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Quantifier-free Theory of Equality



The Theory of Equality TE

ΣE : {=, a, b, c , . . . , f , g , h, . . . , p, q, r , . . .}
uninterpreted symbols:
• constants a, b, c, . . .
• functions f , g , h, . . .
• predicates p, q, r , . . .
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Axioms of TE

1 ∀x . x = x (reflexivity)

2 ∀x , y . x = y → y = x (symmetry)

3 ∀x , y , z . x = y ∧ y = z → x = z (transitivity)

define = to be an equivalence relation.

Axiom schema

4 for each positive integer n and n-ary function symbol f ,

∀x1, . . . , xn, y1, . . . , yn.
∧

i xi = yi
→f (x1, . . . , xn) = f (y1, . . . , yn) (congruence)

5 for each positive integer n and n-ary predicate symbol p,

∀x1, . . . , xn, y1, . . . , yn.
∧
i

xi = yi→

(p(x1, . . . , xn) ↔ p(y1, . . . , yn)) (equivalence)
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Congruence Closure Algorithm

F : s1 = t1 ∧ · · · ∧ sm = tm ∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn

The algorithm performs the following steps:

1 Construct the congruence closure ∼ of

{s1 = t1, . . . , sm = tm}

over the subterm set SF . Then

∼|= s1 = t1 ∧ · · · ∧ sm = tm .

2 If for any i ∈ {m + 1, . . . , n}, si ∼ ti , return unsatisfiable.

3 Otherwise, ∼|= F , so return satisfiable.

How do we actually construct the congruence closure in Step 1?
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Congruence Closure Algorithm (Details)

Begin with the finest congruence relation ∼0:

{{s} : s ∈ SF} .

Each term of SF is only congruent to itself.

Then, for each i ∈ {1, . . . ,m}, impose si = ti by merging

[si ]∼i−1 and [ti ]∼i−1

to form a new congruence relation ∼i . To accomplish this merging,

form the union of [si ]∼i−1 and [ti ]∼i−1

propagate any new congruences that arise within this union.

The new relation ∼i is a congruence relation in which si ∼ ti .
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Ingredients of Algorithm

Efficient data structure for computing the congruence closure.

Directed Acyclic Graph (DAG) to represent terms.

f

f

a b

f (f (a, b), b)

f (a, b)

a b

Union-Find data structure to represent equivalence classes:

f

f

a b
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Directed Acyclic Graph (DAG)

For every subterm of the ΣE -formula F , create

a node labelled with the function symbols.

and edges to the argument nodes.

If two subterms are equal, only one node is created.

1 : f

2 : f

3 : a 4 : b

f (f (a, b), b)

f (a, b)

a b
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Union-Find Data Structure

Equivalence classes are connected by a tree structure, with arrows pointing to the
root node.

1 : f

2 : f

3 : a 4 : b

Two operations are defined:

FIND: Find the representative of an equivalence class by following the edges.
O(log n)
UNION: Merge two classes by connecting the representatives. O(1)
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Summary of idea

f (a, b) = a ∧ f (f (a, b), b) 6= a

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

Initial DAG f (a, b) = a ⇒
merge f (a, b) a

f (a, b) ∼ a, b ∼ b ⇒
f (f (a, b), b) ∼ f (a, b)

merge f (f (a, b), b) f (a, b)

find f (f (a, b), b) = a = find a
f (f (a, b), b) 6= a

}
⇒ Unsatisfiable
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DAG representation

type node = {
id : id node’s unique identification number
fn : string constant or function name
args : id list list of function arguments
mutable find : id the edge to the representative
mutable ccpar : id set if the node is the representative for its

congruence class, then its ccpar

(congruence closure parents) are all
parents of nodes in its congruence class

}
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DAG Representation of node 2

type node = {
id : id
fn : string
args : idlist
mutable find : id
mutable ccpar : idset
}

. . . 2

. . . f

. . . [3, 4]

. . . 3

. . . ∅

1 : f

2 : f

3 : a 4 : b
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DAG Representation of node 3

type node = {
id : id
fn : string
args : idlist
mutable find : id
mutable ccpar : idset
}

. . . 3

. . . a

. . . []

. . . 3

. . . {1, 2}

1 : f

2 : f

3 : a 4 : b
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The Implementation: FIND

find function

returns the representative of node’s congruence class

let rec find i =
let n = node i in
if n.find = i then i else find n.find

Example: find 2 = find 3 = 3
3 is the representative of 2.

