J. Hoenicke
09.07.2013
A. Nutz

Tutorials for Decision Procedures
 Exercise sheet 11

Exercise 1: Nelson-Oppen

8 Points
Apply the deterministic version of Nelson-Oppen to the following $T_{\mathrm{E}} \cup T_{\mathbb{Q}}$-formulae:
(a) $x+y=z \wedge f(z)=x+y \wedge f(f(x+y)) \neq z$.
(b) $g(x+y, z)=f(g(x, y)) \wedge x+z=y \wedge z \geq 0 \wedge x \geq y \wedge g(x, x)=z \wedge f(z) \neq g(2 x, 0)$

Exercise 2: DPLL(T)

Consider the following formula

$$
\begin{aligned}
& f_{b}(i) \neq f_{c}(i) \wedge \\
& f_{b}(j)=v \wedge\left(i \neq j \rightarrow f_{b}(i)=f_{a}(i)\right) \wedge \\
& f_{c}(j)=v \wedge\left(i \neq j \rightarrow f_{c}(i)=f_{a}(i)\right)
\end{aligned}
$$

(a) Compute the propositional core in CNF.
(b) Run the $\operatorname{DPLL}(T)$ algorithm by repeatedly applying the rules from the lecture. Is the formula satisfiable?

