Decision Procedures

Jochen Hoenicke

Software Engineering Albert-Ludwigs-University Freiburg

Summer 2013

Jochen Hoenicke (Software Engineering)

Decision Procedures

Foundations: Propositional Logic

<u>Atom</u>	<code>truth symbols</code> $ op$ ("true") and $ op$ ("false")				
	propositional variables $P, Q, R, P_1, Q_1, R_1, \cdots$				
Literal	atom α or its negation $\neg \alpha$				
<u>Formula</u>	literal or application of a				
	logical connective to formulae F, F_1, F_2				
	$\neg F$	"not"	(negation)		
	$(F_1 \wedge F_2)$	"and"	(conjunction)		
	$(F_1 \vee F_2)$	"or"	(disjunction)		
	$(F_1 ightarrow F_2)$	"implies"	(implication)		
	$(F_1 \leftrightarrow F_2)$	"if and only if"	(iff)		

formula
$$F : ((P \land Q) \rightarrow (\top \lor \neg Q))$$

atoms: P, Q, \top
literal: $\neg Q$
subformulas: $(P \land Q), \quad (\top \lor \neg Q)$
abbreviation
 $F : P \land Q \rightarrow \top \lor \neg Q$

Semantics (meaning) of PL

Formula F and Interpretation I is evaluated to a truth value 0/1where 0 corresponds to value false 1 true

Interpretation I : { $P \mapsto 1, Q \mapsto 0, \cdots$ }

Evaluation of logical operators:

F_1	<i>F</i> ₂	$\neg F_1$	$F_1 \wedge F_2$	$F_1 \vee F_2$	$F_1 ightarrow F_2$	$F_1 \leftrightarrow F_2$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1		1	1	1	1

UNI

$egin{array}{lll} F \::\: P \land Q ightarrow P \lor eg Q \ I \::\: \{P \,\mapsto\, 1, Q \,\mapsto\, 0\} \end{array}$

1 = true 0 = false

F evaluates to true under I

Inductive Definition of PL's Semantics

$$\begin{array}{cccc} I \models F & \text{if } F \text{ evaluates to } & 1 \ / \ \text{true} & \text{under } I \\ I \not\models F & & 0 \ / \ \text{false} \end{array}$$

 $I \models \top$ $I \not\models \bot$ $I \models P \quad \text{iff} \quad I[P] = 1$ $I \not\models P \quad \text{iff} \quad I[P] = 0$

Inductive Case:

$$\begin{array}{ll} I \models \neg F & \text{iff } I \not\models F \\ I \models F_1 \land F_2 & \text{iff } I \models F_1 \text{ and } I \models F_2 \\ I \models F_1 \lor F_2 & \text{iff } I \models F_1 \text{ or } I \models F_2 \\ I \models F_1 \rightarrow F_2 & \text{iff, if } I \models F_1 \text{ then } I \models F_2 \\ I \models F_1 \leftrightarrow F_2 & \text{iff, } I \models F_1 \text{ and } I \models F_2, \\ & \text{or } I \not\models F_1 \text{ and } I \not\models F_2 \end{array}$$

FREIBURG

Example: Inductive Reasoning

$$F : P \land Q \to P \lor \neg Q$$
$$I : \{P \mapsto 1, Q \mapsto 0\}$$

1.
$$I \models P$$
since $I[P] = 1$ 2. $I \not\models Q$ since $I[Q] = 0$ 3. $I \models \neg Q$ by 2, \neg 4. $I \not\models P \land Q$ by 2, \land 5. $I \models P \lor \neg Q$ by 1, \lor 6. $I \models F$ by 4, \rightarrow

Thus, F is true under I.

Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that $I \models F$.

Definition (Validity)

F is valid iff for all interpretations I, $I \models F$.

Note

F is valid iff $\neg F$ is unsatisfiable

Proof.

F is valid iff $\forall I : I \models F$ iff $\neg \exists I : I \not\models F$ iff $\neg F$ is unsatisfiable.

Decision Procedure: An algorithm for deciding validity or satisfiability.

Now assume, you are a decision procedure.

Which of the following formulae is satisfiable, which is valid?

- $F_1 : P \land Q$ satisfiable, not valid• $F_2 : \neg (P \land Q)$ satisfiable, not valid• $F_3 : P \lor \neg P$ satisfiable, valid
- F_4 : $\neg(P \lor \neg P)$ unsatisfiable, not valid
- F_5 : $(P
 ightarrow Q) \land (P \lor Q) \land \neg Q$ unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?

