transition function must be build accordingly

The AFA accepts the reverse language

Matthias Hengel Alternating Finite Automata 11/40

Idea

Consider a DFA with 2k states

2k states can be encoded by Boolean vectors of length k

Idea: Every state of the DFA is represented as an assignment
of states of the AFA

This corresponds to an encoding of the states of the DFA as
Boolean vectors

The transition function must be build accordingly

The AFA accepts the reverse language

Matthias Hengel Alternating Finite Automata 11/40

Idea

Consider a DFA with 2k states

2k states can be encoded by Boolean vectors of length k

Idea: Every state of the DFA is represented as an assignment
of states of the AFA

This corresponds to an encoding of the states of the DFA as
Boolean vectors

The transition function must be build accordingly

The AFA accepts the reverse language

Matthias Hengel Alternating Finite Automata 11/40

Idea

Consider a DFA with 2k states

2k states can be encoded by Boolean vectors of length k

Idea: Every state of the DFA is represented as an assignment
of states of the AFA

This corresponds to an encoding of the states of the DFA as
Boolean vectors

The transition function must be build accordingly

The AFA accepts the reverse language

Matthias Hengel Alternating Finite Automata 11/40

Idea

Consider a DFA with 2k states

2k states can be encoded by Boolean vectors of length k

Idea: Every state of the DFA is represented as an assignment
of states of the AFA

This corresponds to an encoding of the states of the DFA as
Boolean vectors

The transition function must be build accordingly

The AFA accepts the reverse language

Matthias Hengel Alternating Finite Automata 11/40

Construction

Theorem

A language L is accepted by a DFA with 2k states if and only if it’s
reversed language LR is accepted by an AFA with k + 1 states.

Matthias Hengel Alternating Finite Automata 12/40

Construction

Let A = (QD ,Σ, q0,FD , δ), QD = {q0, . . . , q2k−1} be an DFA with
2k states.

Example

Consider a DFA A as following:

q0start q1 q2 q3
a

b

b

a
a

b

a, b

State a b

q0 q1 q0

q1 q1 q2

q2 q1 q3

q3 q3 q3

Matthias Hengel Alternating Finite Automata 13/40

Construction: States

The set of states is constructed as QA = {s0, s1, . . . , sk}.
The state s0 has a special role as will be seen later.

Example

QA = {s0, s1, s2}

s0 s1 s2

Matthias Hengel Alternating Finite Automata 14/40

Construction: States

The set of states is constructed as QA = {s0, s1, . . . , sk}.
The state s0 has a special role as will be seen later.

Example

QA = {s0, s1, s2}

s0 s1 s2

Matthias Hengel Alternating Finite Automata 14/40

Construction: States

The set of states is constructed as QA = {s0, s1, . . . , sk}.
The state s0 has a special role as will be seen later.

Example

QA = {s0, s1, s2}

s0 s1 s2

Matthias Hengel Alternating Finite Automata 14/40

Construction: Accepting function

The accepting function is constructed as h(s0, s1, . . . , sk) = s0.

Example

h(s0, s1, s2) = s0

s0 s1 s2

Matthias Hengel Alternating Finite Automata 15/40

Construction: Accepting function

The accepting function is constructed as h(s0, s1, . . . , sk) = s0.

Example

h(s0, s1, s2) = s0

s0 s1 s2

Matthias Hengel Alternating Finite Automata 15/40

Construction: Final states

The final states are constructed as FA =

{
{s0} if q0 ∈ FD ,

∅ otherwise.
.

Example

Start state is q0 and FD = {q3}, therefore FA = ∅. The
characteristic vector now is (0, 0, 0).

s0 s1 s2

Matthias Hengel Alternating Finite Automata 16/40

Construction: Final states

The final states are constructed as FA =

{
{s0} if q0 ∈ FD ,

∅ otherwise.
.

Example

Start state is q0 and FD = {q3}, therefore FA = ∅. The
characteristic vector now is (0, 0, 0).

s0 s1 s2

Matthias Hengel Alternating Finite Automata 16/40

Construction: Encoding

Choose an arbitrary bijection π : QD → Bk such that
π(q0) = (0, . . . , 0).

Identify π(a), a ∈ QD , with an assignment of the states s1, . . . , sk .

