Introduction to Alternating Finite Automata

Pascal Raiola

July 24th, 2013

Outline

1. Accepting with DFAs and NFAs
2. Generalization
3. Alternating finite automata (AFA)
4. Concatenation of two AFAs

Accepting with DFAs

Example: ababa

Accepting with DFAs

Example: q_{1} ababa

Accepting with DFAs

Example: $a q_{2} b a b a$

Accepting with DFAs

Example: $a b q_{2} a b a$

Accepting with DFAs

Example: abaq q_{1} ba

Accepting with DFAs

Example: ababqua

Accepting with DFAs

Example: ababaq q_{2}

Accepting with DFAs

Example: ababaq ${ }_{2}$

\Rightarrow Not accepted.

Accepting with NFAs

Example: ababa

Accepting with NFAs

Example: $\left\{q_{1}\right\}$ ababa

Accepting with NFAs

Example: $a\left\{q_{2}\right\}$ baba

Accepting with NFAs

Example: ab $\left\{q_{2}\right\}$ aba

Accepting with NFAs

Example: aba $\left\{q_{1}, q_{2}\right\}$ ba

Accepting with NFAs

Example: $\operatorname{abab}\left\{q_{1}, q_{2}\right\}$ a

Accepting with NFAs

Example: ababa $\left\{q_{1}, q_{2}\right\}$

Accepting with NFAs

Example: ababa $\left\{q_{1}, q_{2}\right\}$

At least one accepting state \Rightarrow Accepted.

- NFAs look more general than DFAs,
- NFAs look more general than DFAs,
- but accept the same class of languages.
- NFAs look more general than DFAs,
- but accept the same class of languages.

Can it be even more general?

Restrictions (NFA)

The transition can be more general!

Acceptance condition

- DFAs accept iff the run ends in a final state.

Acceptance condition

- DFAs accept iff the run ends in a final state.
- NFAs accept iff the run ends in a set containing at least one final state.

Acceptance condition

- DFAs accept iff the run ends in a final state.
- NFAs accept iff the run ends in a set containing at least one final state.
- More general: A function h deciding acceptance for each subset of Q :

$$
h: 2^{Q} \rightarrow\{0,1\}
$$

Formal definition: h-AFA \& r-AFA

An h-AFA/r-AFA is a 5 -tuple (Q, Σ, g, h, F), where

- Q is the finite set of states,
- Σ is the input alphabet,

Formal definition: h-AFA \& r-AFA

An h-AFA/r-AFA is a 5 -tuple (Q, Σ, g, h, F), where

- Q is the finite set of states,
- Σ is the input alphabet,
- $g: Q \times \Sigma \times 2^{Q} \rightarrow\{0,1\}$ is the transition function,

Formal definition: h-AFA \& r-AFA

An h-AFA/r-AFA is a 5 -tuple (Q, Σ, g, h, F), where

- Q is the finite set of states,
- Σ is the input alphabet,
- $g: Q \times \Sigma \times 2^{Q} \rightarrow\{0,1\}$ is the transition function,
- $h: 2^{Q} \rightarrow\{0,1\}$ is the accepting function and

Formal definition: h-AFA \& r-AFA

An h-AFA/r-AFA is a 5 -tuple (Q, Σ, g, h, F), where

- Q is the finite set of states,
- Σ is the input alphabet,
- $g: Q \times \Sigma \times 2^{Q} \rightarrow\{0,1\}$ is the transition function,
- $h: 2^{Q} \rightarrow\{0,1\}$ is the accepting function and
- $F \subseteq Q$ is the set of final states.

Formal definition: h-AFA \& r-AFA

An h-AFA/r-AFA is a 5 -tuple (Q, Σ, g, h, F), where

- Q is the finite set of states,
- Σ is the input alphabet,
- $g: Q \times \Sigma \times 2^{Q} \rightarrow\{0,1\}$ is the transition function,
- $h: 2^{Q} \rightarrow\{0,1\}$ is the accepting function and
- $F \subseteq Q$ is the set of final states.
- $f \in\{0,1\}^{Q}$ is the to F corresponding vector, e.g.