REIBURG

Method 1: Truth Tables

$$F : P \land Q \rightarrow P \lor \neg Q$$
 $P Q$
 $P \land Q$
 $\neg Q$
 $P \lor \neg Q$
 F

 0
 0
 0
 1
 1
 1

 0
 1
 0
 0
 1
 1
 1

 1
 0
 0
 1
 1
 1
 1

 1
 1
 0
 1
 1
 1
 1

Thus F is valid.

Method 2: Semantic Argument (Semantic Tableaux)

- Assume F is not valid and I a falsifying interpretation: $I \not\models F$
- Apply proof rules.
- If no contradiction reached and no more rules applicable, F is invalid.
- If in every branch of proof a contradiction reached, F is valid.

Semantic Argument: Proof rules

Jochen Hoenicke (Software Engineering)

Decision Procedures

Prove $F : P \land Q \rightarrow P \lor \neg Q$ is valid.

Let's assume that F is not valid and that I is a falsifying interpretation.

1.	$\textit{I} \not\models \textit{P} \land \textit{Q} \rightarrow \textit{P} \lor \neg \textit{Q}$	assumption
2.	$\textit{I} \models \textit{P} \land \textit{Q}$	1, Rule $ ightarrow$
3.	$\textit{I} \not\models \textit{P} \lor \neg \textit{Q}$	1, Rule $ ightarrow$
4.	$I \models P$	2, Rule \wedge
5.	$I \not\models P$	3, Rule \lor
6.	$I \models \bot$	4 and 5 are contradictory

Thus F is valid.

Example 2

$${\sf Prove} \quad {\sf F}\,:\,({\sf P}\to{\sf Q})\,\wedge\,({\sf Q}\to{\sf R})\to({\sf P}\to{\sf R}) \quad \text{ is valid}.$$

Let's assume that F is not valid.

1.
$$I \not\models F$$
assumption2. $I \models (P \rightarrow Q) \land (Q \rightarrow R)$ 1, Rule \rightarrow 3. $I \not\models P \rightarrow R$ 1, Rule \rightarrow 4. $I \models P$ 3, Rule \rightarrow 5. $I \not\models R$ 3, Rule \rightarrow 6. $I \models P \rightarrow Q$ 2, Rule \land 7. $I \models Q \rightarrow R$ 2, Rule \land 8a. $I \not\models P$ 8b. $I \models Q$ 9a. $I \models \bot$ 9ba. $I \not\models Q$ 9ba. $I \not\models \bot$ 9bb. $I \models R$

Our assumption is incorrect in all cases — F is valid.

Example 3

$\mathsf{Is} \quad F \, : \, P \, \lor \, Q \rightarrow P \, \land \, Q \quad \mathsf{valid}?$

Let's assume that F is not valid.

We cannot always derive a contradiction. F is not valid.

Falsifying interpretation:

 $\overline{I_1 : \{P \mapsto \text{true}, Q \mapsto \text{false}\}} \quad I_2 : \{Q \mapsto \text{true}, P \mapsto \text{false}\}}$ We have to derive a contradiction in all cases for F to be valid.

Jochen Hoenicke (Software Engineering)

Decision Procedures

Idea: Simplify decision procedure, by simplifying the formula first. Convert it into a simpler normal form, e.g.:

- \bullet Negation Normal Form: No \rightarrow and no $\leftrightarrow;$ negation only before atoms.
- Conjunctive Normal Form: Negation normal form, where conjunction is outside, disjunction is inside.
- Disjunctive Normal Form: Negation normal form, where disjunction is outside, conjunction is inside.

The formula in normal form should be equivalent to the original input.

Equivalence

 F_1 and F_2 are <u>equivalent</u> $(F_1 \Leftrightarrow F_2)$ iff for all interpretations $I, I \models F_1 \leftrightarrow F_2$

To prove $F_1 \Leftrightarrow F_2$ show $F_1 \leftrightarrow F_2$ is valid.

 $\begin{array}{c} F_1 \ \underline{\text{implies}} \ F_2 \ (F_1 \ \Rightarrow \ F_2) \\ \hline \text{iff for all interpretations } I, \ I \ \models \ F_1 \ \rightarrow \ F_2 \end{array}$

 $F_1 \Leftrightarrow F_2$ and $F_1 \Rightarrow F_2$ are not formulae!

