

J. Hoenicke A. Nutz 30.4.2013 hand in until 7.5.2013, 10:15

Tutorials for Decision Procedures Exercise sheet 3

Exercise 1: Prenex Normal Form

Transform the following formula into prenex normal form:

$$\left(\forall z. \left(\left(\forall x. q(x, z)\right) \to p(x, g(y), z)\right)\right) \land \neg\left(\forall z. \neg(\forall x. q(f(x, y), z))\right)$$

Exercise 2: Syntax and Semantics of FOL

(a) Assume that a, b are constant symbols, f resp. g are function symbols of arity one resp. two, p is a predicate symbol of arity two, and x is a variable. For each of the following strings determine whether it is a *term*, an *atom*, a *literal*, or a *formula*. Note that it can be more than one of these, or none if it is syntactically incorrect.

(i) $f(a)$	(v) $\neg p(a,b)$	(ix) $p(a,b) \lor p(b,a)$
(ii) $g(f(a), f)$	(vi) $\exists a.p(a,b)$	(x) $p \wedge \exists x. p(x, x)$
(iii) $p(f(a), x)$	(vii) $\exists x.p(x, f(a))$	(xi) $\neg \exists x. p(a, b)$
(iv) $g(x, f(x))$	(viii) $p(x, p(x, x))$	(xii) $\forall x. \exists x. p(x, x)$

- (b) For each of the following formulae give a satisfying interpretation. Assume that equals and p are binary predicates, f is a unary function, and add is a binary function.
 - (i) equals(add(2,2),5)(iii) $\exists y.\forall x.p(x,y)$ (ii) $\forall x.p(x,x)$ (iv) $\forall x.(p(x,f(x)) \land \neg p(f(x),x))$

Exercise 3: Semantic Tableaux for FOL

Use the semantic tableaux method to prove the validity of the following formulae.

- (a) $(\forall x. (p(x) \to q(a))) \land (\exists x. p(x)) \to q(a)$
- (b) $(\forall x. p(f(x))) \land (\forall y. (q(y) \to \neg p(f(y)))) \to \neg q(b)$
- (c) $(\forall x, y. (p(x, y) \lor p(y, x))) \to \forall z.p(z, z)$
- (d) $\forall y. \exists x. (p(x) \rightarrow p(y))$
- (e) $\exists x. \forall y. (p(x) \rightarrow p(y))$