Decision Procedures

Jochen Hoenicke

Summer 2013

Foundations: Propositional Logic

Syntax of Propositional Logic

Atom truth symbols T ("true") and \perp ("false") propositional variables $P, Q, R, P_{1}, Q_{1}, R_{1}, \cdots$
Literal atom α or its negation $\neg \alpha$
Formula literal or application of a
logical connective to formulae F, F_{1}, F_{2}

$\neg F$	"not"	(negation)
$\left(F_{1} \wedge F_{2}\right)$	"and"	(conjunction)
$\left(F_{1} \vee F_{2}\right)$	"or"	(disjunction)
$\left(F_{1} \rightarrow F_{2}\right)$	"implies"	(implication)
$\left(F_{1} \leftrightarrow F_{2}\right)$	"if and only if"	(iff)

Example: Syntax

formula $F:((P \wedge Q) \rightarrow(T \vee \neg Q))$
atoms: P, Q, \top
literal: $\neg Q$
subformulas: $(P \wedge Q), \quad(T \vee \neg Q)$
abbreviation

$$
F: P \wedge Q \rightarrow \top \vee \neg Q
$$

Semantics (meaning) of PL

Formula F and Interpretation I is evaluated to a truth value $0 / 1$ where 0 corresponds to value false

1 true

Interpretation I : $\{P \mapsto 1, Q \mapsto 0, \cdots\}$
Evaluation of logical operators:

F_{1}	F_{2}	$\neg F_{1}$	$F_{1} \wedge F_{2}$	$F_{1} \vee F_{2}$	$F_{1} \rightarrow F_{2}$	$F_{1} \leftrightarrow F_{2}$
0	0		0	0	1	1
0	1		0	1	1	0
1	0		0	1	0	0
1	1		1	1	1	1

Example: Semantics

$$
\begin{aligned}
& F: P \wedge Q \rightarrow P \vee \neg Q \\
& I:\{P \mapsto 1, Q \mapsto 0\}
\end{aligned}
$$

P	Q	$\neg Q$	$P \wedge Q$	$P \vee \neg Q$	F
1	0	1	0	1	1
$1=$ true					
$0=$ false					

F evaluates to true under I

Inductive Definition of PL's Semantics

$$
\begin{array}{ll}
I \models F & \text { if } F \text { evaluates to } \quad 1 / \text { true under } I \\
I \not \models F & 0 / \text { false }
\end{array}
$$

Base Case:

$$
\begin{array}{lll}
I \models T & \\
I \not \vDash \perp & & \\
I \not \models P & \text { iff } & I[P]=1 \\
I \not \models P & \text { iff } & I[P]=0
\end{array}
$$

Inductive Case:

$$
\begin{array}{ll}
I \models \neg F & \text { iff } I \not \models F \\
I \models F_{1} \wedge F_{2} & \text { iff } I \models F_{1} \text { and } I \models F_{2} \\
I \models F_{1} \vee F_{2} & \text { iff } I \models F_{1} \text { or } I \models F_{2} \\
I \models F_{1} \rightarrow F_{2} & \text { iff, if } I \models F_{1} \text { then } I \models F_{2} \\
I \models F_{1} \leftrightarrow F_{2} & \text { iff, } I \models F_{1} \text { and } I \models F_{2}, \\
& \text { or } I \not \models F_{1} \text { and } I \not \models F_{2}
\end{array}
$$

Example: Inductive Reasoning

$$
\begin{gathered}
F: P \wedge Q \rightarrow P \vee \neg Q \\
I:\{P \mapsto 1, Q \mapsto 0\}
\end{gathered}
$$

Thus, F is true under I.

Satisfiability and Validity

Definition (Satisfiability)
F is satisfiable iff there exists an interpretation $/$ such that $I \| F$.

Definition (Validity)

F is valid iff for all interpretations $I, I \models F$.

Note

F is valid iff $\neg F$ is unsatisfiable

Proof.

F is valid iff $\forall I: I \models F$ iff $\neg \exists I: I \not \models F$ iff $\neg F$ is unsatisfiable.
Decision Procedure: An algorithm for deciding validity or satisfiability.

Examples: Satisfiability and Validity

Now assume, you are a decision procedure.
Which of the following formulae is satisfiable, which is valid?

- $F_{1}: P \wedge Q$
- $F_{2}: \neg(P \wedge Q)$
- $F_{3}: P \vee \neg P$
- $F_{4}: \neg(P \vee \neg P)$
- $F_{5}:(P \rightarrow Q) \wedge(P \vee Q) \wedge \neg Q$ unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?