If $F_1 \Leftrightarrow F_1'$ and $F_2 \Leftrightarrow F_2'$, then

- $\neg F_1 \Leftrightarrow \neg F'_1$
- $F_1 \vee F_2 \Leftrightarrow F_1' \vee F_2'$
- $F_1 \wedge F_2 \Leftrightarrow F_1' \wedge F_2'$
- $F_1 \rightarrow F_2 \Leftrightarrow F_1' \rightarrow F_2'$
- $F_1 \leftrightarrow F_2 \Leftrightarrow F_1' \leftrightarrow F_2'$
- if we replace in a formula F a subformula F_1 by F'_1 and obtain F', then $F \Leftrightarrow F'$.

Negations appear only in literals. (only $\neg,\wedge,\vee)$

To transform F to equivalent F' in NNF use recursively the following template equivalences (left-to-right):

$$\begin{array}{ccc} \neg \neg F_1 \Leftrightarrow F_1 & \neg \top \Leftrightarrow \bot & \neg \bot \Leftrightarrow \top \\ \neg (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2 \\ \neg (F_1 \lor F_2) \Leftrightarrow \neg F_1 \land \neg F_2 \end{array} \right\} \text{De Morgan's Law} \\ F_1 \rightarrow F_2 \Leftrightarrow \neg F_1 \lor F_2 \\ F_1 \leftrightarrow F_2 \Leftrightarrow (F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1) \end{array}$$

Convert F : $(Q_1 \vee \neg \neg R_1) \land (\neg Q_2 \rightarrow R_2)$ into NNF

$$(Q_1 \lor \neg \neg R_1) \land (\neg Q_2 \to R_2)$$

 $\Leftrightarrow (Q_1 \lor R_1) \land (\neg Q_2 \to R_2)$
 $\Leftrightarrow (Q_1 \lor R_1) \land (\neg \neg Q_2 \lor R_2)$
 $\Leftrightarrow (Q_1 \lor R_1) \land (Q_2 \lor R_2)$

The last formula is equivalent to F and is in NNF.

Disjunction of conjunctions of literals

$$\bigvee_{i} \bigwedge_{j} \ell_{i,j} \quad \text{for literals } \ell_{i,j}$$

To convert F into equivalent F' in DNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$\begin{array}{c} (F_1 \lor F_2) \land F_3 \Leftrightarrow (F_1 \land F_3) \lor (F_2 \land F_3) \\ F_1 \land (F_2 \lor F_3) \Leftrightarrow (F_1 \land F_2) \lor (F_1 \land F_3) \end{array} \right\} dist$$

FREIBURG

Convert F : $(Q_1 \vee \neg \neg R_1) \land (\neg Q_2 \rightarrow R_2)$ into DNF

$$\begin{array}{ll} (Q_1 \lor \neg \neg R_1) \land (\neg Q_2 \to R_2) \\ \Leftrightarrow (Q_1 \lor R_1) \land (Q_2 \lor R_2) & \text{in NNF} \\ \Leftrightarrow (Q_1 \land (Q_2 \lor R_2)) \lor (R_1 \land (Q_2 \lor R_2)) & \text{dist} \\ \Leftrightarrow (Q_1 \land Q_2) \lor (Q_1 \land R_2) \lor (R_1 \land Q_2) \lor (R_1 \land R_2) & \text{dist} \end{array}$$

The last formula is equivalent to F and is in DNF. Note that formulas can grow exponentially.

Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals

$$\bigwedge_{i} \bigvee_{j} \ell_{i,j} \quad \text{for literals } \ell_{i,j}$$

To convert F into equivalent F' in CNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$(F_1 \wedge F_2) \vee F_3 \Leftrightarrow (F_1 \vee F_3) \wedge (F_2 \vee F_3)$$

 $F_1 \vee (F_2 \wedge F_3) \Leftrightarrow (F_1 \vee F_2) \wedge (F_1 \vee F_3)$

A disjunction of literals $P_1 \vee P_2 \vee \neg P_3$ is called a clause. For brevity we write it as set: $\{P_1, P_2, \overline{P_3}\}$. A formula in CNF is a set of clauses (a set of sets of literals). REIBURG

Definition (Equisatisfiability)

F and F' are equisatisfiable, iff

F is satisfiable if and only if F' is satisfiable

Every formula is equisatifiable to either \top or \bot . There is a efficient conversion of F to F' where

- F' is in CNF and
- F and F' are equisatisfiable

Note: efficient means polynomial in the size of F.

