Decision Procedures

Jochen Hoenicke

Summer 2013

Theories

$$1+1=2 \label{eq:1.1}$$
 Is this formula valid? — No!

We want to fix the meaning for some function symbols. Examples:

- Equality theory
- Theory of natural numbers
- Theory of rational numbers
- Theory of arrays or lists

Definition (First-order theory)

A First-order theory T consists of

- ullet A Signature Σ set of constant, function, and predicate symbols
- A set of axioms A_T set of closed (no free variables) Σ -formulae

A Σ -formula is a formula constructed of constants, functions, and predicate symbols from Σ , and variables, logical connectives, and quantifiers

- ullet The symbols of Σ are just symbols without prior meaning
- The axioms of T provide their meaning

Theory of Equality T_E

$$\Sigma$$
₌: {=, a, b, c, \cdots, f, g, h, \cdots, p, q, r, \cdots}

- =, a binary predicate, interpreted by axioms.
- all constant, function, and predicate symbols.

Axioms of T_E :

(transitivity)

• for each positive integer n and n-ary function symbol f,

$$\forall x_1,\ldots,x_n,y_1,\ldots,y_n. \ \bigwedge_i x_i = y_i \to f(x_1,\ldots,x_n) = f(y_1,\ldots,y_n)$$

(congruence)

for each positive integer n and n-ary predicate symbol p,

$$\forall x_1,\ldots,x_n,y_1,\ldots,y_n. \ \bigwedge_i x_i = y_i \to (p(x_1,\ldots,x_n) \leftrightarrow p(y_1,\ldots,y_n))$$

Axiom Schemata

Congruence and Equivalence are axiom schemata.

- for each positive integer n and n-ary function symbol f, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i \to f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$ (congruence)
- of for each positive integer n and n-ary predicate symbol p, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i \to (p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n))$ (equivalence)

For every function symbol there is an instance of the congruence axiom schemata. Example: Congruence axiom for binary function f_2 :

$$\forall x_1, x_2, y_1, y_2. \ x_1 = y_1 \land x_2 = y_2 \rightarrow f_2(x_1, x_2) = f_2(y_1, y_2)$$

 A_{T_E} contains an infinite number of these axioms.

T-Validity and *T*-Satisfiability

Definition (*T*-interpretation)

An interpretation I is a T-interpretation, if it satisfies all the axioms of T.

Definition (*T*-valid)

A Σ -formula F is valid in theory T (T-valid, also $T \models F$), if every T-interpretation satisfies F.

Definition (*T*-satisfiable)

A Σ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation that satisfies F

Definition (*T*-equivalent)

Two Σ -formulae F_1 and F_2 are equivalent in T (T-equivalent), if $F_1 \leftrightarrow F_2$ is T-valid,

Semantic argument method can be used for $T_{\it E}$

Prove

$$F: a = b \wedge b = c \rightarrow g(f(a), b) = g(f(c), a)$$
 T_{E} -valid.

Suppose not; then there exists a T_{E} -interpretation I such that $I \not\models F$. Then,

1.	$I \not\models F$	assumption
2.	$I \models a = b \land b = c$	1, $ ightarrow$
3.	$I \not\models g(f(a),b) = g(f(c),a)$	1, $ ightarrow$
4.	$I \models \forall x, y, z. \ x = y \land y = z \rightarrow x = z$	transitivity
5.	$I \models a = b \land b = c \rightarrow a = c$	$4, 3 \times \forall \{x \mapsto a, y \mapsto b, z \mapsto c\}$
6 <i>a</i>	$I \not\models a = b \land b = c$	5, $ ightarrow$
7 <i>a</i>	$I \models \bot$	2 and 6a contradictory
6 <i>b</i> .	$I \models a = c$	4, 5, (5, →)
7 <i>b</i> .	$I \models a = c \rightarrow f(a) = f(c)$	(congruence), $2 \times \forall$
8 <i>ba</i> .	$l \not\models a = c \cdots l \models \bot$	
8 <i>bb</i> .	$I \models f(a) = f(c)$	7b, →
9 <i>bb</i> .	$I \models a = b$	2, ∧
10 <i>bb</i> .	$I \models a = b \rightarrow b = a$	(symmetry), $2 \times \forall$
11 <i>bba</i> .	$l \not\models a = b \cdots l \models \bot$	
11 <i>bbb</i> .	$I \models b = a$	10bb, →
12 <i>bbb</i> .	$I \models f(a) = f(c) \land b = a \rightarrow g(f(a), b) = g(f(c), a)$	(congruence), 4 \times \forall
13	$I \models g(f(a), b) = g(f(c), a)$	8bb, 11bbb, 12bbb