This represents an encoding scheme of the states of the DFA
A in Bk

π(s) is chosen as (0, . . . , 0) because of the definition of FA

The state s0 is not considered by π

Example

State of A 0 1 2 3

Assignment of s1 and s2 under π (0, 0) (0, 1) (1, 0) (1, 1)

Matthias Hengel Alternating Finite Automata 17/40

Construction: Encoding

Choose an arbitrary bijection π : QD → Bk such that
π(q0) = (0, . . . , 0).

Identify π(a), a ∈ QD , with an assignment of the states s1, . . . , sk .

This represents an encoding scheme of the states of the DFA
A in Bk

π(s) is chosen as (0, . . . , 0) because of the definition of FA

The state s0 is not considered by π

Example

State of A 0 1 2 3

Assignment of s1 and s2 under π (0, 0) (0, 1) (1, 0) (1, 1)

Matthias Hengel Alternating Finite Automata 17/40

Construction: Encoding

Choose an arbitrary bijection π : QD → Bk such that
π(q0) = (0, . . . , 0).

Identify π(a), a ∈ QD , with an assignment of the states s1, . . . , sk .

This represents an encoding scheme of the states of the DFA
A in Bk

π(s) is chosen as (0, . . . , 0) because of the definition of FA

The state s0 is not considered by π

Example

State of A 0 1 2 3

Assignment of s1 and s2 under π (0, 0) (0, 1) (1, 0) (1, 1)

Matthias Hengel Alternating Finite Automata 17/40

Construction: Encoding

Choose an arbitrary bijection π : QD → Bk such that
π(q0) = (0, . . . , 0).

Identify π(a), a ∈ QD , with an assignment of the states s1, . . . , sk .

This represents an encoding scheme of the states of the DFA
A in Bk

π(s) is chosen as (0, . . . , 0) because of the definition of FA

The state s0 is not considered by π

Example

State of A 0 1 2 3

Assignment of s1 and s2 under π (0, 0) (0, 1) (1, 0) (1, 1)

Matthias Hengel Alternating Finite Automata 17/40

Construction: Encoding

Choose an arbitrary bijection π : QD → Bk such that
π(q0) = (0, . . . , 0).

Identify π(a), a ∈ QD , with an assignment of the states s1, . . . , sk .

This represents an encoding scheme of the states of the DFA
A in Bk

π(s) is chosen as (0, . . . , 0) because of the definition of FA

The state s0 is not considered by π

Example

State of A 0 1 2 3

Assignment of s1 and s2 under π (0, 0) (0, 1) (1, 0) (1, 1)

Matthias Hengel Alternating Finite Automata 17/40

Construction: Encoding

Choose an arbitrary bijection π : QD → Bk such that
π(q0) = (0, . . . , 0).

Identify π(a), a ∈ QD , with an assignment of the states s1, . . . , sk .

This represents an encoding scheme of the states of the DFA
A in Bk

π(s) is chosen as (0, . . . , 0) because of the definition of FA

The state s0 is not considered by π

Example

State of A 0 1 2 3

Assignment of s1 and s2 under π (0, 0) (0, 1) (1, 0) (1, 1)

Matthias Hengel Alternating Finite Automata 17/40

Construction: Transition function

Let θ1(x) = x and θ0(x) = x .

For si , i 6= 0, the transition function is constructed as:

g(si , a, u) =
∨

v∈Bk

(π(δ(π−1(v), a))i ∧ θv1(u1) ∧ · · · ∧ θvk (uk)).

Matthias Hengel Alternating Finite Automata 18/40

Construction: Transition function

Let θ1(x) = x and θ0(x) = x .

For si , i 6= 0, the transition function is constructed as:

g(si , a, u) =
∨

v∈Bk

(π(δ(π−1(v), a))i ∧ θv1(u1) ∧ · · · ∧ θvk (uk)).

Matthias Hengel Alternating Finite Automata 18/40

Construction: Lemma

Lemma

Let z , x ∈ B. Then θz(x) = 1 if and only if z = x .

Proof.

”
⇒“: Let θz(x) be 1.

z = 1: Then θz(x) = x and therefore x = 1.

z = 0: Then θz(x) = x , therefore x = 1 and thus x = 0.

