
Decision Procedures

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Summer 2013

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 1 / 41

Quantifier-free Theory of Equality

The Theory of Equality TE

ΣE : {=, a, b, c , . . . , f , g , h, . . . , p, q, r , . . .}
uninterpreted symbols:
• constants a, b, c, . . .
• functions f , g , h, . . .
• predicates p, q, r , . . .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 3 / 41

Axioms of TE

1 ∀x . x = x (reflexivity)

2 ∀x , y . x = y → y = x (symmetry)

3 ∀x , y , z . x = y ∧ y = z → x = z (transitivity)

define = to be an equivalence relation.

Axiom schema

4 for each positive integer n and n-ary function symbol f ,

∀x1, . . . , xn, y1, . . . , yn.
∧

i xi = yi
→f (x1, . . . , xn) = f (y1, . . . , yn) (congruence)

5 for each positive integer n and n-ary predicate symbol p,

∀x1, . . . , xn, y1, . . . , yn.
∧
i

xi = yi→

(p(x1, . . . , xn) ↔ p(y1, . . . , yn)) (equivalence)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 4 / 41

Congruence Closure Algorithm

F : s1 = t1 ∧ · · · ∧ sm = tm ∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn

The algorithm performs the following steps:

1 Construct the congruence closure ∼ of

{s1 = t1, . . . , sm = tm}

over the subterm set SF . Then

∼|= s1 = t1 ∧ · · · ∧ sm = tm .

2 If for any i ∈ {m + 1, . . . , n}, si ∼ ti , return unsatisfiable.

3 Otherwise, ∼|= F , so return satisfiable.

How do we actually construct the congruence closure in Step 1?

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 5 / 41

Congruence Closure Algorithm (Details)

Begin with the finest congruence relation ∼0:

{{s} : s ∈ SF} .

Each term of SF is only congruent to itself.

Then, for each i ∈ {1, . . . ,m}, impose si = ti by merging

[si]∼i−1 and [ti]∼i−1

to form a new congruence relation ∼i . To accomplish this merging,

form the union of [si]∼i−1 and [ti]∼i−1

propagate any new congruences that arise within this union.

The new relation ∼i is a congruence relation in which si ∼ ti .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 6 / 41

Ingredients of Algorithm

Efficient data structure for computing the congruence closure.

Directed Acyclic Graph (DAG) to represent terms.

f

f

a b

f (f (a, b), b)

f (a, b)

a b

Union-Find data structure to represent equivalence classes:

f

f

a b

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 7 / 41

Directed Acyclic Graph (DAG)

For every subterm of the ΣE -formula F , create

a node labelled with the function symbols.

and edges to the argument nodes.

If two subterms are equal, only one node is created.

1 : f

2 : f

3 : a 4 : b

f (f (a, b), b)

f (a, b)

a b

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 8 / 41

Union-Find Data Structure

Equivalence classes are connected by a tree structure, with arrows pointing to the
root node.

1 : f

2 : f

3 : a 4 : b

Two operations are defined:

FIND: Find the representative of an equivalence class by following the edges.
O(log n)
UNION: Merge two classes by connecting the representatives. O(1)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 9 / 41

Summary of idea

f (a, b) = a ∧ f (f (a, b), b) 6= a

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

Initial DAG f (a, b) = a ⇒
merge f (a, b) a

f (a, b) ∼ a, b ∼ b ⇒
f (f (a, b), b) ∼ f (a, b)

merge f (f (a, b), b) f (a, b)

find f (f (a, b), b) = a = find a
f (f (a, b), b) 6= a

}
⇒ Unsatisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 10 / 41

DAG representation

type node = {
id : id node’s unique identification number
fn : string constant or function name
args : id list list of function arguments
mutable find : id the edge to the representative
mutable ccpar : id set if the node is the representative for its

congruence class, then its ccpar

(congruence closure parents) are all
parents of nodes in its congruence class

}

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 11 / 41

DAG Representation of node 2

type node = {
id : id
fn : string
args : idlist
mutable find : id
mutable ccpar : idset
}

. . . 2

. . . f

. . . [3, 4]

. . . 3

. . . ∅

1 : f

2 : f

3 : a 4 : b

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 12 / 41

DAG Representation of node 3

type node = {
id : id
fn : string
args : idlist
mutable find : id
mutable ccpar : idset
}

. . . 3

. . . a

. . . []

. . . 3

. . . {1, 2}

1 : f

2 : f

3 : a 4 : b

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 13 / 41

The Implementation: FIND

find function

returns the representative of node’s congruence class

let rec find i =
let n = node i in
if n.find = i then i else find n.find

Example: find 2 = find 3 = 3
3 is the representative of 2.

