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Quantifier Elimination



Quantifier Elimination g

Quantifier Elimination (QE) removes quantifiers from formulae:

e Given a formula with quantifiers, e.g., 3x.F[x,y, z].
e Goal: find an equivalent quantifier-free formula G|y, z].

@ The free variables of F and G are the same.

Ix.Flx,y. 2] & Gly,Z]
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QE as Decision Procedure g

Decide satisfiabilty for a formula F, e.g. in Tg, using quantifier elimination:
@ Given a formula F, with free variable xq, ..., x,.
@ Build 3x;...3x,.F.

@ Build equivalent quantifier free formula G.
G contains only constants, functions and predicates
i-e- 07 17 +7 ) 27 -

o Compute truth value of G.
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QE algorithm

In developing a QE algorithm for theory T, we need only consider formulae of the™™

form

dx. F
for quantifier-free F

Example: For X-formula

G1

Go
G3

G5Z

Jochen Hoenicke (Software Engineering)

- dx.

: dx.
» dx.

 dx.

Fa4

Vy. Jz. F[x,y, 2]
—_———
F2[X7y]
Vy. Fax,y]
=3y ~F[x,y]
~——
Fs[x]
—F3[x]

Fy
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Syntactic sugar for Rationals g

Consider the Signature of Rationals: Yo: {0, 1, + —, =, >}
We extend the signature with the predicate >, which is defined as

x>y x>yAa(x =y)
Additionally we allow predicates < and <:

X<y &y >x X<y &y > X

We extend the signature by fractions:
—eygforaczt
a

which are unary function symbols, with their usual meaning.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 6 /41



Ferrante and Rackoff's Method &

Given a Xg-formula 3x. F[x], where F[x] is quantifier-free
Generate quantifier-free formula F4 (four steps) s.t.
F4 is Xg-equivalent to 3x. F[x].
@ Put F[x] in NNF.
@ Eliminate negated literals.
© Solve the literals s.t. x appears isolated on one side.
@ Finite disjunction \/,.s, F[t].

IxFlx] & \/ Flt.

teESE

where S¢ depends on the formula F.
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Step 1 and 2 g

Step 1: Put F[x] in NNF. The result is 3x. F1[x].

Step 2: Eliminate negated literals and > (left to right)

s>t & s>tVs=t
“(s>t) & t>sVt=s
(s>t) & t>s
“(s=t) & t<sVt>s

The result Ix. F»[x] does not contain negations.
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Step 3

Solve for x in each atom of F>[x], e.g.,

tp — b
ax +th < bx + 1 = X < —F
a—»>b
where a — b € ZT.
All atoms containing x in the result 3x. F3[x] have form
(A) x <t
(B) t < x
(C) x =t
where t is a term that does not contain x.
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Step 4 (Part 1)

Construct from F3[x]
e left infinite projection F3[—o0] by replacing
(A) atoms x < tby T
B) atoms t < x by L
C) atoms x = t by L

—_~ o~

@ right infinite projection F3[+oc] by replacing
(A) atoms x < t by L
(B) atoms t < x by T
(C) atoms x = t by L
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Step 4 (Part 2)

Let S be the set of terms t from (A), (B), (C) atoms.
Construct the formula

t
Fy - \/ F3[t], where Sp := {—o00,00} U {S;L
teSE

s,tes}

which is Tg-equivalent to Ix. F[x].
@ F3[—o0] captures the case when small x € Q satisfy F3[x]

@ F3[+0o0] captures the case when large x € Q satisfy F3[x]

STt — 5 captures the case when s € S satisfies F3[s]

o0 ifs =t =*
)
if s < t are adjacent numbers, £t represents the whole interval (s, t).
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Intuition

Four cases are possible:
@ All numbers x smaller than the smallest term satisfy F[x].