”
⇐“: Let z = x :

z = 1: Then θz(x) = x and therefore θz(x) = 1.

z = 0: Then θz(x) = x and therefore θz(x) = 0 = 1.

Matthias Hengel Alternating Finite Automata 19/40

Construction: Lemma

Lemma

Let z , x ∈ B. Then θz(x) = 1 if and only if z = x .

Proof.

”
⇒“: Let θz(x) be 1.

z = 1: Then θz(x) = x and therefore x = 1.

z = 0: Then θz(x) = x , therefore x = 1 and thus x = 0.

”
⇐“: Let z = x :

z = 1: Then θz(x) = x and therefore θz(x) = 1.

z = 0: Then θz(x) = x and therefore θz(x) = 0 = 1.

Matthias Hengel Alternating Finite Automata 19/40

Construction: Lemma

Lemma

Let z , x ∈ B. Then θz(x) = 1 if and only if z = x .

Proof.

”
⇒“: Let θz(x) be 1.

z = 1: Then θz(x) = x and therefore x = 1.

z = 0: Then θz(x) = x , therefore x = 1 and thus x = 0.

”
⇐“: Let z = x :

z = 1: Then θz(x) = x and therefore θz(x) = 1.

z = 0: Then θz(x) = x and therefore θz(x) = 0 = 1.

Matthias Hengel Alternating Finite Automata 19/40

Construction: Lemma

Lemma

Let z , x ∈ B. Then θz(x) = 1 if and only if z = x .

Proof.

”
⇒“: Let θz(x) be 1.

z = 1: Then θz(x) = x and therefore x = 1.

z = 0: Then θz(x) = x , therefore x = 1 and thus x = 0.

”
⇐“: Let z = x :

z = 1: Then θz(x) = x and therefore θz(x) = 1.

z = 0: Then θz(x) = x and therefore θz(x) = 0 = 1.

Matthias Hengel Alternating Finite Automata 19/40

Construction: Lemma

Lemma

Let z , x ∈ B. Then θz(x) = 1 if and only if z = x .

Proof.

”
⇒“: Let θz(x) be 1.

z = 1: Then θz(x) = x and therefore x = 1.

z = 0: Then θz(x) = x , therefore x = 1 and thus x = 0.

”
⇐“: Let z = x :

z = 1: Then θz(x) = x and therefore θz(x) = 1.

z = 0: Then θz(x) = x and therefore θz(x) = 0 = 1.

Matthias Hengel Alternating Finite Automata 19/40

Construction: Lemma

Lemma

Let z , x ∈ B. Then θz(x) = 1 if and only if z = x .

Proof.

”
⇒“: Let θz(x) be 1.

z = 1: Then θz(x) = x and therefore x = 1.

z = 0: Then θz(x) = x , therefore x = 1 and thus x = 0.

”
⇐“: Let z = x :

z = 1: Then θz(x) = x and therefore θz(x) = 1.

z = 0: Then θz(x) = x and therefore θz(x) = 0 = 1.

Matthias Hengel Alternating Finite Automata 19/40

Construction: Lemma

Lemma

Let z , x ∈ B. Then θz(x) = 1 if and only if z = x .

Proof.

”
⇒“: Let θz(x) be 1.

z = 1: Then θz(x) = x and therefore x = 1.

z = 0: Then θz(x) = x , therefore x = 1 and thus x = 0.

”
⇐“: Let z = x :

z = 1: Then θz(x) = x and therefore θz(x) = 1.

z = 0: Then θz(x) = x and therefore θz(x) = 0 = 1.

Matthias Hengel Alternating Finite Automata 19/40

Transition function: Details

Using the lemma the transition function can be rearranged as
following:

g(si , a, u) =
∨

v∈Bk

(π(δ(π−1(v), a))i ∧ θv1(u1) ∧ · · · ∧ θvk (uk))

= π(δ(π−1(u1, . . . , uk), a))i

The transition function g directly represents the transitions of
A in the encoding scheme!

The reason for the initial notation is that in this way it can be
represented more easily as a Boolean function.

Matthias Hengel Alternating Finite Automata 20/40

Transition function: Details

Using the lemma the transition function can be rearranged as
following:

g(si , a, u) =
∨

v∈Bk

(π(δ(π−1(v), a))i ∧ θv1(u1) ∧ · · · ∧ θvk (uk))

= π(δ(π−1(u1, . . . , uk), a))i

The transition function g directly represents the transitions of
A in the encoding scheme!