Formal definition: h-AFA \& r-AFA

An h-AFA/r-AFA is a 5 -tuple (Q, Σ, g, h, F), where

- Q is the finite set of states,
- Σ is the input alphabet,
- $g: Q \times \Sigma \times 2^{Q} \rightarrow\{0,1\}$ is the transition function,
- $h: 2^{Q} \rightarrow\{0,1\}$ is the accepting function and
- $F \subseteq Q$ is the set of final states.
- $f \in\{0,1\}^{Q}$ is the to F corresponding vector, e.g.

$$
\begin{aligned}
Q & =\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}, F=\left\{q_{2}, q_{3}\right\} \\
\Rightarrow f & =(0,1,1,0,0)
\end{aligned}
$$

Formal definition: h-AFA \& r-AFA

- The transition function $g: Q \times \Sigma \times 2^{Q} \rightarrow\{0,1\}$ is universalized from getting just one letter as an input to a whole word:

Formal definition: h-AFA \& r-AFA

- The transition function $g: Q \times \Sigma \times 2^{Q} \rightarrow\{0,1\}$ is universalized from getting just one letter as an input to a whole word:
- $g(q, \varepsilon, v)=v_{q}$

Formal definition: h-AFA \& r-AFA

- The transition function $g: Q \times \Sigma \times 2^{Q} \rightarrow\{0,1\}$ is universalized from getting just one letter as an input to a whole word:
- $g(q, \varepsilon, v)=v_{q}$
- $g(q, a w, v)=g(q, a, g(w, v))$

Formal definition: h-AFA \& r-AFA

- The transition function $g: Q \times \Sigma \times 2^{Q} \rightarrow\{0,1\}$ is universalized from getting just one letter as an input to a whole word:
- $g(q, \varepsilon, v)=v_{q}$
- $g(q, a w, v)=g(q, a, g(w, v))$
- Notation: $g(w, v):=(g(q, w, v))_{q \in Q}$.

Acceptance

An input w is accepted by an h-AFA iff

$$
h(g(w, f))=1
$$

Acceptance

An input w is accepted by an h-AFA iff

$$
h(g(w, f))=1
$$

and by an r-AFA iff

$$
h\left(g\left(w^{R}, f\right)\right)=1
$$

Example: r-AFA

Let $A=(Q, \Sigma, g, h, F)$ be an r-AFA with

- $Q=\left\{q_{1}, q_{2}\right\}$,
- $\Sigma=\{a, b\}$,
- $F=\left\{q_{2}\right\}, f=(0,1)$

Example: r-AFA

Let $A=(Q, \Sigma, g, h, F)$ be an r-AFA with

- $Q=\left\{q_{1}, q_{2}\right\}$,
- $\Sigma=\{a, b\}$,
- $F=\left\{q_{2}\right\}, f=(0,1)$
- $h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}$

Example: r-AFA

Let $A=(Q, \Sigma, g, h, F)$ be an r-AFA with

- $Q=\left\{q_{1}, q_{2}\right\}$,
- $\Sigma=\{a, b\}$,
- $F=\left\{q_{2}\right\}, \mathrm{f}=(0,1)$
- $h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}$
- and g is given by

$$
\begin{aligned}
& g\left(a,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
& g\left(b,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right)
\end{aligned}
$$

Example: r-AFA

Let $w=a b$, then w is accepted by A as follows:

$$
h\left(g\left(w^{R}, f\right)\right)
$$

$$
\begin{aligned}
g\left(a,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
g\left(b,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
h\left(q_{1}, q_{2}\right) & =\overline{q_{1}} \vee q_{2}, \quad f=(0,1)
\end{aligned}
$$