1 : f

2 : f

3 : a 4 : b
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The Implementation: UNION

union function

let union i1 i2 =
let n1 = node (find i1) in

let n2 = node (find i2) in

n1.find ← n2;
n2.ccpar ← n1.ccpar ∪ n2.ccpar;
n1.ccpar ← ∅

n2 is the representative of the union class
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Example

let union i1 i2 =
let n1 = node (find i1) in

let n2 = node (find i2) in

n1.find ← n2;
n2.ccpar ← n1.ccpar ∪ n2.ccpar;
n1.ccpar ← ∅

union 1 2 n1 = 1 n2 = 3
1.find ← 3
3.ccpar ← {1, 2}
1.ccpar ← ∅

1 : f

2 : f

3 : a 4 : b
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The Implementation: CONGRUENT

ccpar function

Returns parents of all nodes in i ’s congruence class

let ccpar i =
(node (find i)).ccpar

congruent predicate

Test whether i1 and i2 are congruent

let congruent i1 i2 =
let n1 = node i1 in

let n2 = node i2 in

n1.fn = n2.fn
∧|n1.args| = |n2.args|
∧∀i ∈ {1, . . . , |n1.args|}. find n1.args[i ] = find n2.args[i ]
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Example

Are 1 and 2 congruent?
fn fields — both f
# of arguments — same
left arguments f (a, b) and a — both congruent to 3
right arguments b and b — both 4 (congruent)

Therefore 1 and 2 are congruent.

1 : f

2 : f

3 : a 4 : b
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The Implementation: MERGE

merge function

let rec merge i1 i2 =
if find i1 6= find i2 then begin

let Pi1 = ccpar i1 in

let Pi2 = ccpar i2 in

union i1 i2;
foreach t1, t2 ∈ Pi1 × Pi2 do

if find t1 6= find t2 ∧ congruent t1 t2
then merge t1 t2

done

end

Pi1 and Pi2 store the current values of ccpar i1 and ccpar i2.
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Decision Procedure: TE -satisfiability

Given ΣE -formula

F : s1 = t1 ∧ · · · ∧ sm = tm ∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn ,

with subterm set SF , perform the following steps:

1 Construct the initial DAG for the subterm set SF .

2 For i ∈ {1, . . . ,m}, merge si ti .

3 If find si = find ti for some i ∈ {m + 1, . . . , n}, return unsatisfiable.

4 Otherwise (if find si 6= find ti for all i ∈ {m + 1, . . . , n}) return satisfiable.
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Example f (a, b) = a ∧ f (f (a, b), b) 6= a

f (a, b) = a ∧ f (f (a, b), b) 6= a

(1)
1 : f

2 : f

3 : a 4 : b

(2)
1 : f

2 : f

3 : a 4 : b

(3)
1 : f

2 : f

3 : a 4 : b

Initial DAG merge 2 3
union 2 3
P2 = {1}
P3 = {2}

congruent 1 2

merge 1 2
union 1 2
P1 = {}
P2 = {1, 2}

find f (f (a, b), b) = a = find a ⇒ Unsatisfiable
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Given ΣE -formula

F : f (a, b) = a ∧ f (f (a, b), b) 6= a .

The subterm set is

SF = {a, b, f (a, b), f (f (a, b), b)} ,
resulting in the initial partition

(1) {{a}, {b}, {f (a, b)}, {f (f (a, b), b)}}
in which each term is its own congruence class. Fig (1).

Final partition

(2) {{a, f (a, b), f (f (a, b), b)}, {b}}

Does

(3) {{a, f (a, b), f (f (a, b), b)}, {b}} |= F ?

No, as f (f (a, b), b) ∼ a, but F asserts that f (f (a, b), b) 6= a. Hence, F is
TE -unsatisfiable.
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Example f 3(a) = a ∧ f 5(a) = a ∧ f (a) 6= a

f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ f (a) 6= a

5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Initial DAG

f (f (f (a))) = a ⇒ merge 3 0 P3 = {4} P0 = {1}
⇒ merge 4 1 P4 = {5} P1 = {2}
⇒ merge 5 2 P5 = {} P2 = {3}

f (f (f (f (f (a))))) = a ⇒ merge 5 0 P5 = {3} P0 = {1, 4}
⇒ merge 3 1 P3 = {1, 3, 4},P1 = {2, 5}

find f (a) = f (a) = find a ⇒ Unsatisfiable
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Given ΣE -formula

F : f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ f (a) 6= a ,

which induces the initial partition

1 {{a}, {f (a)}, {f 2(a)}, {f 3(a)}, {f 4(a)}, {f 5(a)}} .
The equality f 3(a) = a induces the partition

2 {{a, f 3(a)}, {f (a), f 4(a)}, {f 2(a), f 5(a)}} .
The equality f 5(a) = a induces the partition

3 {{a, f (a), f 2(a), f 3(a), f 4(a), f 5(a)}} .
Now, does

{{a, f (a), f 2(a), f 3(a), f 4(a), f 5(a)}} |= F ?