The reason for the initial notation is that in this way it can be
represented more easily as a Boolean function.

Matthias Hengel Alternating Finite Automata 20/40

Transition function: Details

Using the lemma the transition function can be rearranged as
following:

g(si , a, u) =
∨

v∈Bk

(π(δ(π−1(v), a))i ∧ θv1(u1) ∧ · · · ∧ θvk (uk))

= π(δ(π−1(u1, . . . , uk), a))i

The transition function g directly represents the transitions of
A in the encoding scheme!

The reason for the initial notation is that in this way it can be
represented more easily as a Boolean function.

Matthias Hengel Alternating Finite Automata 20/40

Transition function: Details

For s0 the transition function is constructed as:

g(s0, a, u) =
∨

q∈FD

θπ(q)1(g(s1, a, u)) ∧ · · · ∧ θπ(q)k (g(sk , a, u))

Again we consider the lemma: g(s0, a, u) is true iff the
encoding of at least one of the final states of A is the current
assignment of the AFA.

Because of h(s0, s1, . . . , sk) = s0, the state s0 is the only state
which needs to be considered for acceptance.

Matthias Hengel Alternating Finite Automata 21/40

Transition function: Details

For s0 the transition function is constructed as:

g(s0, a, u) =
∨

q∈FD

θπ(q)1(g(s1, a, u)) ∧ · · · ∧ θπ(q)k (g(sk , a, u))

Again we consider the lemma: g(s0, a, u) is true iff the
encoding of at least one of the final states of A is the current
assignment of the AFA.

Because of h(s0, s1, . . . , sk) = s0, the state s0 is the only state
which needs to be considered for acceptance.

Matthias Hengel Alternating Finite Automata 21/40

Transition function: Details

For s0 the transition function is constructed as:

g(s0, a, u) =
∨

q∈FD

θπ(q)1(g(s1, a, u)) ∧ · · · ∧ θπ(q)k (g(sk , a, u))

Again we consider the lemma: g(s0, a, u) is true iff the
encoding of at least one of the final states of A is the current
assignment of the AFA.

Because of h(s0, s1, . . . , sk) = s0, the state s0 is the only state
which needs to be considered for acceptance.

Matthias Hengel Alternating Finite Automata 21/40

Construction: Transition function

Example

g(s1, a, u) =
∨

v∈Bk

(π(δ(π−1(v), a))1 ∧ θv1(u1) ∧ θv2(u2))

= (π(δ(π−1(00), a))1 ∧ θ0(u1) ∧ θ0(u2))

∨ (π(δ(π−1(01), a))1 ∧ θ0(u1) ∧ θ1(u2))

∨ (π(δ(π−1(10), a))1 ∧ θ1(u1) ∧ θ0(u2))

∨ (π(δ(π−1(11), a))1 ∧ θ1(u1) ∧ θ1(u2))

=(0 ∧ u1 ∧ u2) ∨ (0 ∧ u1 ∧ u2)

∨ (0 ∧ u1 ∧ u2) ∨ (1 ∧ u1 ∧ u2)

=u1 ∧ u2

Matthias Hengel Alternating Finite Automata 22/40

Construction: Transition function

Example

Overall the transition function is:

g a b

s0 u1 ∧ u2 u1

s1 u1 ∧ u2 u1 ∨ u2

s2 1 u1

Matthias Hengel Alternating Finite Automata 23/40

Construction: Transition function

Example

s0 s1 s2

∧
a

b

∨

a

∧

b
1

a

b

Matthias Hengel Alternating Finite Automata 24/40

Example run

Example

Consider the word w = abb.

w is accepted by A ⇔ wR is accepted by the constructed AFA

The word w is accepted iff h(g(wR , f)) = 1, where f is the
characteristic vector (0, 0, 0)

Only the last two numbers of a vector encode the state, the
first represents the state of s0

h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0)))))

(0, 0)start (0, 1) (1, 0) (1, 1)
a

b

b

a

a

b

a, b

Matthias Hengel Alternating Finite Automata 25/40

Example run

Example

Consider the word w = abb.