)ty bty

@ All numbers x larger than the largest term satisfy F[x].

ti to- - ta(—

© Some tj,satisfies F[x].

i et ty
/r
© On an open interval between two terms every element satisfies F[x].
ty - t','(H)t,'+1 <ty
tittic1
2
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Correctness of Step 4 &

Let Sk be the set of terms constructed from F3[x] as in Step 4. Then
dx. F3[X] ~ vteSF F3[1.'].

Proof of Theorem

<= If Vs, F3[t] is true, then F3[t] for some t € Sg is true.
If F3[=3*] is true, then obviously 3x. F3[x] is true.
If F3[—o0] is true, choose some x < t for all t € S. Then F3[x] is true.
If F3[o0] is true, choose some x > t for all t € S. Then F3[x] is true.
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Correctness of Step 4 &

= If I = 3x. F3[x] then there is value v such that

Il a{x — v} E F3.

If v.< ot] forallt € S, then | = F3[—o0].
If v.> o[t] forall t € S, then | = F3[o0].
If v.= oyt] for some t € S, then | = F[5E].

Otherwise choose largest s € S with «[s] < v and smallest t € S with

aft] > v.
Since no atom of F3 can distinguish between values in interval (s, t),
F3[v] < F3[=5]. Hence, | |= F[=5t].

In all cases | = V/,cs, F3[t]-
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Example &

dx. 3x+1 <10ATx—6 > 7
Flx]

Solving for x

1
Elx.x<3/\x>73

F3[x]
Step 4:

13
Fy - \/<t<3/\t>7>

teSE

~~

F3 [t]

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 15 / 41



Example contd.

13 3+ 13
S = {—oo,+oo,3,7, 5 .

Flx] = x < 3Ax > 13/7

Ffooe TALS L Fifoo & LAT & L
13
FRBILAT & L F3|:7:|<:>T/\J_<:>J_
13
= +3
2

13 13
=2 4+ 3 =2 + 3 13
:7+ <3A7Jr > = o T

F
3 2 2 7

Thus, F4 : s, F3[t] & T is Tg-equivalent to Ix. F[x],
so dx. F[x] is Tg-valid.
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Example

Ix. 2x > y A3x < z

Flx]
Solving for x

y z
Ix. x> Ax < <
X. X > X 3

F3[x]

Step 4: F_oo & L, Foo & L, F3[%] & L and F3] & L.

Y z Yy z
5+ 2 y 5+ 3 z
F,: 2 3 Z A2 3 =
T T2 T T3
which simplifies to:
Fa: 2z > 3y
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Quantifier Elimination for T g

D
Yy o {...,—-2,-1,0, 1, 2, ..., —3:,=2,2:, 3 ..., 4+, —, =, <}
Consider the formula

F:3Idx.2x =y

Which quantifier free formula G[y] is equivalent to F?

There is no such formulal
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No QE for Ty 5

Given quantifier-free Xz-formula F s.t. free(F) = {y}. Let
Se: {neZ : F{y — n}is Tgz-valid} .

Either Z* N Sg or Z* \ Sk is finite.

where 7 is the set of positive integers

Proof (Structural Induction over F)
Base case: F is an atomic formula: T, 1. t1 = th,a-y = t,t1 < th,a -y < t.

ZT\ St =Z*t NS, = (is finite

St;=t, and Sy, <, are either St or S .

Z* N Ssy=¢, (a # 0) has at most one element.
ZT N Say<t, @ > 0is finite.

ZF \ Say<t, a < 0is finite.
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No QE for Ty g

Given quantifier-free Xz-formula F s.t. free(F) = {y}. Let
Se: {neZ : F{y — n}is Tgz-valid} .