Method 1: Truth Tables

$$
F: P \wedge Q \rightarrow P \vee \neg Q
$$

$P Q$	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F
0	0	0	1	1
0	1			
0	1	0	0	0
1	0	0	1	1
1	1	1	0	1

Thus F is valid.

$$
F: P \vee Q \rightarrow P \wedge Q
$$

P	Q	$P \vee Q$	$P \wedge Q$	F
	0	0	0	1
0	1	1	0	0
1	0	1	0	0
1	1	1	1	1

Thus F is satisfiable, but invalid.

Method 2: Semantic Argument (Semantic Tableaux)

- Assume F is not valid and I a falsifying interpretation: $I \not \vDash F$
- Apply proof rules.
- If no contradiction reached and no more rules applicable, F is invalid.
- If in every branch of proof a contradiction reached, F is valid.

Semantic Argument: Proof rules

$$
\begin{aligned}
& \frac{l \models \neg F}{I \not \models F} \\
& \frac{l \not \models \neg F}{l \models F} \\
& \begin{array}{l}
I \models F \wedge G \\
I \models F \\
I \not \models G \quad \leftarrow \text { and }
\end{array} \\
& \\
& \frac{l \not \models F \vee G}{I \not \models F} \\
& I \not \vDash G \\
& \begin{array}{l}
I \models F \\
I \not \models F \\
I \models \perp
\end{array} \\
& \begin{array}{c}
I \models F \rightarrow G \\
\hline I \not \models F|\quad| \models G
\end{array} \\
& \frac{l \not \models F \rightarrow G}{l \models F} \\
& I \not \vDash G \\
& \frac{l \models F \leftrightarrow G}{I \models F \wedge G|\mid \vDash F \vee G} \quad \frac{l \not \models F \leftrightarrow G}{I \models F \wedge \neg G \mid l \models \neg F \wedge G}
\end{aligned}
$$

Example

Prove $\quad F: P \wedge Q \rightarrow P \vee \neg Q \quad$ is valid.

Let's assume that F is not valid and that I is a falsifying interpretation.

1.	$I \not \models P \wedge Q \rightarrow P \vee \neg Q$	
2. assumption		
3.	$I \not \models P \wedge Q$	
4. Rule \rightarrow		
4.	$I \not \models P \vee P$	1, Rule \rightarrow
5.	$I \not \models P$	2, Rule \wedge
6.	$I \not \models \perp$	3, Rule \vee
		4 and 5 are contradictory

Thus F is valid.

Example 2

Prove $\quad F:(P \rightarrow Q) \wedge(Q \rightarrow R) \rightarrow(P \rightarrow R) \quad$ is valid.
Let's assume that F is not valid.

Our assumption is incorrect in all cases - F is valid.

Example 3

Is $\quad F: P \vee Q \rightarrow P \wedge Q \quad$ valid?
Let's assume that F is not valid.

We cannot always derive a contradiction. F is not valid.
Falsifying interpretation:

We have to derive a contradiction in all cases for F to be valid.

Normal Forms

Idea: Simplify decision procedure, by simplifying the formula first.
Convert it into a simpler normal form, e.g.:

- Negation Normal Form: No \rightarrow and no \leftrightarrow; negation only before atoms.
- Conjunctive Normal Form: Negation normal form, where conjunction is outside, disjunction is inside.
- Disjunctive Normal Form: Negation normal form, where disjunction is outside, conjunction is inside.
The formula in normal form should be equivalent to the original input.

Equivalence

F_{1} and F_{2} are equivalent $\left(F_{1} \Leftrightarrow F_{2}\right)$ iff for all interpretations $I, I \models F_{1} \leftrightarrow F_{2}$

To prove $F_{1} \Leftrightarrow F_{2}$ show $F_{1} \leftrightarrow F_{2}$ is valid.
F_{1} implies $F_{2}\left(F_{1} \Rightarrow F_{2}\right)$
iff for all interpretations $I, I \models F_{1} \rightarrow F_{2}$
$F_{1} \Leftrightarrow F_{2}$ and $F_{1} \Rightarrow F_{2}$ are not formulae!