3 and 13 are contradictory. Thus, F is $T_{\mbox{\scriptsize E-}}\mbox{valid}.$

Decidability of T_E

Is it possible to decide T_E -validity?

 T_E -validity is undecidable.

If we restrict ourself to quantifier-free formulae we get decidability:

For a quantifier-free formula T_E -validity is decidable.

Fragments of Theories

A fragment of theory T is a syntactically-restricted subset of formulae of the theory. Example: quantifier-free fragment of theory T is the set of quantifier-free formulae in T.

A theory T is decidable if $T \models F$ (T-validity) is decidable for every Σ -formula F, i.e., there is an algorithm that always terminates and returns "yes", if F is T-valid, and "no", if F is T-invalid.

A fragment of T is decidable if $T \models F$ is decidable for every Σ -formula F in the fragment.

Natural numbers
$$\mathbb{N}=\{0,1,2,\cdots\}$$
 Integers $\mathbb{Z}=\{\cdots,-2,-1,0,1,2,\cdots\}$

Three variations:

- Peano arithmetic T_{PA}: natural numbers with addition and multiplication
- ullet Presburger arithmetic $T_{\mathbb{N}}$: natural numbers with addition
- Theory of integers $T_{\mathbb{Z}}$: integers with +,-,>

Peano Arithmetic T_{PA} (first-order arithmetic)

Signature:
$$\Sigma_{PA}$$
: $\{0, 1, +, \cdot, =\}$

Axioms of T_{PA} : axioms of T_E ,

②
$$\forall x, y. \ x + 1 = y + 1 \rightarrow x = y$$

③
$$\forall x. \ x + 0 = x$$

$$$\forall x, y. \ x + (y + 1) = (x + y) + 1$$$

Line 3 is an axiom schema.

3x + 5 = 2y can be written using Σ_{PA} as

$$x + x + x + 1 + 1 + 1 + 1 + 1 = y + y$$

We can define > and \ge :

$$3x + 5 > 2y$$
 write as $\exists z. \ z \neq 0 \land 3x + 5 = 2y + z$
 $3x + 5 \ge 2y$ write as $\exists z. \ 3x + 5 = 2y + z$

Examples for valid formulae:

- Pythagorean Theorem is T_{PA} -valid $\exists x, y, z, x \neq 0 \land y \neq 0 \land z \neq 0 \land xx + yy = zz$
- Fermat's Last Theorem is T_{PA} -valid (Andrew Wiles, 1994) $\forall n. \, n > 2 \rightarrow \neg \exists x, y, z. \, x \neq 0 \land y \neq 0 \land z \neq 0 \land x^n + y^n = z^n$

In Fermat's theorem we used x^n , which is not a valid term in Σ_{PA} . However, there is the Σ_{PA} -formula EXP[x, n, r] with

$$EXP[x, n, r] : \exists d, m. \ (\exists z. \ d = (m+1)z+1) \land (\forall i, r_1. \ i < n \land r_1 < m \land (\exists z. \ d = ((i+1)m+1)z+r_1) \rightarrow r_1x < m \land (\exists z. \ d = ((i+2)m+1)z+r_1 \cdot x)) \land r < m \land (\exists z. \ d = ((n+1)m+1)z+r)$$

