J. Hoenicke
28.05.2013
A. Nutz

Tutorials for Decision Procedures
 Exercise sheet 5

Exercise 1: Integer Arithmetic

Consider the $T_{\mathbb{Z}}$-formula $F: \exists x . \forall y . \neg(y+1=x)$.
(a) Convert F into an equisatisfiable $T_{\mathbb{N}}$-formula G.
(b) Prove unsatisfiability of G using the semantic tableaux method. You may assume that associativity and commutativity of addition holds.
(c) Prove validity of the $T_{\mathbb{N}}$-formula $\exists x \cdot \forall y$. $\neg(y+1=x)$.

Exercise 2: Quantifier Elimination for $T_{\mathbb{Q}}$

Apply quantifier elimination to the following $T_{\mathbb{Q}}$-formulae:
(a) $\exists y .(x=2 y \wedge y<x)$
(b) $\forall y \cdot(25<x+2 y \vee x+2 y<25)$
(c) $\forall x \cdot \exists y \cdot(y>x \wedge-y<x)$
(d) $\forall x \cdot(x>0 \Longleftrightarrow \exists y \cdot(x>y \wedge-x<y))$

Exercise 3: Sufficient Set

For $T_{\mathbb{Q}}$ the algorithm in the lecture examines terms $\frac{s+t}{2}$ for all $s, t \in S$. Suppose we split up S in S_{A}, S_{B}, S_{C} depending on whether the term t comes from an (A) $x<t$, (B) $t<x$, or (C) $x=t$ literal. Based on this distinction, give a smaller set of terms that still is sufficient.