Equivalence is a Congruence relation

If $F_{1} \Leftrightarrow F_{1}^{\prime}$ and $F_{2} \Leftrightarrow F_{2}^{\prime}$, then

- $\neg F_{1} \Leftrightarrow \neg F_{1}^{\prime}$
- $F_{1} \vee F_{2} \Leftrightarrow F_{1}^{\prime} \vee F_{2}^{\prime}$
- $F_{1} \wedge F_{2} \Leftrightarrow F_{1}^{\prime} \wedge F_{2}^{\prime}$
- $F_{1} \rightarrow F_{2} \Leftrightarrow F_{1}^{\prime} \rightarrow F_{2}^{\prime}$
- $F_{1} \leftrightarrow F_{2} \Leftrightarrow F_{1}^{\prime} \leftrightarrow F_{2}^{\prime}$
- if we replace in a formula F a subformula F_{1} by F_{1}^{\prime} and obtain F^{\prime}, then $F \Leftrightarrow F^{\prime}$.

Negation Normal Form (NNF)

Negations appear only in literals. (only \neg, \wedge, \vee)
To transform F to equivalent F^{\prime} in NNF use recursively the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\neg \neg F_{1} \Leftrightarrow F_{1} \quad \neg \top \Leftrightarrow \perp \\
\neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2} \\
\neg\left(F_{1} \vee F_{2}\right) \Leftrightarrow \neg F_{1} \wedge \neg F_{2}
\end{array}\right\} \text { De Morgan's Law }
$$

Example: Negation Normal Form

Convert $F:\left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right)$ into NNF

$$
\begin{aligned}
& \left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right) \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right) \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(\neg \neg Q_{2} \vee R_{2}\right) \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(Q_{2} \vee R_{2}\right)
\end{aligned}
$$

The last formula is equivalent to F and is in NNF.

Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals

$$
\bigvee_{i} \bigwedge_{j} \ell_{i, j} \text { for literals } \ell_{i, j}
$$

To convert F into equivalent F^{\prime} in DNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\left(F_{1} \vee F_{2}\right) \wedge F_{3} \Leftrightarrow\left(F_{1} \wedge F_{3}\right) \vee\left(F_{2} \wedge F_{3}\right) \\
F_{1} \wedge\left(F_{2} \vee F_{3}\right) \Leftrightarrow\left(F_{1} \wedge F_{2}\right) \vee\left(F_{1} \wedge F_{3}\right)
\end{array}\right\} \text { dist }
$$

Example

Convert $F:\left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right)$ into DNF

$$
\begin{array}{rll}
& \left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right) & \text { in NNF } \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(Q_{2} \vee R_{2}\right) & \text { dist } \\
\Leftrightarrow & \left(Q_{1} \wedge\left(Q_{2} \vee R_{2}\right)\right) \vee\left(R_{1} \wedge\left(Q_{2} \vee R_{2}\right)\right) & \\
\Leftrightarrow & \left(Q_{1} \wedge Q_{2}\right) \vee\left(Q_{1} \wedge R_{2}\right) \vee\left(R_{1} \wedge Q_{2}\right) \vee\left(R_{1} \wedge R_{2}\right) & \text { dist }
\end{array}
$$

The last formula is equivalent to F and is in DNF. Note that formulas can grow exponentially.

Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals

$$
\bigwedge_{i} \bigvee_{j} \ell_{i, j} \text { for literals } \ell_{i, j}
$$

To convert F into equivalent F^{\prime} in CNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
\begin{aligned}
& \left(F_{1} \wedge F_{2}\right) \vee F_{3} \Leftrightarrow\left(F_{1} \vee F_{3}\right) \wedge\left(F_{2} \vee F_{3}\right) \\
& F_{1} \vee\left(F_{2} \wedge F_{3}\right) \Leftrightarrow\left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right)
\end{aligned}
$$

A disjunction of literals $P_{1} \vee P_{2} \vee \neg P_{3}$ is called a clause.
For brevity we write it as set: $\left\{P_{1}, P_{2}, \overline{P_{3}}\right\}$.
A formula in CNF is a set of clauses (a set of sets of literals).

Equisatisfiability

Definition (Equisatisfiability)

F and F^{\prime} are equisatisfiable, iff

$$
F \text { is satisfiable if and only if } F^{\prime} \text { is satisfiable }
$$

Every formula is equisatifiable to either T or \perp. There is a efficient conversion of F to F^{\prime} where

- F^{\prime} is in CNF and
- F and F^{\prime} are equisatisfiable

Note: efficient means polynomial in the size of F.

