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The importance of the support function in representation, manip-
ulation, and analysis of convex bodies can indeed be compared with
that of the Fourier transform in signal processing. The support func-
tion, in intuitive terms, is the signed distance of a supporting plane
of a convex body from the origin point. In this paper we show that,
just as simple multiplication in the Fourier transform domain turns
out to be the convolution of two signals, similarly simple algebraic
operations on support functions result in a variety of geometric op-
erations on the corresponding geometric objects. In fact, since the
support function is a real-valued function, these simple algebraic
operations are nothing but arithmetic operations such as addition,
subtraction, reciprocal, and max–min, which give rise to geometric
operations such as Minkowski addition (dilation), Minkowski de-
composition (erosion), polar duality, and union–intersection. Fur-
thermore, it has been shown in this paper that a number of represen-
tation schemes (such as the Legendre transformation, the extended
Gaussian image, slope diagram representation, the normal trans-
form, and slope transforms), which appear to be very disparate at
first sight, belong to the same class of the support function represen-
tation. Finally, we indicate some algebraic manipulations of support
functions that lead to new and unsuspected geometric operations.
Support function like representations for nonconvex objects are also
indicated. c© 1998 Academic Press

Key Words: support function; convexity; shape representation
and analysis; polar body; mathematical morphology; Legendre
transformation; Fourier transform.

1. INTRODUCTION

The significant role that aconvex bodyplays inshape descrip-
tion andanalysis(in fields such as computer vision, graphics,
and image processing) does not require any elaboration. Not
only does the domain of convex bodies provide a suitable space
for theorizations and experiments, but one also notices that even
in dealing with a complex geometric object, the most frequently
adopted technique is either to approximate it by a convex object
or to decompose it into a union of convex constituents. Obvi-
ously the representations and manipulations of convex bodies
remain foremost issues in computer vision, graphics, and other
related fields.

In classical mathematics the most widely used representation
scheme for convex bodies is thesupport function representation
[3, 13, 29]. It was introduced by Minkowski in 1903, and has
been extensively studied by mathematicians thereafter.

The representation scheme goes as follows. LetA⊂Rd be
a convex body (i.e., nonempty compact convex set) in the real
Euclideand-dimensional spaceRd. Thesupport function H(A,
v) of A for all v∈Rd (providedv 6= 0; i.e.,v is an arbitrary vector
different from the origino) is given by

H (A, v) = sup{〈a, v〉 |a ∈ A}, (1)

where “sup” stands for supremum or least upper bound, and
〈a, v〉 denotes the inner/scalar product of two vectorsa andv
(the inner product is also denoted by other notations such asa·v
or in matrix form asaTv, etc.).

SinceH (A, λv)= λH (A, v) for any real numberλ>0, the
support functionH (A, v) is completely determined by its value
on the unit sphere‖v‖=1, where‖v‖ denotes the Euclidean
norm of the vectorv (i.e., ‖v‖= (〈v, v〉)1/2). Thus, if u de-
notes a unit vector (i.e.,u∈Sd−1, whereSd−1 is the unit sphere
in Rd with center at the origin), it is most convenient to use
the function H (A, u) as the support function ofA. H (A, u)
is a complete representationof the convex bodyA, since the
values ofH (A, u) for all u∈Sd−1 completely specifyA such
that

A = {x ∈ Rd | 〈x, u〉 ≤ H (A, u) for all u ∈ Sd−1}, (2)

which, in words, meansA is the intersection of all the halfspaces
〈x, u〉≤ H (A, u).

Although a large part of the theory of convex bodies in math-
ematics usesH (A, u) as the standard representation of a convex
body A, in the fields of computer vision, graphics, or image
processing the use of the support function representation is still
quite limited. One primary reason is that (i) the functionH (A, u)
is, in general, a continuous function ofu, whose closed-form
specification may not be readily available. It is, therefore, be-
lieved that such a representation is not computationally conve-
nient in most of the situations. (ii) In addition, it appears that the

379
1077-3142/98 $25.00

Copyright c© 1998 by Academic Press
All rights of reproduction in any form reserved.



                 

380 GHOSH AND KUMAR

H (A, u)-representation is less intuitive than the boundary repre-
sentation or halfspace representation of convex bodies. (iii) We
must also mention that a number of representation schemes
that are currently in vogue in the vision- and graphics-related
fields are nothing but slight variants of the support function rep-
resentation, though they cannot be immediately recognized as
such.