w is accepted by A ⇔ wR is accepted by the constructed AFA

The word w is accepted iff h(g(wR , f)) = 1, where f is the
characteristic vector (0, 0, 0)

Only the last two numbers of a vector encode the state, the
first represents the state of s0

h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0)))))

(0, 0)start (0, 1) (1, 0) (1, 1)
a

b

b

a

a

b

a, b

Matthias Hengel Alternating Finite Automata 25/40

Example run

Example

Consider the word w = abb.

w is accepted by A ⇔ wR is accepted by the constructed AFA

The word w is accepted iff h(g(wR , f)) = 1, where f is the
characteristic vector (0, 0, 0)

Only the last two numbers of a vector encode the state, the
first represents the state of s0

h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0)))))

(0, 0)start (0, 1) (1, 0) (1, 1)
a

b

b

a

a

b

a, b

Matthias Hengel Alternating Finite Automata 25/40

Example run

Example

Consider the word w = abb.

w is accepted by A ⇔ wR is accepted by the constructed AFA

The word w is accepted iff h(g(wR , f)) = 1, where f is the
characteristic vector (0, 0, 0)

Only the last two numbers of a vector encode the state, the
first represents the state of s0

h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0)))))

(0, 0)start (0, 1) (1, 0) (1, 1)
a

b

b

a

a

b

a, b

Matthias Hengel Alternating Finite Automata 25/40

Example run

Example

Consider the word w = abb.

w is accepted by A ⇔ wR is accepted by the constructed AFA

The word w is accepted iff h(g(wR , f)) = 1, where f is the
characteristic vector (0, 0, 0)

Only the last two numbers of a vector encode the state, the
first represents the state of s0

h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0)))))

(0, 0)start (0, 1) (1, 0) (1, 1)
a

b

b

a

a

b

a, b

Matthias Hengel Alternating Finite Automata 25/40

Example run

Example

h(g(bba, f)) = h(g(b, g(b, (0, 0, 1))))

(0, 0)start (0, 1) (1, 0) (1, 1)
a

b

b

a

a

b

a, b

Matthias Hengel Alternating Finite Automata 26/40

Example run

Example

h(g(bba, f)) = h(g(b, (0, 1, 0))

(0, 0)start (0, 1) (1, 0) (1, 1)
a

b

b

a

a

b

a, b

Matthias Hengel Alternating Finite Automata 27/40

Example run

Example

h(g(bba, f)) = h(1, 1, 1) = 1

(0, 0)start (0, 1) (1, 0) (1, 1)
a

b

b

a

a

b

a, b

Matthias Hengel Alternating Finite Automata 28/40

Bit-wise implementation

Matthias Hengel Alternating Finite Automata 29/40

Transformation DFA to AFA: Observations

Complexity of states of the DFA is transformed to complexity
of the transition function of the AFA

How can the transition function be represented efficiently?

Is there a efficient representation of Boolean functions?

Matthias Hengel Alternating Finite Automata 30/40

Transformation DFA to AFA: Observations

Complexity of states of the DFA is transformed to complexity
of the transition function of the AFA

How can the transition function be represented efficiently?

Is there a efficient representation of Boolean functions?

Matthias Hengel Alternating Finite Automata 30/40

Transformation DFA to AFA: Observations

Complexity of states of the DFA is transformed to complexity
of the transition function of the AFA

How can the transition function be represented efficiently?

Is there a efficient representation of Boolean functions?

Matthias Hengel Alternating Finite Automata 30/40

Basic definitions

Let S = {x1, . . . , xn} a set of Boolean variables, and
S = {x1, . . . , xn}.

Definition

A term t defined on S ∪ S is a conjunction

t = y1 ∧ · · · ∧ yk , 1 ≤ k ≤ n

where yi ∈ S ∪ S , yi 6= yj , yi 6= yj for 1 ≤ i < j ≤ k , or t is
constant.

Definition

A Boolean expression f is said to be in disjunctive normal form if
f =

∨k
i=1 ti , where ti , i = 1, . . . , k, is a term defined on S ∪ S .

Matthias Hengel Alternating Finite Automata 31/40

Basic definitions

Let S = {x1, . . . , xn} a set of Boolean variables, and
S = {x1, . . . , xn}.

