Decision Procedures

Jochen Hoenicke (Software Engineering)

Jochen Hoenicke

Software Engineering
- Albert-Ludwigs-University Freiburg

UNI
FREIBURG

Summer 2013

Decision Procedures Summer 2013

1/43

Theory of Arrays

Arrays: Quantifier-free Fragment of Tx g
ZM
A {[]a < 4 >7 :}7 -
where
@ a[i] is a binary function representing
read of array a at index i;
@ a(i < v) is a ternary function representing
write of value v to index i of array a;
@ = is a binary predicate. It is not used on arrays.
Axioms of Ta:
@ axioms of (reflexivity), (symmetry), and (transitivity) of Tg
Q Va,i,j. i = j— ali] = a[j] (array congruence)
Q@ Va,v,i,j.i=j—aliav)j] =v (read-over-write 1)
Q Va,v,i,j. i #j— a(i av)[j] = alj] (read-over-write 2)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 3/43

Decision Procedure for Ty g

Given quantifier-free conjunctive ¥ a-formula F.
To decide the Ta-satisfiability of F:

Step 1

For every read-over-write term a(i < v)[j] in F, replace F with the formula

(i=jAF{ali<av)[j] — v})V
(i #J AN F{a(i av)[j] = a[j]})

Repeat until there are no more read-over-write terms.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 4 /43

Decision Procedure for T (cont) g

Step 2

Associate array variables a with fresh function symbol ;.
Replace read terms a[i] with f3(7).

Step 3

Now F is a Tg-Formula. Decide Tg-satisfiability using the congruence-closure
algorithm for each of the disjuncts produced in Step 1.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 5 /43

Example: Consider £ a-formula

F: ih=jAin#ihANaj] =wvAalhav)(h<wl] # al].
F contains a read-over-write term,

a(in < vi)(i2 < v2)[j] # alj] -

Rewrite it to F; V F with:

Fir:ih=jAh=jAi#iANalj] =wviAw #a]],

Foiip# jAin=jNh#iNalj] =wviAa(h<av)[] # al].
F1 does not contain any write terms, so rewrite it to

Fi:bh=jAh=jA1#iAGJ)=wvAwvn#h)J.

The first two literals imply that i1 = i, contradicting the third literal, so F] is
Te-unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

6/ 43

Now, we try the second case (F):
F, contains the read-over-write term a(i; < vi)[j]. Rewrite it to F3 V F4 with

F3:h=jANhbh#jAhR :j/\ilyéig/\a[i]:vl/\vl;éa[j],

Foiih £ jAib £ A=Al #bAalj]=wAal# al].
Rewrite the array reads to

Fs:h=jAb#jANh=jANi1#bANGLJ) =wvAwvu#hJ),

Foiin#jNi#jAin=jNi# ARG =wvAL>J) # LU) -
In Fj there is a contradiction because of the final two terms. In F;, there are two

contradictions: the first and third literals contradict each other, and the final literal
is contradictory. Since F is equisatisfiable to F{ V F} V F;, F is Ta-unsatisfiable.

Suppose instead that F does not contain the literal i1 # /. Is this new formula
Ta-satisfiable?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 7 /43

Complexity of Decision Procedure for Tx g

Our algorithm has a big disadvantage. Step 1 doubles the size of the formula:

(i =j AFlaliav)[j] = v}) v
(i # j A Flali av)li] = aljl})

This can be avoided by introducing fresh variables x;;,:

F{a(i av)[j] = Xaj}IA
(1 =J A Xaijp = v) V(i #j A X = alj]))

However, this is not in the conjunctive fragment of Tg.
There is no way around:

The conjunctive fragment of Ta is NP-complete.)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 8 /43

Arrays and Quantifiers g

In programming languages, one often needs to express the following concepts:
e Containment contains(a, /, u, €): the array a contains element e at some index
between ¢ and w.

il <i<uAnalil =e
e Sortedness sorted(a, ¢, u): the array a is sorted between index ¢ and index u.
Vi,jl <i<j<u = a[i < a[j

e Partitioning partition(a, {1, u1, 2, u2): The array elements between ¢; and u;
are smaller than all elements between ¢> and u,.

Vijjlh <i<u ANl <j<uw = ai] <al

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 9 /43

Decision Procedure for Arrays g

These concepts can only be expressed as first-order formulae with quantifiers.
However: the general theory of arrays T with quantifier is not decidable.