Conversion to CNF

Basic Idea:

- Introduce a new variable P_{G} for every subformula G; unless G is already an atom.
- For each subformula $G: G_{1} \circ G_{2}$ produce a small formula $P_{G} \leftrightarrow P_{G_{1}} \circ P_{G_{2}}$.
- encode each of these (small) formulae separately to CNF.

The formula

$$
P_{F} \wedge \bigwedge_{G} C N F\left(P_{G} \leftrightarrow P_{G_{1}} \circ P_{G_{2}}\right)
$$

is equisatisfiable to F.
The number of subformulae is linear in the size of F.
The time to convert one small formula is constant!

Example: CNF

Convert $F: P \vee Q \rightarrow P \wedge \neg R$ to CNF. Introduce new variables: $P_{F}, P_{P \vee Q}, P_{P \wedge \neg R}, P_{\neg R}$. Create new formulae and convert them to CNF separately:

- $P_{F} \leftrightarrow\left(P_{P \vee Q} \rightarrow P_{P \wedge \neg R}\right)$ in CNF:

$$
F_{1}:\left\{\left\{\overline{P_{F}}, \overline{P_{P \vee Q}}, P_{P \wedge \neg R}\right\},\left\{P_{F}, P_{P \vee Q}\right\},\left\{P_{F}, \overline{P_{P \wedge \neg R}}\right\}\right\}
$$

- $P_{P \vee Q} \leftrightarrow P \vee Q$ in CNF:

$$
F_{2}:\left\{\left\{\overline{P_{P \vee Q}}, P \vee Q\right\},\left\{P_{P \vee Q}, \bar{P}\right\},\left\{P_{P \vee Q}, \bar{Q}\right\}\right\}
$$

- $P_{P \wedge \neg R} \leftrightarrow P \wedge P_{\neg R}$ in CNF:

$$
F_{3}:\left\{\left\{\overline{P_{P \wedge \neg R}} \vee P\right\},\left\{\overline{P_{P \wedge \neg R}}, P_{\neg R}\right\},\left\{P_{P \wedge \neg R}, \bar{P}, \overline{P_{\neg R}}\right\}\right\}
$$

- $P_{\neg R} \leftrightarrow \neg R$ in CNF: $F_{4}:\left\{\left\{\overline{P_{\neg R}}, \bar{R}\right\},\left\{P_{\neg R}, R\right\}\right\}$ $\left\{\left\{P_{F}\right\}\right\} \cup F_{1} \cup F_{2} \cup F_{3} \cup F_{4}$ is in CNF and equisatisfiable to F.

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

- Algorithm to decide PL formulae in CNF.
- Published by Davis, Logemann, Loveland (1962).
- Often miscited as Davis, Putnam (1960), which describes a different algorithm.

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

```
let rec \(\operatorname{DPLL} F=\)
    let \(F^{\prime}=\operatorname{PROP} F\) in
    let \(F^{\prime \prime}=\operatorname{PLP} F^{\prime}\) in
    if \(F^{\prime \prime}=\top\) then true
    else if \(F^{\prime \prime}=\perp\) then false
    else
        let \(P=\) Choose vars \(\left(F^{\prime \prime}\right)\) in
        \(\left(\operatorname{DPLL} F^{\prime \prime}\{P \mapsto \top\}\right) \vee\left(\operatorname{DPLL} F^{\prime \prime}\{P \mapsto \perp\}\right)\)
```


Unit Propagagion

Unit Propagation (PROP)
If a clause contains one literal ℓ,

- Set ℓ to T.
- Remove all clauses containing ℓ.
- Remove $\neg \ell$ in all clauses.

Based on resolution

$$
\frac{\ell \quad \neg \vee C}{C} \leftarrow \text { clause }
$$

Pure Literal Propagagion

Pure Literal Propagation (PLP)
If P occurs only positive (without negation), set it to T. If P occurs only negative set it to \perp.