Example: r-AFA

Let $w=a b$, then w is accepted by A as follows:

$$
h\left(g\left(w^{R}, f\right)\right)=h(g(b a, f))
$$

$$
\begin{aligned}
g\left(a,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
g\left(b,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
h\left(q_{1}, q_{2}\right) & =\overline{q_{1}} \vee q_{2}, \quad f=(0,1)
\end{aligned}
$$

Example: r-AFA

Let $w=a b$, then w is accepted by A as follows:

$$
\begin{aligned}
h\left(g\left(w^{R}, f\right)\right) & =h(g(b a, f)) \\
& =h(g(b, g(a, f)))
\end{aligned}
$$

$$
\begin{aligned}
g\left(a,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
g\left(b,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
h\left(q_{1}, q_{2}\right) & =\overline{q_{1}} \vee q_{2}, \quad f=(0,1)
\end{aligned}
$$

Example: r-AFA

Let $w=a b$, then w is accepted by A as follows:

$$
\begin{aligned}
h\left(g\left(w^{R}, f\right)\right) & =h(g(b a, f)) \\
& =h(g(b, g(a, f))) \\
& =h(g(b, g(a,(0,1))))
\end{aligned}
$$

$$
\begin{aligned}
g\left(a,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
g\left(b,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
h\left(q_{1}, q_{2}\right) & =\overline{q_{1}} \vee q_{2}, \quad f=(0,1)
\end{aligned}
$$

Example: r-AFA

Let $w=a b$, then w is accepted by A as follows:

$$
\begin{aligned}
h\left(g\left(w^{R}, f\right)\right) & =h(g(b a, f)) \\
& =h(g(b, g(a, f))) \\
& =h(g(b, g(a,(0,1)))) \\
& =h(g(b,(0 \vee \overline{1}, \overline{0} \wedge \overline{1})))
\end{aligned}
$$

$$
\begin{aligned}
g\left(a,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
g\left(b,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
h\left(q_{1}, q_{2}\right) & =\overline{q_{1}} \vee q_{2}, \quad f=(0,1)
\end{aligned}
$$

Example: r-AFA

Let $w=a b$, then w is accepted by A as follows:

$$
\begin{aligned}
h\left(g\left(w^{R}, f\right)\right) & =h(g(b a, f)) \\
& =h(g(b, g(a, f))) \\
& =h(g(b, g(a,(0,1)))) \\
& =h(g(b,(0 \vee \overline{1}, \overline{0} \wedge \overline{1}))) \\
& =h(g(b,(0,0)))
\end{aligned}
$$

$$
\begin{aligned}
g\left(a,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
g\left(b,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
h\left(q_{1}, q_{2}\right) & =\overline{q_{1}} \vee q_{2}, \quad f=(0,1)
\end{aligned}
$$

Example: r-AFA

Let $w=a b$, then w is accepted by A as follows:

$$
\begin{aligned}
h\left(g\left(w^{R}, f\right)\right) & =h(g(b a, f)) \\
& =h(g(b, g(a, f))) \\
& =h(g(b, g(a,(0,1)))) \\
& =h(g(b,(0 \vee \overline{1}, \overline{0} \wedge \overline{1}))) \\
& =h(g(b,(0,0))) \\
& =h((0 \wedge \overline{0}, \overline{0} \vee \overline{0}))
\end{aligned}
$$

$$
\begin{aligned}
g\left(a,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
g\left(b,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
h\left(q_{1}, q_{2}\right) & =\overline{q_{1}} \vee q_{2}, \quad f=(0,1)
\end{aligned}
$$

Example: r-AFA

Let $w=a b$, then w is accepted by A as follows:

$$
\begin{aligned}
h\left(g\left(w^{R}, f\right)\right) & =h(g(b a, f)) \\
& =h(g(b, g(a, f))) \\
& =h(g(b, g(a,(0,1)))) \\
& =h(g(b,(0 \vee \overline{1}, \overline{0} \wedge \overline{1}))) \\
& =h(g(b,(0,0))) \\
& =h((0 \wedge \overline{0}, \overline{0} \vee \overline{0})) \\
& =h((0,1))
\end{aligned}
$$

$$
\begin{aligned}
g\left(a,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
g\left(b,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
h\left(q_{1}, q_{2}\right) & =\overline{q_{1}} \vee q_{2}, \quad f=(0,1)
\end{aligned}
$$