Either Z+ N Sg or Z* \ Sk is finite.

where 7 is the set of positive integers

Induction step: Assume property holds for F, G. Show it for
-F,FANGFV G F — G,F+ G.
o -f: Wehave Zt N S_g = Z* \ Sand Z* \ S = Z" N S and by ind.-hyp
one of these sets is finite.
@ FAG: Wehave ZT N Seag = (ZT N Sg) N (ZT N Sg) and
7+ \ SFrG = (Z+ \ SF) U (Z+ \ S¢)-
If the latter set is not finite then one of ZT N Sk or ZT N Sg is finite. In both
cases Z1T N Spac is finite.
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No QE for Ty §

Given quantifier-free Xz-formula F s.t. free(F) = {y}. Let
Se: {neZ : F{y — n}is Tgz-valid} .

Either Z* N Sg or Z* \ Sk is finite.

where 7 is the set of positive integers

Induction step: Assume property holds for F, G. Show it for
-F,FANG,FV G,F— G,F < G.

e F V G follows from previous, since Spyg = S (-Fr-G)-
e F — G follows from 5F—>G = 5(—\FVG)-
e F + G follows from SF<—>G = 5(F—>G)/\(G—>F)-
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No QE for Ty g

Given quantifier-free Xz-formula F s.t. free(F) = {y}. Let
Se: {neZ : F{y — n}is Tg-valid} .

Either Z* N Sg or Z't \ Sk is finite.

where 7 is the set of positive integers

Yy-formula  F : 3x. 2x = y (with quantifier)
Srk: even integers
Z+ N Sg: positive even integers — infinite
Z* \ Sg: positive odd integers — infinite
Therefore, by the lemma, there is no quantifier-free Ty-formula that is Tz-equivalent
to F.
Thus, Tz does not admit QE.
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Augmented theory 7’2

f\z: > 7 with countable number of unary divisibility predicates
Xz U {1|a 2|53, ... }
Intended interpretations:

k | x holds iff k divides x without any remainder

Axioms of Tyz: axioms of Tz with additional countable set of axioms

Vx. k| x < Jy.x = ky fork € Z*

Example:
x>1ANy>1A2|x+y

is satisfiable (choose x = 2,y = 2).
(2] x) N4 | x

is not satisfiable.
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T admits QE (Cooper’'s method) g

Algorithm: Given ¥-formula 3x. F[x], where F is quantifier-free
Construct quantifier-free ¥z-formula that is equivalent to 3x. F[x].

@ Put F[x] into Negation Normal Form (NNF).

@ Normalize literals: s < t, k|t, or =(k|t).

© Putxins < tononeside: hx < tors < hx.
@ Replace hx with x” without a factor.

@ Replace F[x'] by \/ F[J] for finitely many j.
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Cooper’'s Method: Step 1 g

Put F[x] in NNF Fy[x], that is,
dx. F1[x] has negations only in literals (only A, V)
and Tz-equivalent to Ix. F[x]

Example:
Ix.a(x—6<z—xA4|5x+1—=3x <y)
is equivalent to
Ix. Bx < y)Ax—6<z—-—xAN4|b5x+1
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Cooper’'s Method: Step 2

Replace (left to right)

s=t & s<t+1l1At<s+1
s=1t) & s<tVit<s
s<t) & t<s+1

(
(

The output Ix. F2[x] contains only literals of form

—_
—

s<t, k|t, or —(k]|t),
where s, t are @—terms and k € Z7.

Example:

Ix. Bx < y)Ax—6<z—-—xAN4|b5x+1
is equivalent to

.y <3x+1Ax—-6<z—-—xAN4|bx+1
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Cooper’'s Method: Step 3

Collect terms containing x so that literals have the form
hx <t, t<hx, k|hx+t, or =(k|hx+t),

where t is a term and h, k € Z*. The output is the formula Ix. F3[x], which is
Tz-equivalent to Ix. F[x].

