Decision Procedures

Jochen Hoenicke

Software Engineering Albert-Ludwigs-University Freiburg

Summer 2013

Jochen Hoenicke (Software Engineering)

Decision Procedures

Suppose we have a $T_{\mathbb{Q}}$ -formulae that is not conjunctive:

$$(x \ge 0 \rightarrow y > z) \land (x + y \ge z \rightarrow y \le z) \land (y \ge 0 \rightarrow x \ge 0) \land x + y \ge z$$

Our approach so far: Converting to DNF. Yields in 8 conjuncts that have to be checked separately.

Is there a more efficient way to prove unsatisfiability?

CNF and Propositional Core

Suppose we have the following $T_{\mathbb{Q}}$ -formulae:

$$(x \ge 0 \rightarrow y > z) \land (x + y \ge z \rightarrow y \le z) \land (y \ge 0 \rightarrow x \ge 0) \land x + y \ge z$$

Converting to CNF and restricting to \leq :

$$(\neg (0 \le x) \lor \neg (y \le z)) \land (\neg (z \le x + y) \lor (y \le z)) \land (\neg (0 \le y) \lor (0 \le x)) \land (z \le x + y)$$

Now, introduce boolean variables for each atom:

$$P_1: 0 \le x$$
 $P_2: y \le z$
 $P_3: z \le x + y$
 $P_4: 0 \le y$

Gives a propositional formula:

$$(\neg P_1 \lor \neg P_2) \land (\neg P_3 \lor P_2) \land (\neg P_4 \lor P_1) \land P_3$$

FREIBURG

The core feature of the DPLL-algorithm is Unit Propagation.

$$(\neg P_1 \lor \neg P_2) \land (\neg P_3 \lor P_2) \land (\neg P_4 \lor P_1) \land P_3$$

The clause P_3 is a unit clause; set P_3 to \top . Then $\neg P_3 \lor P_2$ is a unit clause; set P_2 to \top . Then $\neg P_1 \lor \neg P_2$ is a unit clause; set P_1 to \bot . Then $\neg P_4 \lor P_1$ is a unit clause; set P_4 to \bot .

Only solution is $P_3 \wedge P_2 \wedge \neg P_1 \wedge \neg P_4$.

DPLL-Algorithm

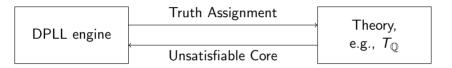
Only solution is $P_3 \wedge P_2 \wedge \neg P_1 \wedge \neg P_4$.

$$P_1 : 0 \le x$$
 $P_2 : y \le z$
 $P_3 : z \le x + y$
 $P_4 : 0 \le y$

This gives the conjunctive $T_{\mathbb{Q}}$ -formula

$$z \leq x + y \wedge y \leq z \wedge x < 0 \wedge y < 0.$$

The DPLL/CDCL algorithm is combined with a Decision Procedures for a Theory



DPLL takes the propositional core of a formula, assigns truth-values to atoms.

Theory takes a conjunctive formula (conjunction of literals), returns a minimal unsatisfiable core.

Suppose we have a decision procedure for a conjunctive theory, e.g., Simplex Algorithm for $T_{\mathbb{Q}}$.

Given an unsatisfiable conjunction of literals $\ell_1 \wedge \cdots \wedge \ell_n$. Find a subset UnsatCore = $\{\ell_{i_1}, \ldots, \ell_{i_m}\}$, such that

- $\ell_{i_1} \wedge \ldots \wedge \ell_{i_m}$ is unsatisfiable.
- For each subset of UnsatCore the conjunction is satisfiable.

Possible approach: check for each literal whether it can be omitted. $\longrightarrow n$ calls to decision procedure.

Most decision procedures can give small unsatisfiable cores for free.

Theory returns an unsatisfiable core:

- a conjunction of literals from current truth assignment
- that is unsatisfible.

DPLL learns conflict clauses, a disjunction of literals

- that are implied by the formula
- and in conflict to current truth assignment.

Thus the negation of an unsatisfiable core is a conflict clause.

We describe DPLL(T) by a set of rules modifying a configuration. A configuration is a triple

$$\langle M, F, C \rangle$$
,

where

- *M* (model) is a sequence of literals (that are currently set to true) interspersed with backtracking points denoted by □.
- *F* (formula) is a formula in CNF, i.e., a set of clauses where each clause is a set of literals.
- C (conflict) is either \top or a conflict clause (a set of literals). A conflict clause C is a clause with $F \Rightarrow C$ and $M \not\models C$. Thus, a conflict clause shows $M \not\models F$.