Example

$$
F:(\neg P \vee Q \vee R) \wedge(\neg Q \vee R) \wedge(\neg Q \vee \neg R) \wedge(P \vee \neg Q \vee \neg R)
$$

Branching on Q

$$
F\{Q \mapsto \top\}:(R) \wedge(\neg R) \wedge(P \vee \neg R)
$$

By unit resolution

$$
\frac{R \quad(\neg R)}{\perp}
$$

$$
F\{Q \mapsto \top\}=\perp \Rightarrow \text { false }
$$

On the other branch

$$
\begin{aligned}
& F\{Q \mapsto \perp\}:(\neg P \vee R) \\
& F\{Q \mapsto \perp, R \stackrel{\top}{\mapsto} P \mapsto \perp\}=\top \Rightarrow \text { true }
\end{aligned}
$$

F is satisfiable with satisfying interpretation

$$
\text { I : \{P } \mapsto \text { false, } Q \mapsto \text { false, } R \mapsto \text { true }\}
$$

Example

Knight and Knaves

A island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You meet four inhabitants: Alice, Bob, Charles and Doris.

- Alice says that Doris is a knave.
- Bob tells you that Alice is a knave.
- Charles claims that Alice is a knave.
- Doris tells you, 'Of Charles and Bob, exactly one is a knight.'

Knight and Knaves

Let A denote that Alice is a Knight, etc. Then:

- $A \leftrightarrow \neg D$
- $B \leftrightarrow \neg A$
- $C \leftrightarrow \neg A$
- $D \leftrightarrow \neg(C \leftrightarrow B)$

In CNF:

- $\{\bar{A}, \bar{D}\},\{A, D\}$
- $\{\bar{B}, \bar{A}\},\{B, A\}$
- $\{\bar{C}, \bar{A}\},\{C, A\}$
- $\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}$

Solving Knights and Knaves

$$
\begin{array}{r}
F:\{\{\bar{A}, \bar{D}\},\{A, D\},\{\bar{B}, \bar{A}\},\{B, A\},\{\bar{C}, \bar{A}\},\{C, A\}, \\
\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}\}
\end{array}
$$

PROP and PLP are not applicable. Decide on A :

$$
F\{A \mapsto \perp\}:\{\{D\},\{B\},\{C\},\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}\}
$$

Prop yields $F\{A \mapsto \perp, D \mapsto \top, B \mapsto \top, C \mapsto \top\}: \perp$ Unsatisfiable! Now set A to T :

$$
F\{A \mapsto T\}:\{\{\bar{D}\},\{\bar{B}\},\{\bar{C}\},\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}\}
$$

Prop yields $F\{A \mapsto T, D \mapsto \perp, B \mapsto \perp, C \mapsto \perp\}: \top$ Satisfying assignment!

Learning is Useful

Consider the following problem:

$$
\begin{array}{r}
\left\{\left\{A_{1}, B_{1}\right\},\left\{\overline{P_{0}}, \overline{A_{1}}, P_{1}\right\},\left\{\overline{P_{0}}, \overline{B_{1}}, P_{1}\right\},\left\{A_{2}, B_{2}\right\},\left\{\overline{P_{1}}, \overline{A_{2}}, P_{2}\right\},\left\{\overline{P_{1}}, \overline{B_{2}}, P_{2}\right\},\right. \\
\left.\ldots,\left\{A_{n}, B_{n}\right\},\left\{\overline{P_{n-1}}, \overline{A_{n}}, P_{n}\right\},\left\{\overline{P_{n-1}}, \overline{B_{n}}, P_{n}\right\},\left\{P_{0}\right\},\left\{\overline{P_{n}}\right\}\right\}
\end{array}
$$

For some literal orderings, we need exponentially many steps.
Note, that

$$
\left\{\left\{A_{i}, B_{i}\right\},\left\{\overline{P_{i-1}}, \overline{A_{i}}, P_{i}\right\},\left\{\overline{P_{i-1}}, \overline{B_{i}}, P_{i}\right\}\right\} \Rightarrow\left\{\left\{\overline{P_{i-1}}, P_{i}\right\}\right\}
$$

If we learn the right clauses, unit propagation will immediately give unsatisfiable.

Partial Assignments and Unit/Conflict Clauses

Instead of changing clause set, only remember the literal assignment. When you assign true to a literal ℓ, also assign false to $\bar{\ell}$.
For a partial assignment

- A clause is true if one of its literals is assigned true.
- A clause is a conflict clause if all its literals are assigned false.
- A clause is a unit clause if all but one literals are assigned false and the last literal is unassigned.
If the assignment of a literal from a conflict clause is removed we get a unit clause. Explain unsatisfiability of partial assignment by conflict clause and learn it!

Conflict Driven Clause Learning (CDCL)

Idea: Explain unsatisfiability of partial assignment by conflict clause and learn it!