Fermat's theorem can be stated as:

$$\forall n. \ n > 2 \rightarrow \neg \exists x, y, z, rx, ry. \ x \neq 0 \land y \neq 0 \land z \neq 0 \land EXP[x, n, rx] \land EXP[y, n, ry] \land EXP[z, n, rx + ry]$$

Decidability of Peano Arithmetic

Gödel showed that for every recursive function $f:\mathbb{N}^n\to\mathbb{N}$ there is a Σ_{PA} -formula $F[x_1,\ldots,x_n,r]$ with

$$F[x_1,\ldots,x_n,r]\leftrightarrow r=f(x_1,\ldots,x_n)$$

 T_{PA} is undecidable. (Gödel, Turing, Post, Church)

The quantifier-free fragment of T_{PA} is undecidable. (Mativasevich, 1970)

Remark: Gödel's first incompleteness theorem

Peano arithmetic T_{PA} does not capture true arithmetic:

There exist closed Σ_{PA} -formulae representing valid propositions of number theory that are not T_{PA} -valid.

The reason: T_{PA} actually admits nonstandard interpretations

For decidability: no multiplication

Presburger Arithmetic $T_{\mathbb{N}}$

Signature: $\Sigma_{\mathbb{N}}$: $\{0, 1, +, =\}$ no multiplication!

Axioms of $T_{\mathbb{N}}$: axioms of T_E ,

①
$$\forall x$$
. $\neg(x + 1 = 0)$

②
$$\forall x, y. \ x + 1 = y + 1 \rightarrow x = y$$

$$\forall x, y, x + (y + 1) = (x + y) + 1$$

3 is an axiom schema.

 \bigcirc $\forall x. x + 0 = x$

 $T_{\mathbb{N}}$ -satisfiability and $T_{\mathbb{N}}$ -validity are decidable. (Presburger 1929)

Theory of Integers $T_{\mathbb{Z}}$

Signature: $\Sigma_{\mathbb{Z}}$: $\{\ldots, -2, -1, 0, 1, 2, \ldots, -3\cdot, -2\cdot, 2\cdot, 3\cdot, \ldots, +, -, =, >\}$

where

- ..., -2, -1, 0, 1, 2, ... are constants
- \bullet ..., $-3\cdot$, $-2\cdot$, $2\cdot$, $3\cdot$, ... are unary functions (intended meaning: $2 \cdot x$ is x + x)
- \bullet +, -, =, > have the usual meanings.

Relation between $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$

 $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$ have the same expressiveness:

- For every $\Sigma_{\mathbb{Z}}$ -formula there is an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula.
- For every $\Sigma_{\mathbb{N}}$ -formula there is an equisatisfiable $\Sigma_{\mathbb{Z}}$ -formula.

 $\Sigma_{\mathbb{Z}}$ -formula F and $\Sigma_{\mathbb{N}}$ -formula G are equisatisfiable iff:

F is $T_{\mathbb{Z}}$ -satisfiable iff G is $T_{\mathbb{N}}$ -satisfiable

Consider the $\Sigma_{\mathbb{Z}}$ -formula

$$F_0: \forall w, x. \exists y, z. x + 2y - z - 7 > -3w + 4$$

Introduce two variables, v_p and v_n (range over the nonnegative integers) for each variable v (range over the integers) of F_0

$$F_{1}: \frac{\forall w_{p}, w_{n}, x_{p}, x_{n}. \exists y_{p}, y_{n}, z_{p}, z_{n}.}{(x_{p} - x_{n}) + 2(y_{p} - y_{n}) - (z_{p} - z_{n}) - 7 > -3(w_{p} - w_{n}) + 4}$$

Eliminate - by moving to the other side of >

$$F_2: \begin{array}{c} \forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n. \\ x_p + 2y_p + z_n + 3w_p > x_n + 2y_n + z_p + 7 + 3w_n + 4 \end{array}$$

Eliminate > and numbers:

which is a $\Sigma_{\mathbb{N}}$ -formula equisatisfiable to F_0 .