FREIBURG

Basic Idea:

- Introduce a new variable P_G for every subformula G; unless G is already an atom.
- For each subformula $G : G_1 \circ G_2$ produce a small formula $P_G \leftrightarrow P_{G_1} \circ P_{G_2}$.
- encode each of these (small) formulae separately to CNF.

The formula

$$P_F \land \bigwedge_G CNF(P_G \leftrightarrow P_{G_1} \circ P_{G_2})$$

is equisatisfiable to F.

The number of subformulae is linear in the size of F. The time to convert one small formula is constant!

Example: CNF

FREIBURG Convert $F : P \lor Q \to P \land \neg R$ to CNF. Introduce new variables: P_F , $P_{P \lor Q}$, $P_{P \land \neg R}$, $P_{\neg R}$. Create new formulae and convert them to CNF separately:

•
$$P_F \leftrightarrow (P_{P \lor Q} \to P_{P \land \neg R})$$
 in CNF:

$$F_1 : \{\{\overline{P_F}, \overline{P_{P \lor Q}}, P_{P \land \neg R}\}, \{P_F, P_{P \lor Q}\}, \{P_F, \overline{P_{P \land \neg R}}\}\}$$

• $P_{P \lor Q} \leftrightarrow P \lor Q$ in CNF:

$$F_2 : \{\{\overline{P_{P \lor Q}}, P \lor Q\}, \{P_{P \lor Q}, \overline{P}\}, \{P_{P \lor Q}, \overline{Q}\}\}$$

• $P_{P \wedge \neg P} \leftrightarrow P \wedge P_{\neg P}$ in CNF:

$$F_{3} : \{\{\overline{P_{P \wedge \neg R}} \lor P\}, \{\overline{P_{P \wedge \neg R}}, P_{\neg R}\}, \{P_{P \wedge \neg R}, \overline{P}, \overline{P_{\neg R}}\}\}$$

• $P_{\neg R} \leftrightarrow \neg R$ in CNF: $F_4 : \{\{\overline{P_{\neg R}}, \overline{R}\}, \{P_{\neg R}, R\}\}$ $\{\{P_F\}\} \cup F_1 \cup F_2 \cup F_3 \cup F_4 \text{ is in CNF and equisatisfiable to } F$.

Jochen Hoenicke (Software Engineering)

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

- Algorithm to decide PL formulae in CNF.
- Published by Davis, Logemann, Loveland (1962).
- Often miscited as Davis, Putnam (1960), which describes a different algorithm.

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

```
let rec DPLL F =

let F' = PROP F in

let F'' = PLP F' in

if F'' = \top then true

else if F'' = \bot then false

else

let P = CHOOSE vars(F'') in

(DPLL F''\{P \mapsto \top\}) \lor (DPLL F''\{P \mapsto \bot\})
```

FREIBURG

FREIBURG

Unit Propagation (PROP)

If a clause contains one literal $\ell,$

- Set ℓ to \top .
- Remove all clauses containing ℓ .
- Remove $\neg \ell$ in all clauses.

Based on resolution

$$\frac{\ell \qquad \neg \ell \lor C}{C} \leftarrow \mathsf{clause}$$

Pure Literal Propagation (PLP)

If *P* occurs only positive (without negation), set it to \top .

If P occurs only negative set it to \perp .

Example

$$F: (\neg P \lor Q \lor R) \land (\neg Q \lor R) \land (\neg Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)$$

$$\frac{\text{Branching on } Q}{F\{Q \mapsto \top\}}: (R) \land (\neg R) \land (P \lor \neg R)$$
By unit resolution
$$\frac{R \quad (\neg R)}{\bot}$$

$$F\{Q \mapsto \top\} = \bot \Rightarrow \text{ false}$$

$$\frac{\text{On the other branch}}{F\{Q \mapsto \bot\}: (\neg P \lor R)}$$

$$F\{Q \mapsto \bot, R \mapsto \top, P \mapsto \bot\} = \top \Rightarrow \text{ true}$$

F is satisfiable with satisfying interpretation

 $I : \{ P \mapsto \mathsf{false}, \ Q \mapsto \mathsf{false}, \ R \mapsto \mathsf{true} \}$

Decision Procedures

UNI FREIBURG Example

A island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You meet four inhabitants: Alice, Bob, Charles and Doris.