Is there a decidable fragment of T that contains the above formulae?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 10 / 43

Example g

We want to prove validity for a formula, such as:
—contains(a,l,u,e) N\ e # f — —contains(a(j < f), ¢, u, e)
—Fil<i<unail=e)ANe#f—(TFil <i<uAa(jarf)|i #e).
Check satisfiability of negated formula:
S(Fil<i<uAnalil=e)ANe#FANEGiL<i<uAna(af)[i] # e).

Negation Normal Form:
(Vi€ >ivi>uVvalilZe)Ne#FANEGiIL<iNni<uAa(ja)[i] =e).
or the equisatisfiable formula

Vi >iVvi>uvalil]#enNe# FANL< b Nk < uNhajaf)|ip] = e

We need to handle satisfiability for universal quantifiers.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 11 / 43

Array Property Fragment of Tx g

Decidable fragment of T that includes V quantifiers o

Array property
2 a-formula of form
vi. F[i] = G|,

where | is a list of variables.

@ index guard F[i]:

iguard — iguard A iguard | iguard V iguard | lit
lit — var = var | evar # var | var # evar | T
var — evar | uvar

where uvar is any universally quantified index variable,
and evar is any constant or unquantified variable.
o value constraint G[i]: a universally quantified index can occur in a value

constraint G[i] only in a read a[i], where a is an array term. The read cannot
be nested; for example, a[b[/]] is not allowed.

Array property Fragment: Boolean combinations of quantifier-free Ta-formulae and
array properties

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 12 / 43

Example: Array Property Fragment &
Is this formula in the array property fragment?
F : Vi.i # alk] — a[i] = a[k]

The antecedent is not a legal index guard since a[k] is not a variable (neither a uvar
nor an evar); however, by simple manipulation

F'oov=alkl AVi.i # v — ali] = a[k]

Here, i # v is a legal index guard, and a[i] = a[k] is a legal value constraint. F
and F’ are equisatisfiable.

This trick works for every term that does not contain a uvar.

However, no manipulation works for:

G : Vi.i# alil = a[i] = alk] .

Thus, G is not in the array property fragment.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 13 / 43

Example: Array Property Fragment (cont) £

Is this formula in the array property fragment?
F' @ Vij. i # j— ali] # aj]

No, the term uvar = uvar is not allowed in the index guard. There is no workaround.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 14 / 43

Array property fragment and extensionality g

Remark: Array property fragment allows expressing equality between arrays
(extensionality): two arrays are equal precisely when their corresponding elements
are equal.

For given formula
F: ---ANa=bA---

with array terms a and b, rewrite F as
F'o oo AV T = a[il = b[i) A .

F and F’ are equisatisfiable.
F’ is in array property fragment of Th.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 15 / 43

Decision Procedure for Array Property Fragment &

Basic Idea: Similar to quantifier elimination.

Replace universal quantification
Vi.F[i]
by finite conjunction

Flti] A ... A Fltn].

We call t,..., t, the index terms and they depend on the formula.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 16 / 43

Example g

Consider 2%
F: a(i<xv) =aAnalil #v,
which expands to

F' o). ali avlj] = alj] A afi] # v .

Intuitively, only the index i is important:

F'o | A\ atiawll = alil | Aalil # v,
Je{i}
or simply
a(i < V)[i] = ali] A a[i] # v .
Simplifying,
v =ali]Aali] # v,

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 17 / 43

Decision Procedure for Array Property Fragment

Given array property formula F, decide its Ta-satisfiability by the following steps:
Step 1

Put F in NNF, but do not rewrite inside a quantifier.

Step 2
Apply the following rule exhaustively to remove writes:

Fla(i < v)]

Fla1nd[l=vAN.j#i—a)] =32
After an application of the rule, the resulting formula contains at least one fewer write
terms than the given formula.

for fresh & (write)

Step 3
Apply the following rule exhaustively to remove existential quantification:
F[3i. G[]] - .
—————-—— for fresh j exists
FIGT] (eriste)

Existential quantification can arise during Step 1 if the given formula has a negated array
property.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 18 / 43

Steps 4-6 accomplish the reduction of universal quantification to finite conjunction.
Main idea: select a set of symbolic index terms on which to instantiate all universal
quantifiers. The set is sufficient for correctness.

Step 4
From the output F3 of Step 3, construct the index set Z:

{A}
Z = UA{t : -[t] € F3such that t is not a universally quantified variable}
U {t : t occurs as an evar in the parsing of index guards}
This index set is the finite set of indices that need to be examined. It includes

@ all terms t that occur in some read a[t] anywhere in F (unless it is a universally
quantified variable)

@ all terms t (constant or unquantified variable) that are compared to a universally

quantified variable in some index guard.