Example: r-AFA

Let $w=a b$, then w is accepted by A as follows:

$$
\begin{aligned}
h\left(g\left(w^{R}, f\right)\right) & =h(g(b a, f)) \\
& =h(g(b, g(a, f))) \\
& =h(g(b, g(a,(0,1)))) \\
& =h(g(b,(0 \vee \overline{1}, \overline{0} \wedge \overline{1}))) \\
& =h(g(b,(0,0))) \\
& =h((0 \wedge \overline{0}, \overline{0} \vee \overline{0})) \\
& =h((0,1)) \\
& =\overline{0} \vee 1
\end{aligned}
$$

$$
\begin{aligned}
g\left(a,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
g\left(b,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
h\left(q_{1}, q_{2}\right) & =\overline{q_{1}} \vee q_{2}, \quad f=(0,1)
\end{aligned}
$$

Example: r-AFA

Let $w=a b$, then w is accepted by A as follows:

$$
\begin{aligned}
h\left(g\left(w^{R}, f\right)\right) & =h(g(b a, f)) \\
& =h(g(b, g(a, f))) \\
& =h(g(b, g(a,(0,1)))) \\
& =h(g(b,(0 \vee \overline{1}, \overline{0} \wedge \overline{1}))) \\
& =h(g(b,(0,0))) \\
& =h((0 \wedge \overline{0}, \overline{0} \vee \overline{0})) \\
& =h((0,1)) \\
& =\overline{0} \vee 1=1
\end{aligned}
$$

$$
\begin{aligned}
g\left(a,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
g\left(b,\left(q_{1}, q_{2}\right)\right) & =\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
h\left(q_{1}, q_{2}\right) & =\overline{q_{1}} \vee q_{2}, \quad f=(0,1)
\end{aligned}
$$

Equivalence of DFAs and r-AFAs: "DFA $\Rightarrow r$-AFA"

Let $A_{D}=\left(Q_{D}, \Sigma, \delta, s, F_{D}\right)$ be a DFA. Let $A_{A}=\left(Q_{A}, \Sigma, g, h, F_{A}\right)$ be an r-AFA with:

Equivalence of DFAs and r-AFAs: "DFA \Rightarrow r-AFA"

Let $A_{D}=\left(Q_{D}, \Sigma, \delta, s, F_{D}\right)$ be a DFA. Let $A_{A}=\left(Q_{A}, \Sigma, g, h, F_{A}\right)$ be an r-AFA with:

- $Q_{A}=Q_{D}$
- $F_{A}=\{s\}$

Equivalence of DFAs and r-AFAs: "DFA \Rightarrow r-AFA"

Let $A_{D}=\left(Q_{D}, \Sigma, \delta, s, F_{D}\right)$ be a DFA. Let $A_{A}=\left(Q_{A}, \Sigma, g, h, F_{A}\right)$ be an r-AFA with:

- $Q_{A}=Q_{D}$
- $F_{A}=\{s\}$
- $g(q, a, v)=1 \Leftrightarrow \exists p \in Q_{D} . v_{p}=1 \wedge \delta(p, a)=q$

Equivalence of DFAs and r-AFAs: "DFA \Rightarrow r-AFA"

Let $A_{D}=\left(Q_{D}, \Sigma, \delta, s, F_{D}\right)$ be a DFA. Let $A_{A}=\left(Q_{A}, \Sigma, g, h, F_{A}\right)$ be an r-AFA with:

- $Q_{A}=Q_{D}$
- $F_{A}=\{s\}$
- $g(q, a, v)=1 \Leftrightarrow \exists p \in Q_{D} . v_{p}=1 \wedge \delta(p, a)=q$
- $h(v)=1 \Leftrightarrow \exists q \in F_{D} . v_{q}=1$