- Alice says that Doris is a knave.
- Bob tells you that Alice is a knave.
- Charles claims that Alice is a knave.
- Doris tells you, 'Of Charles and Bob, exactly one is a knight.'

Knight and Knaves

FREIBURG

Let A denote that Alice is a Knight, etc. Then:

- $A \leftrightarrow \neg D$
- $B \leftrightarrow \neg A$
- $C \leftrightarrow \neg A$
- $D \leftrightarrow \neg (C \leftrightarrow B)$

In CNF:

- $\{\overline{A}, \overline{D}\}, \{A, D\}$
- $\{\overline{B},\overline{A}\},\{B,A\}$
- $\{\overline{C},\overline{A}\}, \{C,A\}$
- $\{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}$

$$\begin{aligned} F \ : \ \{\{\overline{A},\overline{D}\},\{A,D\},\{\overline{B},\overline{A}\},\{B,A\},\{\overline{C},\overline{A}\},\{C,A\},\\ \{\overline{D},\overline{C},\overline{B}\},\{\overline{D},C,B\},\{D,\overline{C},B\},\{D,C,\overline{B}\}\} \end{aligned}$$

PROP and PLP are not applicable. Decide on A:

$$F\{A \mapsto \bot\} : \{\{D\}, \{B\}, \{C\}, \{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}\}$$

PROP yields $F\{A \mapsto \bot, D \mapsto \top, B \mapsto \top, C \mapsto \top\} : \bot$
Unsatisfiable! Now set A to \top :

 $F\{A \mapsto \top\} : \{\{\overline{D}\}, \{\overline{B}\}, \{\overline{C}\}, \{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}\}$

PROP yields $F\{A \mapsto \top, D \mapsto \bot, B \mapsto \bot, C \mapsto \bot\}$: \top Satisfying assignment!

Jochen Hoenicke (Software Engineering)

Consider the following problem:

$$\{\{A_1, B_1\}, \{\overline{P_0}, \overline{A_1}, P_1\}, \{\overline{P_0}, \overline{B_1}, P_1\}, \{A_2, B_2\}, \{\overline{P_1}, \overline{A_2}, P_2\}, \{\overline{P_1}, \overline{B_2}, P_2\}, \dots, \{A_n, B_n\}, \{\overline{P_{n-1}}, \overline{A_n}, P_n\}, \{\overline{P_{n-1}}, \overline{B_n}, P_n\}, \{P_0\}, \{\overline{P_n}\}\}$$

For some literal orderings, we need exponentially many steps. Note, that

$$\{\{A_i, B_i\}, \{\overline{P_{i-1}}, \overline{A_i}, P_i\}, \{\overline{P_{i-1}}, \overline{B_i}, P_i\}\} \Rightarrow \{\{\overline{P_{i-1}}, P_i\}\}$$

If we learn the right clauses, unit propagation will immediately give unsatisfiable.

Instead of changing clause set, only remember the literal assignment. When you assign true to a literal $\ell,$ also assign false to $\overline{\ell}.$ For a partial assignment

- A clause is true if one of its literals is assigned true.
- A clause is a conflict clause if all its literals are assigned false.
- A clause is a <u>unit clause</u> if all but one literals are assigned false and the last literal is unassigned.

If the assignment of a literal from a conflict clause is removed we get a unit clause. Explain unsatisfiability of partial assignment by conflict clause and learn it!

Idea: Explain unsatisfiability of partial assignment by conflict clause and learn it!

- If a conflict is found we return the conflict clause.
- If variable in conflict were derived by unit propagation use resolution rule to generate a new conflict clause.
- If variable in conflict was derived by decision, use learned conflict as unit clause

We describe DPLL by a set of rules modifying a configuration. A configuration is a triple

$$\langle M, F, C \rangle$$
,

where

- *M* (model) is a sequence of literals (that are currently set to true) interspersed with backtracking points denoted by □.
- *F* (formula) is a formula in CNF, i.e., a set of clauses where each clause is a set of literals.
- C (conflict) is either \top or a conflict clause (a set of literals). A conflict clause C is a clause with $F \Rightarrow C$ and $M \not\models C$. Thus, a conflict clause shows $M \not\models F$.