Example:

.y <3x+1Ax—-6<z—-—xAN4|bx+1
is equivalent to

WXy —1<3xA2x<z+6A4|5x+1
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Cooper’'s Method: Step 4

Let
0 = lem{h : his a coefficient of x in F3[x|} ,

where lcm is the least common multiple. Multiply atoms in F3[x] by constants so
that § is the coefficient of x everywhere:

hx <t & 0x < H't where Hh = §

t< hx & Wt < dx where h'h =§

K| hx +t o Hk|ox+ Ht where Hh = §
(k| hx +t) < =(Hk|ox + h't) where hh =

The result 3x. Fi[x], in which all occurrences of x in Fj[x] are in terms dx.

Replace 0x terms in Fj with a fresh variable x’ to form
F{ : F3{ox — x'}
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Cooper's Method: Step 4 contd. 2

Finally, construct
Ix'. FYXT A6 X
————

Fa[x"]

Ix’.F4[x'] is equivalent to dx. F[x] and each literal of F4[x’] has one of the forms:
(A) X' <t
(B) t < X

(C) k| x +t

(D) ~(k | X + )

where t is a term that does not contain x, and k € Z*.
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Cooper’'s Method: Step 4 (Example) g

Example: ﬁ-formula

x. 2x < z+6ANy—1<3xAN4|5x+1

Filx]

Collecting coefficients of x:

0 = lem(2,3,5) = 30
Multiply when necessary

dx. 30x < 15z + 90 A 10y — 10 < 30x A 24 | 30x + 6
Replacing 30x with fresh x’

Ix. X' < 1524+90 A 10y —10 < X' A 24| x' +6 A 30| X

F4E</]

Ix’. F4[x'] is equivalent to 3x. F3[x]
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Cooper's Method: Result of Step 4 2

x’.F4[x'] is equivalent to dx. F[x] and each literal of F4[x’] has one of the forms:
(A) X' < t
(B) t < X

(C) k| x +t

(D) ~(k | X + )

where t is a term that does not contain x, and k € Z*.
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Cooper’'s Method: Step 5

Construct
left infinite projection F_[x']
of F4[x'] by
(A) replacing literals x’ < t by T
(B) replacing literals t < x" by L
idea: very small numbers satisfy (A) literals but not (B) literals
Let
5 — Icm{ k of (C) literals k | x" + t }
k of (D) literals =(k | x' + t)
and B be the set of terms t appearing in (B) literals. Construct
§ §
Fs o \/ Folil v\ \/ Falt + 1.
j=1 j=1teB

Fs is quantifier-free and Tyz-equivalent to F.
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Cooper's Method: Step 5 (Example) g
o
£
Ix'. X' < 152+ 90 A 10y — 10 < X' A 24|x" + 6 A 30| X
Fa[x']
Compute lcm: 6 = lcm(24,30) = 120
Then
120
Fs = VT/\i/\24|j+6/\30|j
j=1
120
v \/ 10y — 10 +j < 15z + 90 A 10y — 10 < 10y — 10 +j
j=1
A24|10y =10+, + 6 A 30|10y — 10 +
The formula can be simplified to:
120
Fs = \/ 10y — 10 +j < 15z + 90 A 24[10y — 10 + j + 6 A 30|10y — 10 +j
33 /41
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Correctness of Step 5 &

Let Fs be the formula constructed from 3x’. F4[x'] as in Step 5. Then
3x’. F4[XI] & Fs.

LemmalPeriodicity|: For all atoms k | x' 4+ t in F4, we have k | 0.
Therefore, k | X" + tiff k | x' + X0 + t for all A € Z.

Proof of Theorem

< If Fs is true, there are two cases: F_o[j] is true or F4[t + j] is true.
If Fa[t + j] is true, than obviously 3x’. F4[x'] is true. If F_.[j] is true, then
(due to periodicity) F_oo[j + A - 0] is true.
fA<t—1forallt e AUB,thenj+ X-6 <+ (t—1)0 = ot < t.
Thus,
Fooj + X 0) & FRfj + X - 48] = 3. RX].
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Correctness of Step 5 &

= Assume for some x', F4[x] is true. If =(t < x’) for all t € B, then choose
Jo € {1,...,0} such that § | (jr — x'). j will satisfy all (C) and (D) literals
that x’ satisfies. x’ does not satisfy any (B) literal. Therefore if F4[x'] is true,
F_oo[j] must be true. Therefore Fs is true.
If t < x' for some t € B, then let

te = max{t € B|t < X'}

and choose j,» € {1,...,0} such that 6 |[(t¢ + jx — x'). We claim that

Fa[te + jx] is true.