No, as f (a) ∼ a, but F asserts that f (a) 6= a. Hence, F is TE -unsatisfiable.
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Correctness of the Algorithm

Theorem (Sound and Complete)

Quantifier-free conjunctive ΣE -formula F is TE -satisfiable iff the congruence closure
algorithm returns satisfiable.

Proof:

⇒ Let I be a satisfying interpretation.
By induction over the steps of the algorithm one can prove:
Whenever the algorithm merges nodes t1 and t2, I |= t1 = t2 holds.

Since I |= si 6= ti for i ∈ {m + 1, . . . , n} they cannot be merged.

Hence the algorithm returns satisfiable.
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Correctness of the Algorithm (2)

Proof:

⇐ Let S denote the nodes of the graph and
Let [t] := {t ′ | t ∼ t ′} denote the congruence class of t and
S/∼ := {[t] | t ∈ S} denote the set of congruence classes.
Show that there is an interpretation I :

DI = S/∼ ∪ {Ω}

αI [f ](v1, . . . , vn) =


[f (t1, . . . , tn)] v1 = [t1], . . . , vn = [tn],

f (t1, . . . , tn) ∈ S

Ω otherwise

αI [=](v1, v2) = > iff v1 = v2

I is well-defined!
αI [=] is a congruence relation,
I |= F .
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Example: f (a, b) = a ∧ f (f (a, b), b) 6= b

1 : f

2 : f

3 : a 4 : b

S = {f (f (a, b), b), f (a, b), a, b}
S/∼ = {{f (f (a, b), b), f (a, b), a}, {b}} = {[a], [b]}
DI = {[a], [b],Ω}
αI [f ] [a] [b] Ω

[a] Ω [a] Ω
[b] Ω Ω Ω
Ω Ω Ω Ω

αI [=] [a] [b] Ω

[a] > ⊥ ⊥
[b] ⊥ > ⊥
Ω ⊥ ⊥ >
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How to handle predicates?

We can get rid of predicates by

Introduce fresh constant • corresponding to >.

Introduce a fresh function fp for each predicate p.

Replace p(t1, . . . , tn) with fp(t1, . . . , tn) = •.
Compare the equivalence axiom for p
with the congruence axiom for fp.

∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → p(x1, x2) ↔ p(y1, y2)

∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → fp(x1, x2) = fp(y1, y2)
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Example

x = f (x) ∧ p(x , f (x)) ∧ p(f (x), z) ∧ ¬p(x , z)

is rewritten to

x = f (x) ∧ fp(x , f (x)) = • ∧ fp(f (x), z) = • ∧ fp(x , z) 6= •

1 : fp

2 : f

3 : x

4 : fp

5 : z

6 : fp

7 : •

find fp(x , z) = •
find • = •
⇒ Unsatisfiable
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Theory of Lists



Theory of Lists Tcons

Σcons : {cons, car, cdr, atom, =}

constructor cons: cons(a, b) list constructed by
prepending a to b

left projector car: car(cons(a, b)) = a

right projector cdr: cdr(cons(a, b)) = b

atom: unary predicate
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Axioms of Tcons

reflexivity, symmetry, transitivity

congruence axioms:

∀x1, x2, y1, y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)
∀x , y . x = y → car(x) = car(y)
∀x , y . x = y → cdr(x) = cdr(y)

equivalence axiom:

∀x , y . x = y → (atom(x) ↔ atom(y))

∀x , y . car(cons(x , y)) = x (left projection)
∀x , y . cdr(cons(x , y)) = y (right projection)
∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)
∀x , y . ¬atom(cons(x , y)) (atom)
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Satisfiabilty of Quantifier-free Σcons ∪ ΣE-formulae

First simplify the formula:

Consider only conjunctive Σcons ∪ ΣE-formulae.
Convert non-conjunctive formula to DNF and check each disjunct.

¬atom(ui ) literals are removed:

replace ¬atom(ui ) with ui = cons(u1
i , u

2
i )

by the (construction) axiom.