Example: The $\Sigma_{\mathbb{N}}$ -formula

$$\forall x. \ \exists y. \ x = y + 1$$

is equisatisfiable to the $\Sigma_{\mathbb{Z}}$ -formula:

$$\forall x. \ x > -1 \rightarrow \exists y. \ y > -1 \land x = y + 1.$$

To decide $T_{\mathbb{Z}}$ -validity for a $\Sigma_{\mathbb{Z}}$ -formula F:

- ullet transform $\neg F$ to an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula $\neg G$,
- decide $T_{\mathbb{N}}$ -validity of G.

Rationals and Reals

$$\Sigma = \{0, 1, +, -, \cdot, =, \geq\}$$

ullet Theory of Reals $\mathcal{T}_{\mathbb{R}}$ (with multiplication)

$$x \cdot x = 2 \quad \Rightarrow \quad x = \pm \sqrt{2}$$

ullet Theory of Rationals $T_{\mathbb{Q}}$ (no multiplication)

$$\underbrace{2x}_{x+x} = 7 \quad \Rightarrow \quad x = \frac{2}{7}$$

Note: Strict inequality

$$\forall x, y. \exists z. x + y > z$$

can be expressed as

$$\forall x, y. \exists z. \neg (x + y = z) \land x + y \geq z$$

Theory of Reals $T_{\mathbb{R}}$

FREIBURG

Signature: $\Sigma_{\mathbb{R}}$: $\{0, 1, +, -, \cdot, =, \geq\}$ with multiplication.

Axioms of $T_{\mathbb{R}}$: axioms of T_E ,

3
$$\forall x. \ x + 0 = x$$

3
$$\forall x. \ x + (-x) = 0$$

$$$\forall x, y, x \cdot y = y \cdot x$$$

$$\bigcirc$$
 $\forall x. \ x \cdot 1 = x$

$$\bigcirc$$
 $\forall x, y, z. \ x \cdot (y + z) = x \cdot y + x \cdot z$

$$0 \neq 1$$

$$\forall x_0, \ldots, x_{n-1}. \ \exists y. \ y^n + x_{n-1}y^{n-1} \cdots + x_1y + x_0 = 0$$

(+ associativity) (+ commutativity) (+ identity)

(+ inverse)
(· associativity)

(· commutativity) (· identity)

(· inverse)
(distributivity)

(separate identies)

(antisymmetry) (transitivity) (totality)

(+ ordered)

(· ordered) (square root)

(-4----)

(at least one root)

Example

 $F: \forall a, b, c. \ b^2 - 4ac \ge 0 \leftrightarrow \exists x. \ ax^2 + bx + c = 0 \text{ is } T_{\mathbb{R}}\text{-valid.}$

As usual: x^2 abbreviates $x \cdot x$, we omit \cdot , e.g. in 4ac,

4 abbreviate 1+1+1+1 and a-b abbreviates a+(-b).

- 1. $I \not\models F$
- 2. $I \models \exists y. bb 4ac = y^2 \lor bb 4ac = -y^2$
- 3. $I \models d^2 = bb 4ac \lor d^2 = -(bb 4ac)$
- 4. $I \models d \geq 0 \vee 0 \geq d$
- 5. $I \models d^2 \geq 0$
- 6. $I \models 2a \cdot e = 1$
- 7a. $I \models bb 4ac \ge 0$
- 8a. $I \not\models \exists x.axx + bx + c = 0$
- 9a. $I \not\models a((-b+d)e)^2 + b(-b+d)e + c = 0$
- 10a. $I \not\models ab^2e^2 2abde^2 + ad^2e^2 b^2e + bde + c = 0$
- 11a. $I \models dd = bb 4ac$
- 12a. $I \not\models ab^2e^2 bde + a(b^2 4ac)e^2 b^2e + bde + c = 0$
- 13*a*. $I \not\models 0 = 0$
- 14a. $I \models \bot$