1 : f

2 : f

3 : a 4 : b

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 14 / 41

The Implementation: UNION

union function

let union i1 i2 =
let n1 = node (find i1) in

let n2 = node (find i2) in

n1.find ← n2;
n2.ccpar ← n1.ccpar ∪ n2.ccpar;
n1.ccpar ← ∅

n2 is the representative of the union class

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 15 / 41

Example

let union i1 i2 =
let n1 = node (find i1) in

let n2 = node (find i2) in

n1.find ← n2;
n2.ccpar ← n1.ccpar ∪ n2.ccpar;
n1.ccpar ← ∅

union 1 2 n1 = 1 n2 = 3
1.find ← 3
3.ccpar ← {1, 2}
1.ccpar ← ∅

1 : f

2 : f

3 : a 4 : b

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 16 / 41

The Implementation: CONGRUENT

ccpar function

Returns parents of all nodes in i ’s congruence class

let ccpar i =
(node (find i)).ccpar

congruent predicate

Test whether i1 and i2 are congruent

let congruent i1 i2 =
let n1 = node i1 in

let n2 = node i2 in

n1.fn = n2.fn
∧|n1.args| = |n2.args|
∧∀i ∈ {1, . . . , |n1.args|}. find n1.args[i] = find n2.args[i]

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 17 / 41

Example

Are 1 and 2 congruent?
fn fields — both f
of arguments — same
left arguments f (a, b) and a — both congruent to 3
right arguments b and b — both 4 (congruent)

Therefore 1 and 2 are congruent.

1 : f

2 : f

3 : a 4 : b

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 18 / 41

The Implementation: MERGE

merge function

let rec merge i1 i2 =
if find i1 6= find i2 then begin

let Pi1 = ccpar i1 in

let Pi2 = ccpar i2 in

union i1 i2;
foreach t1, t2 ∈ Pi1 × Pi2 do

if find t1 6= find t2 ∧ congruent t1 t2
then merge t1 t2

done

end

Pi1 and Pi2 store the current values of ccpar i1 and ccpar i2.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 19 / 41

Decision Procedure: TE -satisfiability

Given ΣE -formula

F : s1 = t1 ∧ · · · ∧ sm = tm ∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn ,

with subterm set SF , perform the following steps:

1 Construct the initial DAG for the subterm set SF .

2 For i ∈ {1, . . . ,m}, merge si ti .

3 If find si = find ti for some i ∈ {m + 1, . . . , n}, return unsatisfiable.

4 Otherwise (if find si 6= find ti for all i ∈ {m + 1, . . . , n}) return satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 20 / 41

Example f (a, b) = a ∧ f (f (a, b), b) 6= a

f (a, b) = a ∧ f (f (a, b), b) 6= a

(1)
1 : f

2 : f

3 : a 4 : b

(2)
1 : f

2 : f

3 : a 4 : b

(3)
1 : f

2 : f

3 : a 4 : b

Initial DAG merge 2 3
union 2 3
P2 = {1}
P3 = {2}

congruent 1 2

merge 1 2
union 1 2
P1 = {}
P2 = {1, 2}

find f (f (a, b), b) = a = find a ⇒ Unsatisfiable
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 21 / 41

Given ΣE -formula

F : f (a, b) = a ∧ f (f (a, b), b) 6= a .

The subterm set is

SF = {a, b, f (a, b), f (f (a, b), b)} ,
resulting in the initial partition

(1) {{a}, {b}, {f (a, b)}, {f (f (a, b), b)}}
in which each term is its own congruence class. Fig (1).

Final partition

(2) {{a, f (a, b), f (f (a, b), b)}, {b}}

Does

(3) {{a, f (a, b), f (f (a, b), b)}, {b}} |= F ?

No, as f (f (a, b), b) ∼ a, but F asserts that f (f (a, b), b) 6= a. Hence, F is
TE -unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 22 / 41

Example f 3(a) = a ∧ f 5(a) = a ∧ f (a) 6= a

f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ f (a) 6= a

5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Initial DAG

f (f (f (a))) = a ⇒ merge 3 0 P3 = {4} P0 = {1}
⇒ merge 4 1 P4 = {5} P1 = {2}
⇒ merge 5 2 P5 = {} P2 = {3}

f (f (f (f (f (a))))) = a ⇒ merge 5 0 P5 = {3} P0 = {1, 4}
⇒ merge 3 1 P3 = {1, 3, 4},P1 = {2, 5}

find f (a) = f (a) = find a ⇒ Unsatisfiable
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 23 / 41

Given ΣE -formula

F : f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ f (a) 6= a ,

which induces the initial partition

1 {{a}, {f (a)}, {f 2(a)}, {f 3(a)}, {f 4(a)}, {f 5(a)}} .
The equality f 3(a) = a induces the partition

2 {{a, f 3(a)}, {f (a), f 4(a)}, {f 2(a), f 5(a)}} .
The equality f 5(a) = a induces the partition

3 {{a, f (a), f 2(a), f 3(a), f 4(a), f 5(a)}} .
Now, does

{{a, f (a), f 2(a), f 3(a), f 4(a), f 5(a)}} |= F ?