REIBURG

We describe the algorithm by a set of rules, which each describe a set of transitions between configurations, e.g.,

Explain $\frac{\langle M, F, C \cup \{\ell\} \rangle}{\langle M, F, C \cup \{\ell_1, \dots, \ell_k\} \rangle} \quad \text{where } \ell \notin C, \; \{\ell_1, \dots, \ell_k, \bar{\ell}\} \in F, \\ \text{and } \bar{\ell_1}, \dots, \bar{\ell_k} \prec \bar{\ell} \text{ in } M.$

Here, $\bar{\ell_1}, \ldots, \bar{\ell_k} \prec \ell$ in M means the literals $\bar{\ell_1}, \ldots, \bar{\ell_k}$ occur in the sequence M before the literal ℓ (and all literals appear in M).

Example: for $M = P_1 \bar{P_3} \bar{P_2} \bar{P_4}$, $F = \{\{P_1\}, \{P_3, \bar{P_4}\}\}$, and $C = \{P_2\}$ the transition

$$\langle M, F, \{P_2, P_4\} \rangle \longrightarrow \langle M, F, \{P_2, P_3\} \rangle$$

is possible.

Rules for CDCL (Conflict Driven Clause Learning)

Decide
$$\frac{\langle M, F, \top \rangle}{\langle M \cdot \Box \cdot \ell, F, \top \rangle}$$

Propagate
$$\frac{\langle M, F, \top \rangle}{\langle M \cdot \ell, F, \top \rangle}$$

Conflict
$$\frac{\langle M, F, \top \rangle}{\langle M, F, \{\ell_1, \dots, \ell_k\} \rangle}$$

Explain
$$\frac{\langle M, F, C \cup \{\ell\} \rangle}{\langle M, F, C \cup \{\ell_1, \dots, \ell_k\} \rangle}$$

Learn
$$\frac{\langle M, F, C \rangle}{\langle M, F \cup \{C\}, C \rangle}$$

Back
$$\frac{\langle M, F, \{\ell_1, \dots, \ell_k, \ell\} \rangle}{\langle M' \cdot \ell, F, \top \rangle}$$

where $\ell \in lit(F)$, $\ell, \overline{\ell}$ in M

where $\{\ell_1, \ldots, \ell_k, \ell\} \in F$ and $\bar{\ell_1}, \ldots, \bar{\ell_k}$ in $M, \ell, \bar{\ell}$ in M.

where $\{\ell_1, \ldots, \ell_k\} \in F$ and $\bar{\ell_1}, \ldots, \bar{\ell_k}$ in M.

where $\ell \notin C$, $\{\ell_1, \ldots, \ell_k, \bar{\ell}\} \in F$, $\overline{k}\rangle$ and $\overline{\ell_1}, \ldots, \overline{\ell_k} \prec \overline{\ell}$ in M.

where $C \neq \top$, $C \notin F$.

where
$$\{\ell_1, \ldots, \ell_k, \ell\} \in F$$
,
 $M = M' \cdot \Box \cdots \overline{\ell} \cdots$,
and $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in M' .

Jochen Hoenicke (Software Engineering)

P

FREIBURG

Example: DPLL with Learning

 $P_1 \land (\neg P_2 \lor P_3) \land (\neg P_4 \lor P_3) \land (P_2 \lor P_4) \land (\neg P_1 \lor \neg P_4 \lor \neg P_3) \land (P_4 \lor \neg P_3)$

The algorithm starts with $M = \epsilon$, $C = \top$ and $F = \{\{P_1\}, \{\bar{P}_2, P_3\}, \{\bar{P}_4, P_3\}, \{P_2, P_4\}, \{\bar{P}_1, \bar{P}_4, \bar{P}_3\}, \{P_4, \bar{P}_3\}\}.$