Equivalence of DFAs and r-AFAs: "DFA \Rightarrow r-AFA"

Let $A_{D}=\left(Q_{D}, \Sigma, \delta, s, F_{D}\right)$ be a DFA. Let $A_{A}=\left(Q_{A}, \Sigma, g, h, F_{A}\right)$ be an r-AFA with:

- $Q_{A}=Q_{D}$
- $F_{A}=\{s\}$
- $g(q, a, v)=1 \Leftrightarrow \exists p \in Q_{D} . v_{p}=1 \wedge \delta(p, a)=q$
- $h(v)=1 \Leftrightarrow \exists q \in F_{D} . v_{q}=1$

Then $L\left(A_{D}\right)=L\left(A_{A}\right)$.

Equivalence of DFAs and r-AFAs: "DFA \Rightarrow r-AFA"

Let $A_{D}=\left(Q_{D}, \Sigma, \delta, s, F_{D}\right)$ be a DFA. Let $A_{A}=\left(Q_{A}, \Sigma, g, h, F_{A}\right)$ be an r-AFA with:

- $Q_{A}=Q_{D}$
- $F_{A}=\{s\}$
- $g(q, a, v)=1 \Leftrightarrow \exists p \in Q_{D} . v_{p}=1 \wedge \delta(p, a)=q$
- $h(v)=1 \Leftrightarrow \exists q \in F_{D} . v_{q}=1$

Then $L\left(A_{D}\right)=L\left(A_{A}\right)$.
Highly inefficient (see next talk)

Equivalence of DFAs and r-AFAs: "r-AFA \Rightarrow DFA":

Let $A_{A}=\left(Q_{A}, \Sigma, g, h, F_{A}\right)$ be an r-AFA. The DFA
$A_{D}=\left(Q_{D}, \Sigma, \delta, s, F_{D}\right)$ is defined as follows:

Equivalence of DFAs and r-AFAs: "r-AFA \Rightarrow DFA":

Let $A_{A}=\left(Q_{A}, \Sigma, g, h, F_{A}\right)$ be an r-AFA. The DFA
$A_{D}=\left(Q_{D}, \Sigma, \delta, s, F_{D}\right)$ is defined as follows:

- $Q_{D}:=\{0,1\}^{Q_{A}}$.

Equivalence of DFAs and r-AFAs: "r-AFA \Rightarrow DFA":

Let $A_{A}=\left(Q_{A}, \Sigma, g, h, F_{A}\right)$ be an r-AFA. The DFA
$A_{D}=\left(Q_{D}, \Sigma, \delta, s, F_{D}\right)$ is defined as follows:

- $Q_{D}:=\{0,1\}^{Q_{A}}$.
- $s:=f_{A}$.

Equivalence of DFAs and r-AFAs: "r-AFA \Rightarrow DFA":

Let $A_{A}=\left(Q_{A}, \Sigma, g, h, F_{A}\right)$ be an r-AFA. The DFA
$A_{D}=\left(Q_{D}, \Sigma, \delta, s, F_{D}\right)$ is defined as follows:

- $Q_{D}:=\{0,1\}^{Q_{A}}$.
- $s:=f_{A}$.
- g and h as in the next slide.

Example:

$$
\begin{aligned}
& g\left(a,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
& g\left(b,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
& F=\left\{q_{2}\right\}, \quad h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& g\left(a,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
& g\left(b,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
& F=\left\{q_{2}\right\}, \quad h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& g\left(a,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
& g\left(b,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
& F=\left\{q_{2}\right\}, \quad h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& g\left(a,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
& g\left(b,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
& F=\left\{q_{2}\right\}, \quad h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& g\left(a,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
& g\left(b,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
& F=\left\{q_{2}\right\}, \quad h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& g\left(a,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
& g\left(b,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
& F=\left\{q_{2}\right\}, \quad h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& g\left(a,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
& g\left(b,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
& F=\left\{q_{2}\right\}, \quad h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& g\left(a,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
& g\left(b,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
& F=\left\{q_{2}\right\}, \quad h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& g\left(a,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
& g\left(b,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
& F=\left\{q_{2}\right\}, \quad h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& g\left(a,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
& g\left(b,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
& F=\left\{q_{2}\right\}, \quad h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& g\left(a,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
& g\left(b,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
& F=\left\{q_{2}\right\}, \quad h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& g\left(a,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \vee \overline{q_{2}}, \overline{q_{1}} \wedge \overline{q_{2}}\right) \\
& g\left(b,\left(q_{1}, q_{2}\right)\right)=\left(q_{1} \wedge \overline{q_{2}}, \overline{q_{1}} \vee q_{2}\right) \\
& F=\left\{q_{2}\right\}, \quad h\left(q_{1}, q_{2}\right)=\overline{q_{1}} \vee q_{2}
\end{aligned}
$$

And so on...

Equivalence of DFAs and r-AFAs

$r-A F A s \sim$ regular languages

Equivalence of DFAs and r-AFAs

r-AFAs \sim regular languages
Regular languages are closed under reversion

Equivalence of DFAs and r-AFAs

r-AFAs \sim regular languages
Regular languages are closed under reversion
\Rightarrow h-AFAs \sim regular languages

Concatenation of two r-AFAs

Two r-AFAs:

$$
A_{1}=\left(Q_{1}, \Sigma, g_{1}, h_{1}, F_{1}\right), \quad A_{2}=\left(Q_{2}, \Sigma, g_{2}, h_{2}, F_{2}\right)
$$

Concatenation of two r-AFAs

Two r-AFAs:

$$
A_{1}=\left(Q_{1}, \Sigma, g_{1}, h_{1}, F_{1}\right), \quad A_{2}=\left(Q_{2}, \Sigma, g_{2}, h_{2}, F_{2}\right)
$$

Target: r-AFA $A=(Q, \Sigma, g, h, F)$ with $L(A)=L\left(A_{1}\right) \cdot L\left(A_{2}\right)$.

Concatenation of two r-AFAs: Idea

-Zacatecas

Concatenation of two r-AFAs: Idea

Z•acatecas

Concatenation of two r-AFAs: Idea

Za•catecas

Concatenation of two r-AFAs: Idea

Concatenation of two r-AFAs: Idea

$A_{1}: \mathrm{Za}$
A_{1} : Zacat

Concatenation of two r-AFAs: Idea

$A_{1}: \mathrm{Za}$

A_{1} : Zacat

A_{1} : Zacate

Concatenation of two r-AFAs: Idea

Concatenation of two r-AFAs: Idea

$A_{1}: \mathrm{Za}$

A_{1} : Zacat

A_{1} : Zacate

Concatenation of two r-AFAs: Definitions

Let $n:=\left|Q_{1}\right|$ and $m:=\left|Q_{2}\right|$, w.l.o.g $m \neq 0$ and $n \neq 0$. Then we need:

Concatenation of two r-AFAs: Definitions

Let $n:=\left|Q_{1}\right|$ and $m:=\left|Q_{2}\right|$, w.l.o.g $m \neq 0$ and $n \neq 0$. Then we need:

- n states to simulate the one run of A_{1}.

Concatenation of two r-AFAs: Definitions

Let $n:=\left|Q_{1}\right|$ and $m:=\left|Q_{2}\right|$, w.l.o.g $m \neq 0$ and $n \neq 0$. Then we need:

- n states to simulate the one run of A_{1}.
- 2^{m} states to simulate each run in parallel

Concatenation of two r-AFAs: Definitions

Let $n:=\left|Q_{1}\right|$ and $m:=\left|Q_{2}\right|$, w.l.o.g $m \neq 0$ and $n \neq 0$. Then we need:

- n states to simulate the one run of A_{1}.
- 2^{m} states to simulate each run in parallel - for each subset of Q_{2} we store if there's a copy of A_{2} in exactly these states.