assumption

square root, \forall

- 2, ∃
 - \geq total
 - 4, case distinction, · ordered
 - \cdot inverse, \forall , \exists
 - $1,\leftrightarrow$
 - 1, \leftrightarrow
- 8a, ∃

distributivity

- 3, 5, 7a
- 6, 11a, congruence
- 3, distributivity, inverse
- 13a, reflexivity

Example

 $F: \forall a, b, c. \ bb - 4ac \ge 0 \leftrightarrow \exists x. \ axx + bx + c = 0 \text{ is } T_{\mathbb{R}}\text{-valid.}$

As usual: x^2 abbreviates $x \cdot x$, we omit \cdot , e.g., in 4ac,

4 abbreviate 1 + 1 + 1 + 1 and a - b abbreviates a + (-b).

1.
$$I \not\models F$$

2.
$$I \models \exists y. \ bb - 4ac = y^2 \lor bb - 4ac = -y^2$$

3.
$$I \models d^2 = bb - 4ac \lor d^2 = -(bb - 4ac)$$

4.
$$I \models d \geq 0 \lor 0 \geq d$$

5.
$$I \models d^2 \geq 0$$

6.
$$I \models 2a \cdot e = 1$$

7*b*.
$$I \not\models bb - 4ac > 0$$

8b.
$$I \models \exists x.axx + bx + c = 0$$

9b.
$$I \models aff + bf + c = 0$$

9b.
$$I = aII + bI + c = 0$$

10b.
$$I \models (2af + b)^2 = bb - 4ac$$

11b.
$$I \models (2af + b)^2 \geq 0$$

12*b*.
$$I \models bb - 4ac \ge 0$$

13*b*.
$$I \models \bot$$

assumption

square root, \forall

2, ∃

 \geq total

4, case distinction, · ordered

$$1$$
, \leftrightarrow

$$1$$
, \leftrightarrow

field axioms, T_E analogous to 5

10b, 11b, equivalence

12b, 7b

Decidability of $T_{\mathbb{R}}$

 $T_{\mathbb{R}}$ is decidable (Tarski, 1930)

High time complexity: $O(2^{2^{kn}})$

Theory of Rationals $T_{\mathbb{O}}$

FREIBURG

Signature: $\Sigma_{\mathbb{Q}}$: $\{0, 1, +, -, =, \geq\}$ no multiplication! Axioms of $T_{\mathbb{Q}}$: axioms of $T_{\mathcal{E}}$,

3
$$\forall x. \ x + 0 = x$$

$$0 1 > 0 \land 1 \neq 0$$

• For every positive integer
$$n$$
:

$$\forall x. \; \exists y. \; x = \underbrace{y + \cdots + y}_{n}$$

(+ associativity)

(+ commutativity) (+ identity)

(+ inverse)
(one)

(antisymmetry)

antisymmetry)
(transitivity)

(totality)

(+ ordered)

(divisible)

Rational coefficients are simple to express in $T_{\mathbb{Q}}$

Example: Rewrite

$$\frac{1}{2}x + \frac{2}{3}y \ge 4$$

as the $\Sigma_{\mathbb{Q}}$ -formula

$$x + x + x + y + y + y + y \ge \underbrace{1 + 1 + \dots + 1}_{24}$$

 $T_{\mathbb{Q}}$ is decidable

Efficient algorithm for quantifier free fragment

- Data Structures are tuples of variables.
 Like struct in C, record in Pascal.
- In Recursive Data Structures, one of the tuple elements can be the data structure again.
 I inked lists or trees.

