

J. Hoenicke A. Nutz 28.05.2013 submit until 04.06.2013, 10:15

Tutorials for Decision Procedures Exercise sheet 5

Exercise 1: Integer Arithmetic

Consider the $T_{\mathbb{Z}}$ -formula $F : \exists x. \forall y. \neg (y+1=x)$.

- (a) Convert F into an equisatisfiable $T_{\mathbb{N}}$ -formula G.
- (b) Prove unsatisfiability of G using the semantic tableaux method. You may assume that associativity and commutativity of addition holds.
- (c) Prove validity of the $T_{\mathbb{N}}$ -formula $\exists x. \forall y. \neg (y+1=x)$.

Exercise 2: Quantifier Elimination for $T_{\mathbb{Q}}$

Apply quantifier elimination to the following $T_{\mathbb{Q}}$ -formulae:

- (a) $\exists y. (x = 2y \land y < x)$
- (b) $\forall y. \ (25 < x + 2y \lor x + 2y < 25)$
- (c) $\forall x. \exists y. (y > x \land -y < x)$
- (d) $\forall x. (x > 0 \iff \exists y. (x > y \land -x < y))$

Exercise 3: Sufficient Set

For $T_{\mathbb{Q}}$ the algorithm in the lecture examines terms $\frac{s+t}{2}$ for all $s, t \in S$. Suppose we split up S in S_A , S_B , S_C depending on whether the term t comes from an (A) x < t, (B) t < x, or (C) x = t literal. Based on this distinction, give a smaller set of terms that still is sufficient.