Concatenation of two r-AFAs: Definitions

Let $n:=\left|Q_{1}\right|$ and $m:=\left|Q_{2}\right|$, w.l.o.g $m \neq 0$ and $n \neq 0$. Then we need:

- n states to simulate the one run of A_{1}.
- 2^{m} states to simulate each run in parallel - for each subset of Q_{2} we store if there's a copy of A_{2} in exactly these states.

$$
Q=\{\underbrace{q_{0}, \ldots, q_{n-1}}_{n \text { states }}, \underbrace{p_{0}, \ldots, p_{2^{m}-1}}_{m \text { states }}\}
$$

Concatenation of two r-AFAs: Definitions

Let $n:=\left|Q_{1}\right|$ and $m:=\left|Q_{2}\right|$, w.l.o.g $m \neq 0$ and $n \neq 0$. Then we need:

- n states to simulate the one run of A_{1}.
- 2^{m} states to simulate each run in parallel - for each subset of Q_{2} we store if there's a copy of A_{2} in exactly these states.

$$
Q=\{\underbrace{q_{0}, \ldots, q_{n-1}}_{n \text { states }}, \underbrace{p_{0}, \ldots, p_{2^{m}-1}}_{m \text { states }}\}
$$

Each subset $x \in 2^{Q_{2}}$ is associated to a state p_{x}.

Concatenation of two r-AFAs: Where to start?

If $\varepsilon \notin L\left(A_{1}\right) A$ should be forced to start with $A_{1}: F=F_{1}$,

Concatenation of two r-AFAs: Where to start?

If $\varepsilon \notin L\left(A_{1}\right) A$ should be forced to start with $A_{1}: F=F_{1}$, otherwise it can also directly launch a copy of A_{2},

Concatenation of two r-AFAs: Where to start?

If $\varepsilon \notin L\left(A_{1}\right) A$ should be forced to start with $A_{1}: F=F_{1}$, otherwise it can also directly launch a copy of A_{2},formally:

$$
F=F_{1} \cup\left\{p_{f_{2}}\right\}
$$

Concatenation of two r-AFAs: Accepting

h has only to care for A_{2}, formally:
A_{1} : Zacat

Concatenation of two r-AFAs: Accepting

h has only to care for A_{2}, formally:

$$
h(v)=1 \Leftrightarrow \exists x \in\left[0,2^{m}-1\right] \cdot \underbrace{v_{n+x}}_{\rightsquigarrow p_{x}}=1 \wedge h_{2}(x)=1
$$

A_{1} : Zacat

Concatenation of two r-AFAs: g on the first n states

A has to run A_{1} on the whole input word without any possibility of interruption:

$$
\left.g(a, v)\right|_{Q_{1}}=g_{1}\left(a,\left.v\right|_{Q_{1}}\right)
$$

Concatenation of two r-AFAs: g on the last 2^{m} states

Copies of A_{2} should work parallel on the states $p_{k}(k \geq 0)$

Concatenation of two r-AFAs: g on the last 2^{m} states

Copies of A_{2} should work parallel on the states $p_{k}(k \geq 0)$
$\Rightarrow p_{k}$ should be reached from p_{j} iff

Concatenation of two r-AFAs: g on the last 2^{m} states

Copies of A_{2} should work parallel on the states $p_{k}(k \geq 0)$
$\Rightarrow p_{k}$ should be reached from p_{j} iff
A_{2} reaches k from j.