- If a conflict is found we return the conflict clause.
- If variable in conflict were derived by unit propagation use resolution rule to generate a new conflict clause.
- If variable in conflict was derived by decision, use learned conflict as unit clause

DPLL with Learning (CDCL)

We describe DPLL by a set of rules modifying a configuration.
A configuration is a triple

$$
\langle M, F, C\rangle,
$$

where

- M (model) is a sequence of literals (that are currently set to true) interspersed with backtracking points denoted by \square.
- F (formula) is a formula in CNF,
i. e., a set of clauses where each clause is a set of literals.
- C (conflict) is either T or a conflict clause (a set of literals).

A conflict clause C is a clause with $F \Rightarrow C$ and $M \not \vDash C$. Thus, a conflict clause shows $M \not \vDash F$.

Rule Based Description

We describe the algorithm by a set of rules, which each describe a set of transitions between configurations, e.g.,
Explain $\frac{\langle M, F, C \cup\{\ell\}\rangle}{\left\langle M, F, C \cup\left\{\ell_{1}, \ldots, \ell_{k}\right\}\right\rangle} \quad \begin{array}{ll}\text { where } \ell \notin C,\left\{\ell_{1}, \ldots, \ell_{k}, \bar{\ell}\right\} \in F, \\ \text { and } \overline{\ell_{1}}, \ldots, \overline{\ell_{k}} \prec \bar{\ell} \text { in } M .\end{array}$
Here, $\bar{\ell}_{1}, \ldots, \bar{\ell}_{k} \prec \ell$ in M means the literals $\bar{\ell}_{1}, \ldots, \bar{\ell}_{k}$ occur in the sequence M before the literal ℓ (and all literals appear in M).

Example: for $M=P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F=\left\{\left\{P_{1}\right\},\left\{P_{3}, \bar{P}_{4}\right\}\right\}$, and $C=\left\{P_{2}\right\}$ the transition

$$
\left\langle M, F,\left\{P_{2}, P_{4}\right\}\right\rangle \longrightarrow\left\langle M, F,\left\{P_{2}, P_{3}\right\}\right\rangle
$$

is possible.

Rules for CDCL (Conflict Driven Clause Learning)

Decide $\frac{\langle M, F, T\rangle}{\langle M \cdot \square \cdot \ell, F, T\rangle}$
Propagate $\frac{\langle M, F, T\rangle}{\langle M \cdot \ell, F, T\rangle}$
Conflict $\frac{\langle M, F, \top\rangle}{\left\langle M, F,\left\{\ell_{1}, \ldots, \ell_{k}\right\}\right\rangle}$
Explain $\frac{\langle M, F, C \cup\{\ell\}\rangle}{\left\langle M, F, C \cup\left\{\ell_{1}, \ldots, \ell_{k}\right\}\right\rangle}$
where $\ell \notin C,\left\{\ell_{1}, \ldots, \ell_{k}, \bar{\ell}\right\} \in F$, and $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}} \prec \bar{\ell}$ in M.
Learn $\frac{\langle M, F, C\rangle}{\langle M, F \cup\{C\}, C\rangle}$
Back $\frac{\left\langle M, F,\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\}\right\rangle}{\left\langle M^{\prime} \cdot \ell, F, T\right\rangle}$
where $\ell \in \operatorname{lit}(F), \ell, \bar{\ell}$ in M
where $\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\} \in F$ and $\bar{\ell}_{1}, \ldots, \bar{\ell}_{k}$ in $M, \ell, \bar{\ell}$ in M.
where $\left\{\ell_{1}, \ldots, \ell_{k}\right\} \in F$
and $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}$ in M.
where $C \neq T, C \notin F$.
where $\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\} \in F$,
$M=M^{\prime} \cdot \square \cdots \bar{\ell} \cdots$,
and $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}$ in M^{\prime}.