$$\Sigma_{cons}$$
: {cons, car, cdr, atom, =}

where

$$cons(a, b)$$
 – list constructed by adding a in front of list b $car(x)$ – left projector of x : $car(cons(a, b)) = a$ $cdr(x)$ – right projector of x : $cdr(cons(a, b)) = b$ atom(x) – true iff x is a single-element list

Axioms: The axioms of A_{T_F} plus

- $\forall x, y$. car(cons(x, y)) = x
- $\forall x, y. \operatorname{cdr}(\operatorname{cons}(x, y)) = y$
- $\forall x. \neg atom(x) \rightarrow cons(car(x), cdr(x)) = x$
- $\forall x, y. \neg atom(cons(x, y))$

(left projection)

(right projection)

(construction)

(atom)

Axioms of Theory of Lists T_{cons}

- The axioms of reflexivity, symmetry, and transitivity of =
- Congruence axioms

$$\forall x_1, x_2, y_1, y_2. \ x_1 = x_2 \land y_1 = y_2 \to cons(x_1, y_1) = cons(x_2, y_2)$$

 $\forall x, y. \ x = y \to car(x) = car(y)$
 $\forall x, y. \ x = y \to cdr(x) = cdr(y)$

Equivalence axiom

$$\forall x, y. \ x = y \rightarrow (atom(x) \leftrightarrow atom(y))$$

(left projection)

(construction)

(right projection)

(atom)

Decidability of T_{cons}

 $T_{\rm cons}$ is undecidable Quantifier-free fragment of $T_{\rm cons}$ is efficiently decidable

Example: T_{cons} -Validity

We argue that the following Σ_{cons} -formula F is T_{cons} -valid:

$$F: \begin{array}{c} \mathsf{car}(a) = \mathsf{car}(b) \land \mathsf{cdr}(a) = \mathsf{cdr}(b) \land \neg \mathsf{atom}(a) \land \neg \mathsf{atom}(b) \\ \rightarrow a = b \end{array}$$

1.
$$I \not\models F$$

2.
$$I \models car(a) = car(b)$$

3.
$$I \models \operatorname{cdr}(a) = \operatorname{cdr}(b)$$

4.
$$I \models \neg atom(a)$$

5.
$$I \models \neg atom(b)$$

6.
$$I \not\models a = b$$

8.
$$I \models cons(car(a), cdr(a)) = a$$

8.
$$I \models cons(car(a), cdr(a)) = a$$

9.
$$I \models cons(car(b), cdr(b)) = b$$

10.
$$I \models a = b$$

assumption

$$1$$
, $ightarrow$, \wedge

$$1$$
, $ightarrow$, $ightarrow$

$$1$$
, $ightarrow$, $ightarrow$

$$1$$
, $ightarrow$, \wedge

$$1$$
, $ightarrow$

$$I \models cons(car(a), cdr(a)) = cons(car(b), cdr(b))$$
 2, 3, (congruence)

Theory of Arrays T_A

Signature: Σ_A : $\{\cdot[\cdot], \cdot \langle \cdot \triangleleft \cdot \rangle, =\}$, where

- a[i] binary function –
 read array a at index i ("read(a,i)")
- $a\langle i \triangleleft v \rangle$ ternary function write value v to index i of array a ("write(a,i,e)")

Axioms

- lacktriangledown the axioms of (reflexivity), (symmetry), and (transitivity) of T_{E}

(array congruence)

(read-over-write 1)

Equality in T_A

Note: = is only defined for array elements

$$a[i] = e \rightarrow a\langle i \triangleleft e \rangle = a$$

not T_A -valid, but

$$a[i] = e \rightarrow \forall j. \ a\langle i \triangleleft e \rangle [j] = a[j] ,$$

is T_A -valid.

Also

$$a = b \rightarrow a[i] = b[i]$$

is not T_A -valid: We only axiomatized a restricted congruence.