Definition

A term t defined on S ∪ S is a conjunction

t = y1 ∧ · · · ∧ yk , 1 ≤ k ≤ n

where yi ∈ S ∪ S , yi 6= yj , yi 6= yj for 1 ≤ i < j ≤ k , or t is
constant.

Definition

A Boolean expression f is said to be in disjunctive normal form if
f =

∨k
i=1 ti , where ti , i = 1, . . . , k, is a term defined on S ∪ S .

Matthias Hengel Alternating Finite Automata 31/40

Theorem: Bit-wise representation of Boolean functions

Theorem

For every Boolean function f defined on S that can be expressed
as a single term, there exist two n-bit vectors α and β such that
for all u ∈ Bn

f (u) = 1⇔ (α&u) ↑ β = 0

where & is the bit-wise AND operator, ↑ the bit-wise exclusive-or
operator, and 0 is the zero vector (0, . . . , 0) ∈ Bn.

Using this theorem we can represent a term of a Boolean function
as two n-bit integers.

Matthias Hengel Alternating Finite Automata 32/40

Theorem: Bit-wise representation of Boolean functions

Theorem

For every Boolean function f defined on S that can be expressed
as a single term, there exist two n-bit vectors α and β such that
for all u ∈ Bn

f (u) = 1⇔ (α&u) ↑ β = 0

where & is the bit-wise AND operator, ↑ the bit-wise exclusive-or
operator, and 0 is the zero vector (0, . . . , 0) ∈ Bn.

Using this theorem we can represent a term of a Boolean function
as two n-bit integers.

Matthias Hengel Alternating Finite Automata 32/40

Proof

Proof.

Let f = yi1 ∧ · · · ∧ yik , where yij = xij or xij , ij 6= ij ′ for j 6= j ′.
Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be defined as follows:

αi = 1 iff xi or xi appears in f

βi = 1 iff xi appears in f

Then (α&u)i = 1⇔ ui = 1 and (xi or xi appears in f).

Case 1: Neither xi nor xi appear in f , then ((α&u) ↑ β)i = 0

Case 2: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 1

Case 3: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 0

All in all f (u) = 1 iff (α&u) ↑ β = 0.

Matthias Hengel Alternating Finite Automata 33/40

Proof

Proof.

Let f = yi1 ∧ · · · ∧ yik , where yij = xij or xij , ij 6= ij ′ for j 6= j ′.
Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be defined as follows:

αi = 1 iff xi or xi appears in f

βi = 1 iff xi appears in f

Then (α&u)i = 1⇔ ui = 1 and (xi or xi appears in f).

Case 1: Neither xi nor xi appear in f , then ((α&u) ↑ β)i = 0

Case 2: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 1

Case 3: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 0

All in all f (u) = 1 iff (α&u) ↑ β = 0.

Matthias Hengel Alternating Finite Automata 33/40

Proof

Proof.

Let f = yi1 ∧ · · · ∧ yik , where yij = xij or xij , ij 6= ij ′ for j 6= j ′.
Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be defined as follows:

αi = 1 iff xi or xi appears in f

βi = 1 iff xi appears in f

Then (α&u)i = 1⇔ ui = 1 and (xi or xi appears in f).

Case 1: Neither xi nor xi appear in f , then ((α&u) ↑ β)i = 0

Case 2: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 1

Case 3: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 0

All in all f (u) = 1 iff (α&u) ↑ β = 0.

Matthias Hengel Alternating Finite Automata 33/40

Proof

Proof.

Let f = yi1 ∧ · · · ∧ yik , where yij = xij or xij , ij 6= ij ′ for j 6= j ′.
Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be defined as follows:

αi = 1 iff xi or xi appears in f

βi = 1 iff xi appears in f

Then (α&u)i = 1⇔ ui = 1 and (xi or xi appears in f).

Case 1: Neither xi nor xi appear in f , then ((α&u) ↑ β)i = 0

Case 2: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 1

Case 3: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 0

All in all f (u) = 1 iff (α&u) ↑ β = 0.

Matthias Hengel Alternating Finite Automata 33/40

Proof

Proof.

Let f = yi1 ∧ · · · ∧ yik , where yij = xij or xij , ij 6= ij ′ for j 6= j ′.
Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be defined as follows:

αi = 1 iff xi or xi appears in f

βi = 1 iff xi appears in f

Then (α&u)i = 1⇔ ui = 1 and (xi or xi appears in f).