Since X' = t + jx + A, X' and t + jy satisfy the same (C) and (D) literals
(due to periodicity).

Since t + jx > te = max{t € B|t < X'}, ty + j satisfies all (B) literals
that are satisfied by x’.

Since ty < X' = ty + ju + A < t + (A + 1)J, we conclude that A > 0.
Hence, X' > t» + ji and t + ji satisfies all (A) literals satisfied by x’.

Thus Fa[tx + j.] is true. Therefore, Fs is true.
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Cooper’'s Method: Step 5

Construct

left infinite projection F_[x']
of Fa[x'] by
(A) replacing literals X' < t by T
(B) replacing literals t < x’ by L

Let

5 —1emd K of (C) literals k | x" + ¢t
N k of (D) literals —=(k | X" + t)

and B be the set of terms t appearing in (B) literals. Construct

é

19
Fs o \/ Feolil vV \/  Falt + .
j=1

j=1teB

Fs is quantifier-free and Tyz-equivalent to F.
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Symmetric Elimination g

In step 5, if there are fewer
(A) literals x" < t
than
(B) literals t < x'.

Construct the right infinite projection Fyo[x'] from F4[x’] by replacing
each (A) literal X’ < t by L

and
each (B) literal t < x" by T.

Then right elimination.

\/ Frool—4] V \/ \/ Falt —J] .

j=1teA
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Symmetric Elimination (Example) &
—=8_
T
Ix'. X' < 152+ 90 A 10y — 10 < X' A 24|x" + 6 A 30| X
Fa[x']
Compute lcm: 6 = lcm(24,30) = 120
Then
120
Fs = \/L/\T/\24\ —j+6A30] —j
j=1

120
v \/ 152 + 90 — j < 15z 4 90 A 10y — 10 < 15z 4 90 — j

j=1
A 24|15z +90 — j + 6 A 30|15z + 90 — j

The formula can be simplified to:

120
Fs = \/ 10y — 10 < 15z + 90 — j A 24[15z + 90 — j + 6 A 30[15z + 90 — j

Jj=1
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Example g

Ix.B3x+1<10V7x—6>T7)A2]|x

Flx]

Isolate x terms
Ix. (Bx <9V 13 < Tx)AN2|x,
o)
d = lem{3,7} = 21.
After multiplying coefficients by proper constants,

Ix. (21x < 63V 39 < 21x) A 42 | 21x |

we replace 21x by x’:

Ix'. (X < 63Vv39 < xX)A42|x' A21]X .

Fa[x']
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Then
FooolX]: (TVLyAd2|x A21| X,

or, simplifying,
Fooo[x]: 42| X A21| X" .
Finally,
0 = Ilem{21,42} = 42 and B = {39},

so

42

\V@2jn2t]j) v

F52 j:142

\/((39 4+, < 63V 39 <39+ j)A42|39+jA21[39+)).

j=1

Since 42 | 42 and 21 | 42, the left main disjunct simplifies to T, so that F is
Tz-equivalent to T. Thus, F is Tz-valid.
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Decision Procedures for Quantifier-free Fragments g

Quantifier elimination decides validity/satisfiable quantified formulae.
Can also be used for quantifier free formulae:

To decide satisfiability of F[xy, ..., Xp],
apply QE on 3xq, ..., x5 Flx1,..., ]
But high complexity (doubly exponential for Tg).

Therefore, we are looking for a fast procedure.
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