Result is a conjunctive Σcons ∪ ΣE-formula with the literals:

s = t

s 6= t

atom(u)

where s, t, u are Tcons ∪ TE-terms.
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Algorithm: Tcons-Satisfiability (the idea)

F : s1 = t1 ∧ · · · ∧ sm = tm︸ ︷︷ ︸
generate congruence closure

∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn︸ ︷︷ ︸
search for contradiction

∧ atom(u1) ∧ · · · ∧ atom(u`)︸ ︷︷ ︸
search for contradiction

where si , ti , and ui are Tcons ∪ TE-terms.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 34 / 41



Algorithm: Tcons-Satisfiability

1 Construct the initial DAG for SF

2 for each node n with n.fn = cons

add car(n) and merge car(n) n.args[1]
add cdr(n) and merge cdr(n) n.args[2]

by axioms (left projection), (right projection)

3 for 1 ≤ i ≤ m, merge si ti
4 for m + 1 ≤ i ≤ n, if find si = find ti , return unsatisfiable

5 for 1 ≤ i ≤ `, if ∃v . find v = find ui ∧ v .fn = cons,
return unsatisfiable

6 Otherwise, return satisfiable
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Example

Given (Σcons ∪ ΣE)-formula

F :
car(x) = car(y) ∧ cdr(x) = cdr(y)

∧ ¬atom(x) ∧ ¬atom(y) ∧ f (x) 6= f (y)

where the function symbol f is in ΣE

F ′ :

car(x) = car(y) ∧ (1)
cdr(x) = cdr(y) ∧ (2)
x = cons(x1, x2) ∧ (3)
y = cons(y1, y2) ∧ (4)
f (x) 6= f (y) (5)
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Example: car(x) = car(y) ∧ cdr(x) = cdr(y)∧
x = cons(x1, x2) ∧ y = cons(y1, y2) ∧ f (x) 6= f (y)

x

car f cdr

y

car f cdr

x1 x2

cons

car cdr

y1 y2

cons

car cdr

car

car

cdr

cdr

car

car

cdr

cdr

cons cons

f f

congruence

Step 1
Step 2
Step 3 :
merge car(x) car(y)
merge cdr(x) cdr(y)
merge x cons(x1, x2)
merge car(x) car(cons(x1, x2))
merge cdr(x) cdr(cons(x1, x2))
merge y cons(y1, y2)
merge car(y) car(cons(y1, y2))
merge cdr(y) cdr(cons(y1, y2))
merge cons(x1, x2) cons(y1, y2)
merge f (x) f (y)

Step 4 :
find f (x) = find f (y)
⇒ unsatisfiable
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Correctness of the Algorithm

Theorem (Sound and Complete)

Quantifier-free conjunctive Σcons-formula F is Tcons-satisfiable iff the congruence
closure algorithm for Tcons returns satisfiable.

Proof:

⇒ Let I be a satisfying interpretation.
By induction over the steps of the algorithm one can prove:
Whenever the algorithm merges nodes t1 and t2, I |= t1 = t2 holds.

Since I |= si 6= ti for i ∈ {m + 1, . . . , n} they cannot be merged.
From I |= ¬atom(cons(t1, t2)) and I |= atom(ui )
follows I |= ui 6= cons(t1, t2) by equivalence axiom.
Thus ui for i ∈ {1, . . . , `} cannot be merged with a cons node.

Hence the algorithm returns satisfiable.
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Correctness of the Algorithm (2)

Proof:

⇐ Let S denote the nodes of the graph and
let S/∼ denote the congruence classes computed by the algorithm.
Show that there is an interpretation I :

DI = {binary trees with leaves labelled with S/∼}

\ {trees with subtree ↙↘
[t1] [t2]

with cons(t1, t2) ∈ S}

consI (v1, v2) =

[cons(t1, t2)] v1 = [t1], v2 = [t2], cons(t1, t2) ∈ S

↙↘
v1 v2

otherwise

carI (v) =


[car(t)] if v = [t], car(t) ∈ S

v1 if v = ↙↘
v1 v2

arbitrary otherwise
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Correctness of the Algorithm (3)

cdrI (v) =


[cdr(t)] if v = [t], cdr(t) ∈ S

v2 if v = ↙↘
v1 v2

arbitrary otherwise

atomI (v) =


false if v = [cons(t1, t2)]

false if v = ↙↘
v1 v2

true otherwise

αI [=](v1, v2) = true iff v1 = v2

I is well-defined! αI [=] is obviously a congruence relation.
∀x , y . car(cons(x , y)) = x (left projection)
∀x , y . cdr(cons(x , y)) = y (right projection)
∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)
∀x , y . ¬atom(cons(x , y)) (atom)
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Example: car(x) = car(y) ∧ cdr(x) = cdr(y)∧
x = cons(x1, x2) ∧ y = cons(y1, y2)

x

car f cdr

y

car f cdr

x1 x2

cons

car cdr

y1 y2

cons

car cdr

congruence
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