@ A is a fresh constant that represents all other index positions that are not explicitly

inZ.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

19 / 43

Step 5 (Key step)
Apply the following rule exhaustively to remove universal quantification:

HIVi. F[i] — G[i]] (forall)

H| N\ (FI1— G[i)

iezn

where n is the number of quantified variables i.

Step 6
From the output Fs5 of Step 5, construct

Fe : F5 A /\ NA£ 0.
i€ I\{\}
The new conjuncts assert that the variable A introduced in Step 4 is indeed unique.
Step 7
Decide the Ta-satisfiability of Fg using the decision procedure for the quantifier-free

fragment.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 20 / 43

Example

Is this T, -formula valid?

F: (Vi.i # k—a[i] = bli]) AN blk] = v —alk<v) =0>b
Check satisfiability of:

~((Vi. i # k — a[i] = bli]) A bIK] = v — (¥i. alk a V)[i] = b[i]))

Step 1: NNF
Fi: (Vi.i # k— a[i] = bli]) A blk] = v A (3i. alk < v)[i] # bl[i])
Step 2: Remove array writes
Fp : (Vi.i # k — a[i] = b[i]) A blk] = v A (3i. d[i] # b[i])
ANakl = v AP # k—adli] = alil)
Step 3: Remove existential quantifier

Fs: (Vi.i # k— a[i] = b[i]) A b[K] = v A 3[j] # B[]

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

21/ 43

Example (cont)

Step 4: Compute index set Z = {\, k,j}
Step 5+6: Replace universal quantifier:

Fo : (A # k — a[\] = b[\))

A (k # k — alk] = blk])

AU # k= al] = b))

A bkl = v Ad[j] # bl AdK = v
AN # k= [N = al)])

A (k # k — dk] = a[k])

NG # K d1j] = ali])
AXNEKANZ]

Case distinction on j = k proves unsatisfiability of Fg.

Therefore F is valid

Jochen Hoenicke (Software Engineering)

Decision Procedures

Summer 2013

22 /43

The importance of A
Is this formula satisfiable?

F : (Vi.i # j— a[i] = b[i]) A (Vi.i # k — a[i] # b[i])
The algorithm produces:

Fo: A # j — a[\] = b\
nj#j— alj] = blj]
Ak # j— alk] = b[K]
AX#£ k— a[\] # b
ANj # k= alj] # b[]
Ak # k — a[k] # blk]
AXNA£JANZ K

The first, fourth and last line give a contradiction!

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

23 /43

The importance of A (cont)

Without A we had the formula:

which simplifies to:

J # k = alk] = blk] A alj] # blj].

This formula is satisfiable!

Jochen Hoenicke (Software Engineering)

Fe :j #j— alj] = blj]
Ak £ j— a[k] = b[K]
NJj# k= alj] # blj]
Ak # k — alk] # b[K]

Decision Procedures

Summer 2013

24 /43

Correctness of Decision Procedure g

Consider a X p-formula F from the array property fragment of Ta. The output Fg of
Step 6 of the algorithm is Tp-equisatisfiable to F.

This also works when extending the Logic with an arbitrary theory T with signature
> for the elements:

Consider a ¥ U X-formula F from the array property fragment of Tp U T. The
output Fg of Step 6 of the algorithm is Tp U T-equisatisfiable to F.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 25 /43

Proof of Theorem g

Proof: It is easy to see that steps 1-3 do not change the satisfiability of formula.
For step 4—6 we need to show:

(1) H[Vi. (F[i] — G[i])] is satisfiable
iff.
(2) H[N;ezn(FIi] = G[I])] A Nien\ay A # i is satisfiable.

If the formula (1) is satisfied some Interpretation, then (2) holds in the same
interpretation.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 26 / 43

Proof of Theorem (cont)

. =]
If the formula (2) holds in some interpretation /, we construct an interpretation J as

follows:

projz(j) =

it EI/\OA[U] = Oé[[i]
A otherwise

ajlalf]] = ailalprojz(j)]]
ay[x] = «[x] for every non-array variable and constant

J interprets the symbols occuring in formula (2) in the same way as /.
Therefore, (2) holds in J.