Concatenation of two r-AFAs: g on the last 2^{m} states

Copies of A_{2} should work parallel on the states $p_{k}(k \geq 0)$
$\Rightarrow p_{k}$ should be reached from p_{j} iff
A_{2} reaches k from j.
formally:

For all $k \geq 0, k \neq f_{2}$

$$
g\left(p_{k}, a, v\right)=1 \quad \Leftrightarrow \quad \exists j \in\left[0,2^{m}-1\right] . v_{n+j}=1 \wedge g_{2}(a, j)=k
$$

Concatenation of two r-AFAs: Special treatment for $p_{f_{2}}$

The state $p_{f_{2}}$ can be reached:

Concatenation of two r-AFAs: Special treatment for $p_{f_{2}}$

The state $p_{f_{2}}$ can be reached:

- as before and

Concatenation of two r-AFAs: Special treatment for $p_{f_{2}}$

The state $p_{f_{2}}$ can be reached:

- as before and
- if A_{1} accepts a substring.

Concatenation of two r-AFAs: Special treatment for $p_{f_{2}}$

The state $p_{f_{2}}$ can be reached:

- as before and
- if A_{1} accepts a substring.

Formally:

$$
\begin{aligned}
g\left(p_{f_{2}}, a, v\right)=1 \Leftrightarrow & \left(\exists j \in\left[0,2^{m}-1\right] \cdot v_{n+j}=1 \wedge g_{2}(a, j)=f_{2}\right) \\
& \vee h_{1}\left(\left.g(a, v)\right|_{Q_{1}}\right)=1
\end{aligned}
$$

Concatenation of two r-AFAs

Then $L(A)=L\left(A_{1}\right) \cdot L\left(A_{2}\right)$.

Sources

Literature:

- Efficient implementation of regular languages using reversed alternating finite automata, K. Salomaa, X. Wu, S. Yu, Theoretical Computer Science, Elsevier, 17 January 2000
- Implementing Reversed Alternating Finite Automaton (r-AFA) Operations, S. Huerter, K. Salomaa, Xiuming Wu, S. Yu

Sources

Literature:

- Efficient implementation of regular languages using reversed alternating finite automata, K. Salomaa, X. Wu, S. Yu, Theoretical Computer Science, Elsevier, 17 January 2000
- Implementing Reversed Alternating Finite Automaton (r-AFA) Operations, S. Huerter, K. Salomaa, Xiuming Wu, S. Yu
Pictures:
- A_{1} : Larry D. Moore CC BY-SA 3.0.
- A_{2} : Disney/Pixar

Thank you!

Additional operations: Union and intersection

Acceptance-checking for AFAs allows working with multiple states in parallel.

Additional operations: Union and intersection

Acceptance-checking for AFAs allows working with multiple states in parallel.
\Rightarrow For both the intersection and the union of two AFAs A_{1} and A_{2}, one can run both AFAs in one AFA $A=(Q, \Sigma, g, h, F)$:

Additional operations: Union and intersection

Acceptance-checking for AFAs allows working with multiple states in parallel.
\Rightarrow For both the intersection and the union of two AFAs A_{1} and A_{2}, one can run both AFAs in one AFA $A=(Q, \Sigma, g, h, F)$:

- $Q=Q_{1} \cup Q_{2}$
$-g(q, a, u)= \begin{cases}g_{1}\left(q, a,\left.u\right|_{Q_{1}}\right) & q \in Q_{1} \\ g_{2}\left(q, a,\left.u\right|_{Q_{2}}\right) & q \in Q_{2}\end{cases}$

Additional operations: Union and intersection

Acceptance-checking for AFAs allows working with multiple states in parallel.
\Rightarrow For both the intersection and the union of two AFAs A_{1} and A_{2}, one can run both AFAs in one AFA $A=(Q, \Sigma, g, h, F)$:

- $Q=Q_{1} \cup Q_{2}$
- $g(q, a, u)= \begin{cases}g_{1}\left(q, a,\left.u\right|_{Q_{1}}\right) & q \in Q_{1} \\ g_{2}\left(q, a,\left.u\right|_{Q_{2}}\right) & q \in Q_{2}\end{cases}$
- $h=h_{1} \vee h_{2}$ (union) resp. $h=h_{1} \wedge h_{2}$ (intersection).
- $F=F_{1} \cup F_{2}$

Additional operations: Complemet

For the complement B of an AFA A, define $h_{B}=\overline{h_{A}}$.