Example: DPLL with Learning

$P_{1} \wedge\left(\neg P_{2} \vee P_{3}\right) \wedge\left(\neg P_{4} \vee P_{3}\right) \wedge\left(P_{2} \vee P_{4}\right) \wedge\left(\neg P_{1} \vee \neg P_{4} \vee \neg P_{3}\right) \wedge\left(P_{4} \vee \neg P_{3}\right)$
The algorithm starts with $M=\epsilon, C=\mathrm{T}$ and
$F=\left\{\left\{P_{1}\right\},\left\{\bar{P}_{2}, P_{3}\right\},\left\{\bar{P}_{4}, P_{3}\right\},\left\{P_{2}, P_{4}\right\},\left\{\bar{P}_{1}, \bar{P}_{4}, \bar{P}_{3}\right\},\left\{P_{4}, \bar{P}_{3}\right\}\right\}$.
$\langle\epsilon, F, T\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1}, F, T\right\rangle \xrightarrow{\text { Decide }}\left\langle P_{1} \square \bar{P}_{2}, F, T\right\rangle \xrightarrow{\text { Propagate }}$
$\left\langle P_{1} \square \bar{P}_{2} P_{4}, F, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1} \square \bar{P}_{2} P_{4} P_{3}, F, T\right\rangle \xrightarrow{\text { Conflict }}$
$\left\langle P_{1} \square \bar{P}_{2} P_{4} P_{3}, F,\left\{\bar{P}_{1}, \bar{P}_{4}, \bar{P}_{3}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \square \bar{P}_{2} P_{4} P_{3}, F,\left\{\bar{P}_{1}, \bar{P}_{4}\right\}\right\rangle \xrightarrow{\text { Learn }}$
$\left\langle P_{1} \square \bar{P}_{2} P_{4} P_{3}, F^{\prime},\left\{\bar{P}_{1}, \bar{P}_{4}\right\}\right\rangle \xrightarrow{\text { Back }}\left\langle P_{1} \bar{P}_{4}, F^{\prime}, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime}, T\right\rangle \xrightarrow{\text { Conflict }}$
$\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime},\left\{P_{4}, \bar{P}_{3}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime},\left\{P_{4}, \bar{P}_{2}\right\}\right\rangle \xrightarrow{\text { Explain }}$
$\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime},\left\{P_{4}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime},\left\{\bar{P}_{1}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime}, \emptyset\right\rangle \xrightarrow{\text { Learn }}$
$\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime} \cup\{\emptyset\}, \emptyset\right\rangle$
where $F^{\prime}=F \cup\left\{\left\{\bar{P}_{1}, \bar{P}_{4}\right\}\right\}$.

Example

$$
\begin{array}{r}
\left\{\left\{A_{1}, B_{1}\right\},\left\{\overline{P_{0}}, \overline{A_{1}}, P_{1}\right\},\left\{\overline{P_{0}}, \overline{B_{1}}, P_{1}\right\},\left\{A_{2}, B_{2}\right\},\left\{\bar{P}_{1}, \overline{A_{2}}, P_{2}\right\},\left\{\overline{P_{1}}, \overline{B_{2}}, P_{2}\right\}\right. \\
\left.\ldots,\left\{A_{n}, B_{n}\right\},\left\{\overline{P_{n-1}}, \overline{A_{n}}, P_{n}\right\},\left\{\overline{P_{n-1}}, \overline{B_{n}}, P_{n}\right\},\left\{P_{0}\right\},\left\{\overline{P_{n}}\right\}\right\}
\end{array}
$$

- Unit propagation sets P_{0} and $\overline{P_{n}}:\langle\epsilon, F, T\rangle \xrightarrow{\text { Propagate }}\left\langle P_{0} \overline{P_{n}}, F, T\right\rangle$
$\xrightarrow{\text { Decide }} \xrightarrow{A_{1} \text { Propagate } P_{1}}\left\langle P_{0} \overline{P_{n}} \square A_{1} P_{1}, F, \top\right\rangle$
- Continue until $\left\langle P_{0} \overline{P_{n}} \square A_{1} P_{1} \ldots \square A_{n-2} P_{n-1}, F, T\right\rangle$.
- Propagate $\xrightarrow{\overline{A_{n}}}$ and $\overline{B_{n}}\left\langle\ldots A_{n-2} P_{n-1} \overline{A_{n} B_{n}}, F, T\right\rangle$.
$\stackrel{\text { Conflict }}{\longrightarrow}\left\langle\ldots \square A_{n-2} P_{n-1} \overline{A_{n} B_{n}}, F,\left\{A_{n}, B_{n}\right\}\right\rangle$
$\xrightarrow{\text { Explain }}{ }^{*}\left\langle\ldots \square A_{n-2} P_{n-1} \overline{A_{n} B_{n}}, F,\left\{\overline{P_{n-1}}, P_{n}\right\}\right\rangle$.
- The explained clause can be learned. One can now backtrack to the first decision point: $\xrightarrow{\text { LearnBack }}\left\langle P_{0} \overline{P_{n} P_{n-1}}, F^{\prime}, \top\right\rangle$.