To prove that formula (1) holds in J, it suffices to show:

JE N\ (F[i] = G[i]) implies J = Vi. (F[]] — GIi])

iezrn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

27 / 43

Proof of Theorem (cont) :

Assume J = A;ez.(F[i] = G[i]). Show:

Fli] = Flprojz(i)] = Glprojz(i)] — G]i]
The first implication F[i] — F[projz(i)] can be shown by structural induction over
F. Base cases:
e vary = var, — projr(vary) = projr(var): trivial.
@ evany # var, — projr(evary) # projr(var):
By definition of Z: evar; € 7 \ {A}.
If evari = projr(evari) = projz(varz), then var, € Z '\ {\}, hence
evar; = projr(varn) = var
@ var; # evary analogously.
The induction step is trivial.
The second implication F[projz(i)] — G[projz(i)] holds by assumption.
The third implication G[projz(i)] == G]Ji] holds because G contains variables i
only in array reads a[i]. By definition of J: ay[a[i]] = ay[a[projz()]]-

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 28 / 43

Theory of Integer-Indexed Arrays

Theory of Integer-Indexed Arrays T7 £

< enables reasoning about subarrays and properties such as subarray is sorted or
partitioned.

signature of Tz: Z% =2AUXy

axioms of T%: both axioms of Ta and Ty

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 30/ 43

Array Property Fragment of T7

Array property: Z%—formula of the form
Vi. F[i] — G[i],
where i is a list of integer variables.

e F[i] index guard:

iguard — iguard A iguard | iguard V iguard | lit
lit — expr < expr | expr = expr
expr — uvar | pexpr
pexpr — pexpr’
pexpt' — Z|Z - evar | pexpr’ + pexpr’

where uvar is any universally quantified integer variable,
and evar is any existentially quantified or free integer variable.
e G[i] value constraint:
Any occurrence of a quantified index variable i must be as a read into an array,

ali], for array term a. Array reads may not be nested; e.g., a[b[/]] is not allowed.

Array property fragment of TZ‘ consists of formulae that are Boolean combinations
of quantifier-free Z%-formulae and array properties.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

31/ 43

Application: array property fragments &

o Array equality a = bin Ta: Vi. a[i] = b[i]
o Bounded array equality beq(a, b, ¢, u) in TZ:

Vil < i < u— ali] = b[i]

Universal properties F[x] in Ta:
Vi. Fla[f]]
e Bounded universal properties F[x] in TZ:

Vi 0 < i< u— Flai]]

Bounded and unbounded sorted arrays sorted(a, /,u) in T2 U Tz or TZ U Tg:
Vij. 0 <i<j<u—ali] <a[j

Partitioned arrays partitioned(a, 1, u1, 2, up) in TZ U Tz or TZ U Tg:
Vij, 1 < i< u <l <j < up—ali] < af]

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 32 /43

The Decision Procedure (Step 1-2)

The idea again is to reduce universal quantification to finite conjunction.
Given F from the array property fragment of TZ, decide its TAZ—satisfiabiIity as
follows:

Step 1
Put F in NNF.

Step 2
Apply the following rule exhaustively to remove writes:
Fla(i <)]
Fld1Aa[il =en(V.j#i—al] =2

for fresh @’ (write)

To meet the syntactic requirements on an index guard, rewrite the third conjunct as

Viej<i—1Vvi+1l<j—a}j]=24]].

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

33 /43

The Decision Procedure (Step 3-4) £

Step 3
Apply the following rule exhaustively to remove existential quantification:
F[3i. G[i]]
FIG[]]

Existential quantification can arise during Step 1 if the given formula has a negated
array property.

for fresh j (exists)

Step 4
From the output of Step 3, F3, construct the index set Z:

T {t : -[t] € F3 such that t is not a universally quantified variable}
U {t : toccurs as a pexpr in the parsing of index guards}

If Z = 0, then let Z = {0}. The index set contains all relevant symbolic indices

that occur in F3.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 34 /43

The Decision Procedure (Step 5-6) g

Step 5
Apply the following rule exhaustively to remove universal quantification:

HIVi. F[i] — GJi]]

H| A (F[1— G

iezn

(forall)

n is the size of the block of universal quantifiers over i.