$$\begin{array}{c} \langle \epsilon,F,\top\rangle \xrightarrow{\mathsf{Propagate}} \langle P_{1},F,\top\rangle \xrightarrow{\mathsf{Decide}} \langle P_{1}\Box\bar{P}_{2},F,\top\rangle \xrightarrow{\mathsf{Propagate}} \\ \langle P_{1}\Box\bar{P}_{2}P_{4},F,\top\rangle \xrightarrow{\mathsf{Propagate}} \langle P_{1}\Box\bar{P}_{2}P_{4}P_{3},F,\top\rangle \xrightarrow{\mathsf{Conflict}} \\ \langle P_{1}\Box\bar{P}_{2}P_{4}P_{3},F,\{\bar{P}_{1},\bar{P}_{4},\bar{P}_{3}\}\rangle \xrightarrow{\mathsf{Explain}} \langle P_{1}\Box\bar{P}_{2}P_{4}P_{3},F,\{\bar{P}_{1},\bar{P}_{4}\}\rangle \xrightarrow{\mathsf{Learn}} \\ \langle P_{1}\Box\bar{P}_{2}P_{4}P_{3},F',\{\bar{P}_{1},\bar{P}_{4}\}\rangle \xrightarrow{\mathsf{Back}} \langle P_{1}\bar{P}_{4},F',\top\rangle \xrightarrow{\mathsf{Propagate}} \langle P_{1}\bar{P}_{4}P_{2}P_{3},F',\top\rangle \xrightarrow{\mathsf{Conflict}} \\ \langle P_{1}\Box\bar{P}_{2}P_{4}P_{3},F',\{\bar{P}_{4},\bar{P}_{3}\}\rangle \xrightarrow{\mathsf{Explain}} \langle P_{1}\bar{P}_{4}P_{2}P_{3},F',\{P_{4},\bar{P}_{2}\}\rangle \xrightarrow{\mathsf{Explain}} \\ \langle P_{1}\bar{P}_{4}P_{2}P_{3},F',\{P_{4},\bar{P}_{3}\}\rangle \xrightarrow{\mathsf{Explain}} \langle P_{1}\bar{P}_{4}P_{2}P_{3},F',\{\bar{P}_{1}\}\rangle \xrightarrow{\mathsf{Explain}} \langle P_{1}\bar{P}_{4}P_{2}P_{3},F',\{\bar{P}_{4},\bar{P}_{2}P_{3},F',\emptyset\rangle \xrightarrow{\mathsf{Learn}} \\ \langle P_{1}\bar{P}_{4}P_{2}P_{3},F',\{P_{4}\}\rangle \xrightarrow{\mathsf{Explain}} \langle P_{1}\bar{P}_{4}P_{2}P_{3},F',\{\bar{P}_{1}\}\rangle \xrightarrow{\mathsf{Explain}} \langle P_{1}\bar{P}_{4}P_{2}P_{3},F',\emptyset\rangle \xrightarrow{\mathsf{Learn}} \\ \langle P_{1}\bar{P}_{4}P_{2}P_{3},F',\{\emptyset\},\emptyset\rangle \end{array}$$

where $F' = F \cup \{\{\bar{P}_1, \bar{P}_4\}\}.$

UNI FREIBURG

Example

$\{\{A_1, B_1\}, \{\overline{P_0}, \overline{A_1}, P_1\}, \{\overline{P_0}, \overline{B_1}, P_1\}, \{A_2, B_2\}, \{\overline{P_1}, \overline{A_2}, P_2\}, \{\overline{P_1}, \overline{B_2}, P_2\}, \dots, \{A_n, B_n\}, \{\overline{P_{n-1}}, \overline{A_n}, P_n\}, \{\overline{P_{n-1}}, \overline{B_n}, P_n\}, \{P_0\}, \{\overline{P_n}\}\}$

- Unit propagation sets P_0 and $\overline{P_n}$: $\langle \epsilon, F, \top \rangle \xrightarrow{\text{Propagate}} \langle P_0 \overline{P_n}, F, \top \rangle$ • $\xrightarrow{\text{Decide } A_1 \text{Propagate } P_1} \langle P_0 \overline{P_n} \Box A_1 P_1, F, \top \rangle$
- Continue until $\langle P_0 \overline{P_n} \Box A_1 P_1 \ldots \Box A_{n-2} P_{n-1}, F, \top \rangle$. Propagate $\overline{A_n}$ and $\overline{B_n}$ ($A_1 P_1 \ldots \Box A_{n-2} P_{n-1}, F, \top \rangle$).

•
$$\longrightarrow$$
 $\langle \dots A_{n-2}P_{n-1}A_nB_n, F, + \rangle$.
• $\stackrel{\text{Conflict}}{\longrightarrow} \langle \dots \Box A_{n-2}P_{n-1}\overline{A_nB_n}, F, \{A_n, B_n\} \rangle$
Explain* $\langle \dots \Box A_n - 2P_{n-1}\overline{A_nB_n}, F, \{A_n, B_n\} \rangle$

$$\stackrel{\text{blain}^*}{\to} \langle \dots \Box A_{n-2} P_{n-1} \overline{A_n B_n}, F, \{ \overline{P_{n-1}}, P_n \} \rangle.$$

• The explained clause can be learned. One can now backtrack to the first decision point: $\xrightarrow{\text{LearnBack}} \langle P_0 \overline{P_n P_{n-1}}, F', \top \rangle$.