No, as f (a) ∼ a, but F asserts that f (a) 6= a. Hence, F is TE -unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 24 / 41

Correctness of the Algorithm

Theorem (Sound and Complete)

Quantifier-free conjunctive ΣE -formula F is TE -satisfiable iff the congruence closure
algorithm returns satisfiable.

Proof:

⇒ Let I be a satisfying interpretation.
By induction over the steps of the algorithm one can prove:
Whenever the algorithm merges nodes t1 and t2, I |= t1 = t2 holds.

Since I |= si 6= ti for i ∈ {m + 1, . . . , n} they cannot be merged.

Hence the algorithm returns satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 25 / 41

Correctness of the Algorithm (2)

Proof:

⇐ Let S denote the nodes of the graph and
Let [t] := {t ′ | t ∼ t ′} denote the congruence class of t and
S/∼ := {[t] | t ∈ S} denote the set of congruence classes.
Show that there is an interpretation I :

DI = S/∼ ∪ {Ω}

αI [f](v1, . . . , vn) =


[f (t1, . . . , tn)] v1 = [t1], . . . , vn = [tn],

f (t1, . . . , tn) ∈ S

Ω otherwise

αI [=](v1, v2) = > iff v1 = v2

I is well-defined!
αI [=] is a congruence relation,
I |= F .
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 26 / 41

Example: f (a, b) = a ∧ f (f (a, b), b) 6= b

1 : f

2 : f

3 : a 4 : b

S = {f (f (a, b), b), f (a, b), a, b}
S/∼ = {{f (f (a, b), b), f (a, b), a}, {b}} = {[a], [b]}
DI = {[a], [b],Ω}
αI [f] [a] [b] Ω

[a] Ω [a] Ω
[b] Ω Ω Ω
Ω Ω Ω Ω

αI [=] [a] [b] Ω

[a] > ⊥ ⊥
[b] ⊥ > ⊥
Ω ⊥ ⊥ >

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 27 / 41

How to handle predicates?

We can get rid of predicates by

Introduce fresh constant • corresponding to >.

Introduce a fresh function fp for each predicate p.

Replace p(t1, . . . , tn) with fp(t1, . . . , tn) = •.
Compare the equivalence axiom for p
with the congruence axiom for fp.

∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → p(x1, x2) ↔ p(y1, y2)

∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → fp(x1, x2) = fp(y1, y2)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 28 / 41

Example

x = f (x) ∧ p(x , f (x)) ∧ p(f (x), z) ∧ ¬p(x , z)

is rewritten to

x = f (x) ∧ fp(x , f (x)) = • ∧ fp(f (x), z) = • ∧ fp(x , z) 6= •

1 : fp

2 : f

3 : x

4 : fp

5 : z

6 : fp

7 : •

find fp(x , z) = •
find • = •
⇒ Unsatisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 29 / 41

Theory of Lists

Theory of Lists Tcons

Σcons : {cons, car, cdr, atom, =}

constructor cons: cons(a, b) list constructed by
prepending a to b

left projector car: car(cons(a, b)) = a

right projector cdr: cdr(cons(a, b)) = b

atom: unary predicate

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 31 / 41

Axioms of Tcons

reflexivity, symmetry, transitivity

congruence axioms:

∀x1, x2, y1, y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)
∀x , y . x = y → car(x) = car(y)
∀x , y . x = y → cdr(x) = cdr(y)

equivalence axiom:

∀x , y . x = y → (atom(x) ↔ atom(y))

∀x , y . car(cons(x , y)) = x (left projection)
∀x , y . cdr(cons(x , y)) = y (right projection)
∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)
∀x , y . ¬atom(cons(x , y)) (atom)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 32 / 41

Satisfiabilty of Quantifier-free Σcons ∪ ΣE-formulae

First simplify the formula:

Consider only conjunctive Σcons ∪ ΣE-formulae.
Convert non-conjunctive formula to DNF and check each disjunct.

¬atom(ui) literals are removed:

replace ¬atom(ui) with ui = cons(u1
i , u

2
i)

by the (construction) axiom.