Correctness of CDCL

Theorem (Correctness of CDCL)

Let F be a propositional formula in CNF. Let

$$
\langle\epsilon, F, T\rangle=\left\langle M_{0}, F_{0}, C_{0}\right\rangle \longrightarrow \ldots \longrightarrow\left\langle M_{n}, F_{n}, C_{n}\right\rangle
$$

be a maximal sequence of rule application of CDCL. Then F is satisfiable iff C_{n} is T.
Before proving the theorem, we note some important invariants:

- M_{i} never contains a literal more than once.
- M_{i} never contains ℓ and $\bar{\ell}$.
- Every \square in M_{i} is followed immediately by a literal.
- If $C_{i}=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$ then $\bar{\ell}_{1}, \ldots, \bar{\ell}_{k}$ in M.
- C_{i} is always logically implied by F_{i}.
- F is equivalent to F_{i} for all steps i of the computation.
- If a literal ℓ in M is not immediately preceded by \square, then F contains a clause $\left\{\ell, \ell_{1}, \ldots, \ell_{k}\right\}$ and $\bar{\ell}_{1}, \ldots, \bar{\ell}_{k} \prec \ell$ in M.

Correctness proof

Proof: If the sequence ends with $\left\langle M_{n}, F_{n}, T\right\rangle$ and there is no rule applicable, then:

- Since Decide is not applicable, all literals of F_{n} appear in M_{n} either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_{n} positively.

Thus, M_{n} is a model for F_{n}, which is equivalent to F.
If the sequence ends with $\left\langle M_{n}, F_{n}, C_{n}\right\rangle$ with $C_{n} \neq T$.
Assume $C_{n}=\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\} \neq \emptyset$. W.I.o.g., $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}} \prec \bar{\ell}$. Then:

- Since Learn is not applicable, $C_{n} \in F_{n}$.
- Since Explain is not applicable $\bar{\ell}$ must be immediately preceded by \square.
- However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and $C_{n}=\emptyset(=\perp)$.
Since F_{n} implies C_{n} and F is equivalent to F_{n}, F is not satisfiable.

Functional Implementation of CDCL

The functions DPLL and PROP return a conflict clause or satisfiable.

```
let rec DPLL =
    let PROP U =
    if conflictclauses }\not=
        CHOOSE conflictclauses
    else if unitclauses }\not=
        PROP (CHOOSE unitclauses)
    else if coreclauses }\not=
        let \ell = CHOOSE (\ coreclauses) \cap unassigned in
        val[\ell]:= \top
        let C = DPLL in
        if (C = satisfiable) satisfiable
        else
            val[\ell]:= undef
            if ( }\ell\not\inC)
            else LEARN C; PROP C
    else satisfiable
```


Unit propagation

The function Prop takes a unit clause and does unit propagation. It calls DPLL recursively and returns a conflict clause or satisfiable. recursively:

$$
\begin{aligned}
& \text { let PROP } U= \\
& \text { let } \ell=\text { CHOOSE } U \cap \text { unassigned in } \\
& \text { val }[\ell]:=\top \\
& \text { let } C=\text { DPLL in } \\
& \text { if }(C=\text { satisfiable }) \\
& \text { satisfiable } \\
& \text { else } \\
& \text { val }[\ell]:=\text { undef } \\
& \text { if }(\bar{\ell} \notin C) C \\
& \text { else } U \backslash\{\ell\} \cup C \backslash\{\bar{\ell}\}
\end{aligned}
$$

The last line does resolution:

$$
\frac{\ell \vee C_{1} \quad \neg \ell \vee C_{2}}{C_{1} \vee C_{2}}
$$

DPLL versus CDCL

Some Notes about DPLL with Learning

- Pure Literal Propagation is unnecessary:

A pure literal is always chosen right and never causes a conflict.

- Modern SAT-solvers use this procedure but differ in
- heuristics to choose literals/clauses.
- efficient data structures to find unit clauses.
- better conflict resolution to minimize learned clauses.
- restarts (without forgetting learned clauses).
- Even with the optimal heuristics DPLL is still exponential: The Pidgeon-Hole problem requires exponential resolution proofs.

Summary

- Syntax and Semantics of Propositional Logic
- Methods to decide satisfiability/validity of formulae:
- Truth table
- Semantic Tableaux
- DPLL
- Run-time of all algorithm is worst-case exponential in length of formula.
- Deciding satisfiability is NP-complete.