Correctness of CDCL

Theorem (Correctness of CDCL)

Let F be a propositional formula in CNF. Let

$$\langle \epsilon, F, \top \rangle = \langle M_0, F_0, C_0 \rangle \longrightarrow \ldots \longrightarrow \langle M_n, F_n, C_n \rangle$$

be a maximal sequence of rule application of CDCL. Then F is satisfiable iff C_n is \top .

Before proving the theorem, we note some important invariants:

- M_i never contains a literal more than once.
- M_i never contains ℓ and $\overline{\ell}$.
- Every \Box in M_i is followed immediately by a literal.
- If $C_i = \{\ell_1, \ldots, \ell_k\}$ then $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in M.
- C_i is always logically implied by F_i .
- F is equivalent to F_i for all steps i of the computation.
- If a literal ℓ in M is not immediately preceded by \Box , then F contains a clause $\{\ell, \ell_1, \ldots, \ell_k\}$ and $\bar{\ell_1}, \ldots, \bar{\ell_k} \prec \ell$ in M.

REBURG

Correctness proof

FREIBURG **Proof:** If the sequence ends with $\langle M_n, F_n, \top \rangle$ and there is no rule applicable, then:

- Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_n positively.

Thus, M_n is a model for F_n , which is equivalent to F.

If the sequence ends with $\langle M_n, F_n, C_n \rangle$ with $C_n \neq \top$. Assume $C_n = \{\ell_1, \ldots, \ell_k, \ell\} \neq \emptyset$. W.I.o.g., $\overline{\ell_1}, \ldots, \overline{\ell_k} \prec \overline{\ell}$. Then:

- Since Learn is not applicable, $C_n \in F_n$.
- Since Explain is not applicable $\overline{\ell}$ must be immediately preceded by \Box .
- However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and $C_n = \emptyset (= \bot)$. Since F_n implies C_n and F is equivalent to F_n , F is not satisfiable.

Functional Implementation of CDCL

The functions DPLL and PROP return a conflict clause or satisfiable.

```
let rec DPLL =
  let PROP U =
  if conflictclauses \neq \emptyset
     CHOOSE conflictclauses
  else if unitclauses \neq \emptyset
     PROP (CHOOSE unitclauses)
  else if coreclauses \neq \emptyset
      let \ell = CHOOSE ([]coreclauses) \cap unassigned in
      val[\ell] := \top
      let C = DPLL in
      if (C = satisfiable) satisfiable
      else
          val[\ell] := undef
          if (\overline{\ell} \notin C) C
          else LEARN C: PROP C
  else satisfiable
```

Jochen Hoenicke (Software Engineering)

FREIBURG

Unit propagation

The function **PROP** takes a unit clause and does unit propagation. It calls **DPLL** recursively and returns a conflict clause or satisfiable. recursively:

```
let PROP U =
   let \ell = CHOOSE U \cap unassigned in
   val[\ell] := \top
   let C = DPLL in
   if (C = satisfiable)
      satisfiable
   else
      val[\ell] := undef
      if (\overline{\ell} \notin C) C
      else U \setminus \{\ell\} \cup C \setminus \{\overline{\ell}\}
```

The last line does resolution:

$$\frac{\ell \lor C_1 \qquad \neg \ell \lor C_2}{C_1 \lor C_2}$$

Jochen Hoenicke (Software Engineering)

Decision Procedures

FREIBURG

DPLL versus CDCL

- Pure Literal Propagation is unnecessary:
 - A pure literal is always chosen right and never causes a conflict.
- Modern SAT-solvers use this procedure but differ in
 - heuristics to choose literals/clauses.
 - efficient data structures to find unit clauses.
 - better conflict resolution to minimize learned clauses.
 - restarts (without forgetting learned clauses).
- Even with the optimal heuristics DPLL is still exponential: The Pidgeon-Hole problem requires exponential resolution proofs.

- Syntax and Semantics of Propositional Logic
- Methods to decide satisfiability/validity of formulae:
 - Truth table
 - Semantic Tableaux
 - DPLL
- Run-time of all algorithm is worst-case exponential in length of formula.
- Deciding satisfiability is NP-complete.