Result is a conjunctive Σcons ∪ ΣE-formula with the literals:

s = t

s 6= t

atom(u)

where s, t, u are Tcons ∪ TE-terms.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 33 / 41

Algorithm: Tcons-Satisfiability (the idea)

F : s1 = t1 ∧ · · · ∧ sm = tm︸ ︷︷ ︸
generate congruence closure

∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn︸ ︷︷ ︸
search for contradiction

∧ atom(u1) ∧ · · · ∧ atom(u`)︸ ︷︷ ︸
search for contradiction

where si , ti , and ui are Tcons ∪ TE-terms.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 34 / 41

Algorithm: Tcons-Satisfiability

1 Construct the initial DAG for SF

2 for each node n with n.fn = cons

add car(n) and merge car(n) n.args[1]
add cdr(n) and merge cdr(n) n.args[2]

by axioms (left projection), (right projection)

3 for 1 ≤ i ≤ m, merge si ti
4 for m + 1 ≤ i ≤ n, if find si = find ti , return unsatisfiable

5 for 1 ≤ i ≤ `, if ∃v . find v = find ui ∧ v .fn = cons,
return unsatisfiable

6 Otherwise, return satisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 35 / 41

Example

Given (Σcons ∪ ΣE)-formula

F :
car(x) = car(y) ∧ cdr(x) = cdr(y)

∧ ¬atom(x) ∧ ¬atom(y) ∧ f (x) 6= f (y)

where the function symbol f is in ΣE

F ′ :

car(x) = car(y) ∧ (1)
cdr(x) = cdr(y) ∧ (2)
x = cons(x1, x2) ∧ (3)
y = cons(y1, y2) ∧ (4)
f (x) 6= f (y) (5)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 36 / 41

Example: car(x) = car(y) ∧ cdr(x) = cdr(y)∧
x = cons(x1, x2) ∧ y = cons(y1, y2) ∧ f (x) 6= f (y)

x

car f cdr

y

car f cdr

x1 x2

cons

car cdr

y1 y2

cons

car cdr

car

car

cdr

cdr

car

car

cdr

cdr

cons cons

f f

congruence

Step 1
Step 2
Step 3 :
merge car(x) car(y)
merge cdr(x) cdr(y)
merge x cons(x1, x2)
merge car(x) car(cons(x1, x2))
merge cdr(x) cdr(cons(x1, x2))
merge y cons(y1, y2)
merge car(y) car(cons(y1, y2))
merge cdr(y) cdr(cons(y1, y2))
merge cons(x1, x2) cons(y1, y2)
merge f (x) f (y)

Step 4 :
find f (x) = find f (y)
⇒ unsatisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 37 / 41

Correctness of the Algorithm

Theorem (Sound and Complete)

Quantifier-free conjunctive Σcons-formula F is Tcons-satisfiable iff the congruence
closure algorithm for Tcons returns satisfiable.

Proof:

⇒ Let I be a satisfying interpretation.
By induction over the steps of the algorithm one can prove:
Whenever the algorithm merges nodes t1 and t2, I |= t1 = t2 holds.

Since I |= si 6= ti for i ∈ {m + 1, . . . , n} they cannot be merged.
From I |= ¬atom(cons(t1, t2)) and I |= atom(ui)
follows I |= ui 6= cons(t1, t2) by equivalence axiom.
Thus ui for i ∈ {1, . . . , `} cannot be merged with a cons node.

Hence the algorithm returns satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 38 / 41

Correctness of the Algorithm (2)

Proof:

⇐ Let S denote the nodes of the graph and
let S/∼ denote the congruence classes computed by the algorithm.
Show that there is an interpretation I :

DI = {binary trees with leaves labelled with S/∼}

\ {trees with subtree ↙↘
[t1] [t2]

with cons(t1, t2) ∈ S}

consI (v1, v2) =

[cons(t1, t2)] v1 = [t1], v2 = [t2], cons(t1, t2) ∈ S

↙↘
v1 v2

otherwise

carI (v) =


[car(t)] if v = [t], car(t) ∈ S

v1 if v = ↙↘
v1 v2

arbitrary otherwise

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 39 / 41

Correctness of the Algorithm (3)

cdrI (v) =


[cdr(t)] if v = [t], cdr(t) ∈ S

v2 if v = ↙↘
v1 v2

arbitrary otherwise

atomI (v) =


false if v = [cons(t1, t2)]

false if v = ↙↘
v1 v2

true otherwise

αI [=](v1, v2) = true iff v1 = v2

I is well-defined! αI [=] is obviously a congruence relation.
∀x , y . car(cons(x , y)) = x (left projection)
∀x , y . cdr(cons(x , y)) = y (right projection)
∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)
∀x , y . ¬atom(cons(x , y)) (atom)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 40 / 41

Example: car(x) = car(y) ∧ cdr(x) = cdr(y)∧
x = cons(x1, x2) ∧ y = cons(y1, y2)

x

car f cdr

y

car f cdr

x1 x2

cons

car cdr

y1 y2

cons

car cdr

congruence

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 41 / 41

	Quantifier-free Theory of Equality
	Congruence Closure Algorithm

	Theory of Lists