Case 1: Neither xi nor xi appear in f , then ((α&u) ↑ β)i = 0

Case 2: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 1

Case 3: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 0

All in all f (u) = 1 iff (α&u) ↑ β = 0.

Matthias Hengel Alternating Finite Automata 33/40

Proof

Proof.

Let f = yi1 ∧ · · · ∧ yik , where yij = xij or xij , ij 6= ij ′ for j 6= j ′.
Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be defined as follows:

αi = 1 iff xi or xi appears in f

βi = 1 iff xi appears in f

Then (α&u)i = 1⇔ ui = 1 and (xi or xi appears in f).

Case 1: Neither xi nor xi appear in f , then ((α&u) ↑ β)i = 0

Case 2: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 1

Case 3: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 0

All in all f (u) = 1 iff (α&u) ↑ β = 0.

Matthias Hengel Alternating Finite Automata 33/40

Proof

Proof.

Let f = yi1 ∧ · · · ∧ yik , where yij = xij or xij , ij 6= ij ′ for j 6= j ′.
Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be defined as follows:

αi = 1 iff xi or xi appears in f

βi = 1 iff xi appears in f

Then (α&u)i = 1⇔ ui = 1 and (xi or xi appears in f).

Case 1: Neither xi nor xi appear in f , then ((α&u) ↑ β)i = 0

Case 2: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 1

Case 3: xi appears in f , then ((α&u) ↑ β)i = 0 iff ui = 0

All in all f (u) = 1 iff (α&u) ↑ β = 0.

Matthias Hengel Alternating Finite Automata 33/40

Theorem: Example

Example

Consider f (u1, u2) = u1 ∧ u2. Then:

α = (1, 1)

β = (1, 0)

Therefore:

f (1, 0) = (α&(1, 0)) ↑ β
= ((1, 1)&(1, 0)) ↑ (1, 0)

= (1, 0) ↑ (1, 0)

= (0, 0)

Matthias Hengel Alternating Finite Automata 34/40

Theorem: Example

Example

Consider f (u1, u2) = u1 ∧ u2. Then:

α = (1, 1)

β = (1, 0)

Therefore:

f (1, 0) = (α&(1, 0)) ↑ β
= ((1, 1)&(1, 0)) ↑ (1, 0)

= (1, 0) ↑ (1, 0)

= (0, 0)

Matthias Hengel Alternating Finite Automata 34/40

Theorem: Example

Example

Consider f (u1, u2) = u1 ∧ u2. Then:

α = (1, 1)

β = (1, 0)

Therefore:

f (1, 0) = (α&(1, 0)) ↑ β
= ((1, 1)&(1, 0)) ↑ (1, 0)

= (1, 0) ↑ (1, 0)

= (0, 0)

Matthias Hengel Alternating Finite Automata 34/40

Theorem: Example

Example

Consider f (u1, u2) = u1 ∧ u2. Then:

α = (1, 1)

β = (1, 0)

Therefore:

f (1, 0) = (α&(1, 0)) ↑ β
= ((1, 1)&(1, 0)) ↑ (1, 0)

= (1, 0) ↑ (1, 0)

= (0, 0)

Matthias Hengel Alternating Finite Automata 34/40

Example

Example

Consider again the transition function (and the transition function
of the DFA):

g a b

s0 u1 ∧ u2 u1

s1 u1 ∧ u2 u1 ∨ u2

s2 1 u1

State a b

q0 q1 q0

q1 q1 q2

q2 q1 q3

q3 q3 q3

This gives the following representation (compared to the DFA):

g a b

s0 ((11), (11)) ((10), (10))

s1 ((11), (11)) ((10), (10)), ((01), (01))

s2 ((00), (00)) ((10), (10))

Matthias Hengel Alternating Finite Automata 35/40

Example

Example

Consider again the transition function (and the transition function
of the DFA):

g a b

s0 u1 ∧ u2 u1

s1 u1 ∧ u2 u1 ∨ u2

s2 1 u1

State a b

q0 q1 q0

q1 q1 q2

q2 q1 q3

q3 q3 q3

This gives the following representation (compared to the DFA):

g a b

s0 ((11), (11)) ((10), (10))

s1 ((11), (11)) ((10), (10)), ((01), (01))

s2 ((00), (00)) ((10), (10))

