J. Hoenicke
02.07.2013
A. Nutz

Tutorials for Decision Procedures
 Exercise sheet 10

Exercise 1: Decision Procedure for T_{A}

Apply the decision procedure for arrays to check validity of the following T_{A}-formulae. In the last step of the algorithm, where you have to use the decision procedure for the quantifier-free fragment, you do not need to follow the corresponding algorithm but may argue intuitively.
(a) $(\forall i . a[i]=b[i]) \rightarrow(\forall i . a\langle j \triangleleft v\rangle[i]=b\langle j \triangleleft v\rangle[i])$
(b) $\exists j \cdot a\langle i \triangleleft v\rangle[j]=v$
(c) $\forall j . a\langle i \triangleleft v\rangle[j]=v$

Exercise 2: Decision Procedure for $T_{A}^{\mathbb{Z}}$

Check validity of the formula

$$
\operatorname{sorted}(a, \ell, k) \wedge \operatorname{sorted}(a, k, u) \rightarrow \operatorname{sorted}(a, \ell, u)
$$

where sorted is defined as usual:

$$
\operatorname{sorted}(a, \ell, u): \quad \forall i, j . \ell \leq i \leq j \leq u \rightarrow a[i] \leq a[j]
$$

Again, in the last step you may argue intuitively talking only about the relevant combinations of indices from the index set.

Exercise 3: Correctness of DP for $T_{\mathrm{A}}^{\mathbb{Z}}$

Let I be an interpretation. Prove for $F[\bar{i}]:$ expr $\leq \operatorname{expr}$ that $I \models F[\bar{i}] \rightarrow F[\bar{t}]$, where $\bar{i}=\left(i_{1}, \ldots, i_{n}\right)$ and \bar{t} is the vector $\bar{t}=\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{I}^{n}$ with $\alpha_{I}\left[t_{k}\right]=\operatorname{proj}_{\mathcal{I}}\left(\alpha_{I}\left[i_{k}\right]\right)$ (in the notation of the book $\bar{t}=\operatorname{proj}_{I}(\bar{i})$). The expression expr is either a universal variable i_{k} or a pexpr. Note that \mathcal{I} contains all pexpr and that

$$
\operatorname{proj}_{\mathcal{I}}(v)= \begin{cases}\max \left\{\alpha_{I}[t] \mid t \in \mathcal{I} \wedge \alpha_{I}[t] \leq v\right\} & \text { if for some } t \in \mathcal{I}: \alpha_{I}[t] \leq v \\ \min \left\{\alpha_{I}[t] \mid t \in \mathcal{I}\right\} & \text { otherwise }\end{cases}
$$