Rules for CDCL (Conflict Driven Clause Learning)

Decide
$$\frac{\langle M, F, \top \rangle}{\langle M \cdot \Box \cdot \ell, F, \top \rangle}$$

Propagate
$$\frac{\langle M, F, \top \rangle}{\langle M \cdot \ell, F, \top \rangle}$$

Conflict
$$\frac{\langle M, F, \top \rangle}{\langle M, F, \{\ell_1, \dots, \ell_k\} \rangle}$$

Explain
$$\frac{\langle M, F, C \cup \{\ell\} \rangle}{\langle M, F, C \cup \{\ell_1, \dots, \ell_k\} \rangle}$$

Learn
$$\frac{\langle M, F, C \rangle}{\langle M, F \cup \{C\}, C \rangle}$$

Back
$$\frac{\langle M, F, \{\ell_1, \dots, \ell_k, \ell\} \rangle}{\langle M' \cdot \ell, F, \top \rangle}$$

where $\ell \in lit(F)$, $\ell, \overline{\ell}$ in M

where $\{\ell_1, \ldots, \ell_k, \ell\} \in F$ and $\bar{\ell_1}, \ldots, \bar{\ell_k}$ in $M, \ell, \bar{\ell}$ in M.

where $\{\ell_1, \ldots, \ell_k\} \in F$ and $\bar{\ell_1}, \ldots, \bar{\ell_k}$ in M.

where $\ell \notin C$, $\{\ell_1, \ldots, \ell_k, \bar{\ell}\} \in F$, $\overline{k}\rangle$ and $\overline{\ell_1}, \ldots, \overline{\ell_k} \prec \overline{\ell}$ in M.

where $C \neq \top$, $C \notin F$.

where
$$\{\ell_1, \ldots, \ell_k, \ell\} \in F$$
,
 $M = M' \cdot \Box \cdots \overline{\ell} \cdots$,
and $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in M' .

Jochen Hoenicke (Software Engineering)

P

The DPLL part only needs one new rule:

TConflict $\frac{\langle M, F, \top \rangle}{\langle M, F, C \rangle}$ where *M* is unsatisfiable in the theory and $\neg C$ an unsatisfiable core of *M*.

Example: DPLL(T)

$$F: y \ge 1 \land (x \ge 0 \rightarrow y \le 0) \land (x \le 1 \rightarrow y \le 0)$$

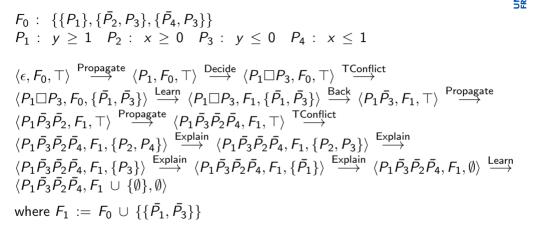
Atomic propositions:

 $\begin{array}{ll} P_1 : y \ge 1 & P_2 : x \ge 0 \\ P_3 : y \le 0 & P_4 : x \le 1 \end{array}$

Propositional core of F in CNF:

$$F_0 : (P_1) \land (\neg P_2 \lor P_3) \land (\neg P_4 \lor P_3)$$

Running DPLL(T)



No further step is possible; the formula F is unsatisfiable.

Correctness of DPLL(T)

Theorem (Correctness of DPLL(T))

Let F be a Σ -formula and F' its propositional core. Let

$$\langle \epsilon, F', \top \rangle = \langle M_0, F_0, C_0 \rangle \longrightarrow \ldots \longrightarrow \langle M_n, F_n, C_n \rangle$$

be a maximal sequence of rule application of DPLL(T). Then F is T-satisfiable iff C_n is \top .

Before proving the theorem, we note some important invariants:

- M_i never contains a literal more than once.
- M_i never contains ℓ and $\overline{\ell}$.
- Every \Box in M_i is followed immediately by a literal.
- If $C_i = \{\ell_1, \ldots, \ell_k\}$ then $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in M.
- C_i is always implied by F_i (or the theory).
- F is equivalent to F_i for all steps i of the computation.
- If a literal ℓ in M is not immediately preceded by \Box , then F contains a clause $\{\ell, \ell_1, \ldots, \ell_k\}$ and $\bar{\ell_1}, \ldots, \bar{\ell_k} \prec \ell$ in M.

Correctness proof

UNI FREIBURG **Proof:** If the sequence ends with $\langle M_n, F_n, \top \rangle$ and there is no rule applicable, then

- Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_n positively.
- Since TConflict is not applicable, the conjunction of truth assignments of M_n is satisfiable by a model I.

Thus, I is a model for F_n , which is equivalent to F.

If the sequence ends with $\langle M_n, F_n, C_n \rangle$ with $C_n \neq \top$. Assume $C_n = \{\ell_1, \ldots, \ell_k, \ell\} \neq \emptyset$. W.I.o.g., $\overline{\ell_1}, \ldots, \overline{\ell_k} \prec \ell$. Then:

- Since Learn is not applicable, $C_n \in F_n$.
- Since Explain is not applicable $\overline{\ell}$ must be immediately preceded by \Box .
- However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and $C_n = \emptyset (= \bot)$. Since F implies C_n , F is not satisfiable.

Jochen Hoenicke (Software Engineering)