 T_{A} is undecidable

Quantifier-free fragment of T_A is decidable

Signature and axioms of $T_{\mathsf{A}}^{=}$ are the same as T_{A} , with one additional axiom

$$\forall a, b. \ (\forall i. \ a[i] = b[i]) \leftrightarrow a = b \ \ (extensionality)$$

Example:

$$F: a[i] = e \rightarrow a\langle i \triangleleft e \rangle = a$$

is $T_{\Delta}^{=}$ -valid.

 $T_A^=$ is undecidable Quantifier-free fragment of $T_A^=$ is decidable

Combination of Theories

How do we show that

$$1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$$

is $(T_{\mathsf{E}} \cup T_{\mathbb{Z}})$ -unsatisfiable?

Or how do we prove properties about an array of integers, or a list of reals . . . ?

Given theories T_1 and T_2 such that

$$\Sigma_1 \cap \Sigma_2 = \{=\}$$

The combined theory $T_1 \cup T_2$ has

- ullet signature $\Sigma_1 \ \cup \ \Sigma_2$
- axioms $A_1 \cup A_2$

qff = quantifier-free fragment

Nelson & Oppen showed that

if satisfiability of qff of T_1 is decidable, satisfiability of qff of T_2 is decidable, and certain technical requirements are met then satisfiability of qff of $T_1 \cup T_2$ is decidable.

 $T_{\text{cons}}^{=}: T_{\text{E}} \cup T_{\text{cons}}$

Signature: $\Sigma_{\mathsf{E}} \cup \Sigma_{\mathsf{cons}}$

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of T_E and T_{cons}

 $T_{\text{cons}}^{=}$ is undecidable Quantifier-free fragment of $T_{\text{cons}}^{=}$ is efficiently decidable

We argue that the following $\Sigma_{\text{cons}}^{=}$ -formula F is $T_{\text{cons}}^{=}$ -valid:

$$F: \begin{array}{c} \mathsf{car}(a) = \mathsf{car}(b) \land \mathsf{cdr}(a) = \mathsf{cdr}(b) \land \neg \mathsf{atom}(a) \land \neg \mathsf{atom}(b) \\ \rightarrow f(a) = f(b) \end{array}$$

1.
$$I \not\models F$$
 assumption

2.
$$I \models car(a) = car(b)$$
 1, \rightarrow , \land

3.
$$I \models \operatorname{cdr}(a) = \operatorname{cdr}(b)$$
 1, \rightarrow , \land 4. $I \models \neg \operatorname{atom}(a)$ 1. \rightarrow . \land

4.
$$I \models \neg atom(a)$$
 1, \rightarrow , /

5.
$$I \models \neg atom(b)$$
 1, \rightarrow , \land 6. $I \not\models f(a) = f(b)$ 1, \rightarrow

7.
$$I \models cons(car(a), cdr(a)) = cons(car(b), cdr(b))$$
 2. 3. (congruence)

8.
$$I \models cons(car(a), cdr(a)) = a$$
 4, (construction)

8.
$$I \models cons(car(a), cdr(a)) = a$$
 4, (construction)

9.
$$I \models cons(car(b), cdr(b)) = b$$
 5, (construction)

10.
$$I \models a = b$$
 7, 8, 9, (transitivity)

11.
$$I \models f(a) = f(b)$$
 10, (congruence)

First-Order Theories

	Theory	Decidable	QFF Dec.
T_E	Equality	_	✓
T_{PA}	Peano Arithmetic	_	_
$\mathcal{T}_{\mathbb{N}}$	Presburger Arithmetic	\checkmark	✓
$\mathcal{T}_{\mathbb{Z}}$	Linear Integer Arithmetic	✓	✓
$\mathcal{T}_{\mathbb{R}}$	Real Arithmetic	\checkmark	✓
$\mathcal{T}_{\mathbb{Q}}$	Linear Rationals	✓	✓
T_{cons}	Lists	_	✓
$T_{cons}^{=}$	Lists with Equality	_	✓
T_{A}	Arrays	_	\checkmark
$T_{A}^{=}$	Arrays with Extensionality	_	✓