Matthias Hengel Alternating Finite Automata 35/40

Example: 232 state DFA

A DFA A with 232 states can be represented as an AFA A′

with 32 states

The transition function g of A′ can be represented as a
32× |Σ|-Matrix, where Σ is the input alphabet of A and A′

Every entry of the matrix representation of g can be
represented as a List of pairs of integers

All this results in an efficient way for representing DFAs

Matthias Hengel Alternating Finite Automata 36/40

Example: 232 state DFA

A DFA A with 232 states can be represented as an AFA A′

with 32 states

The transition function g of A′ can be represented as a
32× |Σ|-Matrix, where Σ is the input alphabet of A and A′

Every entry of the matrix representation of g can be
represented as a List of pairs of integers

All this results in an efficient way for representing DFAs

Matthias Hengel Alternating Finite Automata 36/40

Example: 232 state DFA

A DFA A with 232 states can be represented as an AFA A′

with 32 states

The transition function g of A′ can be represented as a
32× |Σ|-Matrix, where Σ is the input alphabet of A and A′

Every entry of the matrix representation of g can be
represented as a List of pairs of integers

All this results in an efficient way for representing DFAs

Matthias Hengel Alternating Finite Automata 36/40

Example: 232 state DFA

A DFA A with 232 states can be represented as an AFA A′

with 32 states

The transition function g of A′ can be represented as a
32× |Σ|-Matrix, where Σ is the input alphabet of A and A′

Every entry of the matrix representation of g can be
represented as a List of pairs of integers

All this results in an efficient way for representing DFAs

Matthias Hengel Alternating Finite Automata 36/40

Conclusion

Matthias Hengel Alternating Finite Automata 37/40

Conclusion

AFAs are an efficient way to represent DFAs

It is even more efficient using a bit-wise representation of the
transition function

Furthermore:

Operations like the star operation, concatenation or reversal
can also be implemented more efficiently

Matthias Hengel Alternating Finite Automata 38/40

Conclusion

AFAs are an efficient way to represent DFAs

It is even more efficient using a bit-wise representation of the
transition function

Furthermore:

Operations like the star operation, concatenation or reversal
can also be implemented more efficiently

Matthias Hengel Alternating Finite Automata 38/40

Conclusion

AFAs are an efficient way to represent DFAs

It is even more efficient using a bit-wise representation of the
transition function

Furthermore:

Operations like the star operation, concatenation or reversal
can also be implemented more efficiently

Matthias Hengel Alternating Finite Automata 38/40

Literatur I

Champarnaud, Jean-Marc, Denis Maurel und
Djelloul Ziadi (Herausgeber): Automata Implementation,
Third International Workshop on Implementing Automata,
WIA’98, Rouen, France, September 17-19, 1998, Revised
Papers, Band 1660 der Reihe Lecture Notes in Computer
Science. Springer, 1999.

Huerter, Sandra, Kai Salomaa, Xiuming Wu und
Sheng Yu: Implementing Reversed Alternating Finite
Automaton (r-AFA) Operations.
In: Champarnaud, Jean-Marc et al. [CMZ99], Seiten
69–81.

Salomaa, Kai, Xiuming Wu und Sheng Yu: Efficient
Implementation of Regular Languages Using R-AFA.
In: Wood, Derick und Sheng Yu [WY98], Seiten 176–184.

Matthias Hengel Alternating Finite Automata 39/40

Literatur II

Wood, Derick und Sheng Yu (Herausgeber): Automata
Implementation, Second International Workshop on
Implementing Automata, WIA ’97, London, Ontario, Canada,
September 18-20, 1997, Revised Papers, Band 1436 der Reihe
Lecture Notes in Computer Science. Springer, 1998.

Yu, Sheng: Regular languages, Band 1 der Reihe Handbook
of formal languages, Seiten 41–110.
Springer-Verlag New York, Inc., New York, NY, USA, 1997.

Matthias Hengel Alternating Finite Automata 40/40

	Motivation
	Basic definitions
	Construction from DFA to an equivalent AFA
	Bit-wise implementation
	Conclusion