Step 6
Fs is quantifier-free in the combination theory Ta U T7z. Decide the
(Ta U Typ)-satisfiability of the resulting formula.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 35 /43

Example
Z%—formula:

Vit <i<
<

A (Vi £

u — ali] = b[i])
i <u+1—alu+1<ablu+1))[i] = b[])

F -

In NNF, we have

-~.

u — a[il = b[i])
. S + 1A alu+ 1< blu+ 1))[i] # b[i])

(it
Fi: 0 <

A (3.
Step 2 produces

(Vi. 0 < i< u—ali] = b[i])

£ NG <u+ 1A # b))

2 Adu+ 1] = blu+ 1]
ANV.j<u+1l—-1Vu+1+4+1<j—a]j]=2a[])

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

36 / 43

Step 3 removes the existential quantifier by introducing a fresh constant k:

(Vi. ¢ < i < u—a[i] = bli])

A< k<u+1Ad[K % bK]

A d[u+ 1] = blu + 1]
ANV.j<u+1-1Vu+1+4+1<j—alj] =4])

F3Z

Simplifying,

(Vi. 0 < i < u—a[i] = b[])

A< k< u+1Aa[K # bk

A d[u+ 1] = blu + 1]
ANVj.j<uVu+2<j—al] =2

The index set is
T ={ku+1} U {{,u,u+ 2},

which includes the read terms k and v + 1 and the terms ¢, u, and u + 2 that occur
as pexprs in the index guards.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 37 /43

Step 5 rewrites universal quantification to finite conjunction over this set:

_/\ (¢ < i< u—ai] = bli])
. NE<k<ut1ndlk # bK
5 A d[u+ 1] = blu + 1]
ANANGSuve+2<)-al] =)
jeT

Expanding the conjunctions according to the index set Z and simplifying according
to trivially true or false antecedents (e.g., ¢ < u + 1 < u simplifies to L, while
u < uVu+2 < usimplifies to T) produces:

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 38 /43

(¢ < k < u— alk] = blk])
A < u—a[l] = b[l] A a[u] = b[u])

ANC< k<u+1
A J[k] £ blK]

/.
Fs o N du+1] = bu+1]

ANk <uVu+2<k—alk]l =ak])
ANl <uVu+2<L{—all] =a])
Aalul = dul ANalu+2] =3du+2] (

(Ta U Tz)-unsatisfiability of this quantifier-free (¥a U Xz)-formula can be decided

using the techniques of Combination of Theories.

Informally, ¢ < k < u+ 1 (3)

o If k € [¢,u] then a[k] = b[k] (1). Since k < u then a[k] = &'[k] (6),

contradicting a'[k] # b[k] (4).

oifk=u+1 [kl # bkl = blu+ 1] = &[u + 1]

contradiction.
Hence, F is T%—unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures

= J'[k] by (4) and (5), a

Summer 2013

39 /43

Correctness of Decision Procedure g

Consider a ¥4 U ¥-formula F from the array property fragment of T2 U T. The
output Fs of Step 5 of the algorithm is T,% U T-equisatisfiable to F.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 40 / 43

Proof of Theorem

Proof: The proof proceeds using the same strategy as for Ta.

It is easy to see that steps 1-3 do not change the satisfiability of formula.
For step 4-5 we need to show:

(1) H[Vi. (F[i] — G[i])] is satisfiable
iff.
(2) H[A;ezn(FIi] = G[i])] is satisfiable.

=: Obviously formula (1) implies formula (2).

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

41/ 43

Proof of Theorem (cont)

If the formula (2) holds in some interpretation | = (Dy, o), we construct an
interpretation J = (Dy, ay) with D, := D; and

max{a[il|i € T N oy[i] < eylj]} if for some i € I:
projz(j) = a[i] < aylf]
min{oy[il|li € T A oy[i] > «a4[j]} otherwise
alaljl] = aslalprojz(/)]]
ay[x] = ay[x] for every non-array variable and constant

J interprets the symbols occuring in formula (2) in the same way as /.
Therefore, (2) holds in J.

To prove that formula (1) holds in J, it suffices to show:
J = /\ (F[i] — G[i]) implies J = Vi. (F[i] = GJi])
iezn

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013

42 /43

Proof of Theorem (cont) g
Assume J = A;eza(F[i] = G[i]). Show:
Flil — Flprojz(1)] — Glprojz(7)] — GIi]

The first implication F[i] — F[projz(i)] can be shown by structural induction over
F. Base cases:

@ expr; < expry. see exercise.

@ expry = expry: follows from first case since it is equivalent to
expr; < expro N\ expro < expry .

The induction step is trivial.

The second implication F[projz(i)] — G[projz(i)] holds by assumption.

The third implication G[projz(i)] == GJi] holds because G contains variables i
only in array reads a[i]. By definition of J: a,[a[i]] = ay[a[projz(i)]].

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 43 /43

	Theory of Arrays
	Array Property Fragment

	Theory of Integer-Indexed Arrays