In this paper, after presenting the preliminaries on support
function representation, we first attempt to show that the repre-
sentation is not as nonintuitive as it seems at first sight
(Section 2). We then show that thesupport function representa-
tion of convex bodies can be very effectively used in computing
variety of geometric operations within a single framework. The
idea of a single framework is to establish that such geometric
operations are nothing but simple algebraic transformations of
the support functions of the operand objects (Section 3). The
support function, it is shown, can be viewed not as a single
representation, but one of aclassof representation schemes. A
number of other representation schemes for convex curves and
bodies, which may appear quite dissimilar, can be established
as schemes that belong to the same class (Section 4). One more
feature of support function representation, though not reported
adequately in the paper, is also mentioned. We notice that some
of the algebraic manipulations of support functions indicate in-
teresting but, to the best of our knowledge, hitherto unknown
geometric operations (Section 5). It also appears that we can
devise “support function-like” representations for geometric ob-
jects which are nonconvex.

Remark. (1) It is beyond the scope of this paper to point
out, even briefly, the specific application areas where the sup-
port function class of representations have already been in use.
Apart from the shape representation application, the other areas
include the Hough transform in image processing [31], grasps
or probes in the realm of robotics [15, 31], convex hull, intersec-
tion, and such operations in computational geometry, interpre-
tation of deforming shapes in high-level vision [23], morpho-
logical operations in mathematical morphology [30], offsetting
in CAD, Steiner symmetral in medical CAT scanning [9], and
so on. The reader may get a glimpse of such applications from
the rest of the paper. (2) Various geometric computations by
means of support functions become particularly remunerative
because of its rich theory already available in mathematics.
In this paper we make use of the classical results whenever
needed.

Note. For indicating a vector or a point we use bold letters
such asu, v, x, while capital letters such asA, B, X are used to
indicate a set (of points) in a vector space. Though in most of
the places we use Greek letters for real numbers (scalars), we,
for pragmatic reasons, are not consistent. For example, the coor-
dinate of a pointx in R2 is denoted by the conventional (x, y)
notation, thoughx, y are real numbers. To avoid any confusion
most of the notations are described wherever they are being used
in our presentation.

2. SUPPORT FUNCTION REPRESENTATION:
SOME PRELIMINARIES

2.1. A Support Function Is Signed Distance

If H (A, u)<∞ (this condition ensures thatA is bounded)
then the point set

L(A, u) = {x ∈ Rd | 〈x, u〉 = H (A, u)} (3)

is obviously thesupporting hyperplaneof A with outward/outer
normalu. (Notice that the supporting hyperplane also specifies
a halfspace defined by〈x, u〉≤ H (A, u).) In R2, for example,
a supporting hyperplane becomes a supporting line ofA with
outer normalu (Fig. 1). It is easy to see that the support function
H (A, u) is precisely the “signed distance” from the origino
to the supporting hyperplaneL(A, u). This distance is to be
considered positive ifA and the origin lie on the same side
of the supporting hyperplane, negative ifA and the origin are
separated by the supporting hyperplane, and zero if the origin
lies in the supporting hyperplane.

Note. It is, therefore, convenient for all practical purposes
to assume that the origin lies in the interior ofA, so that the
function H (A, u) is positive for everyu.

To provide examples we consider three simple 2D convex
figures—a unit circle having its center at the origin, a triangle,
and an ellipse, and show their correspondingH (A, u)’s in Fig. 2.
Notice that for the unit circle whose center is ato, H (A, u)= 1
for all u. In fact, for some simple convex bodies one may obtain
closed-form representations of their support functions:

1. For a singleton point set{a} in Rd, H ({a}, u)=〈a, u〉.
2. For a ballBα having radiusα and centero, H (Bα, u)=
〈αu, u〉=α.

3. For a line segmentLab joining pointsaandb, H (Lab, u)=
max(〈 a, u〉, 〈b, u 〉).

2.2. From Support Function Representation to Boundary
Representation and Vice Versa

Support function to boundary points.Assume that the sup-
port function H (A, u) of a convex bodyA is given for all

FIG. 1. The support functionH (A, u) is the signed distance from origino to
the hyperplaneL(A, u).
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FIG. 2. The support function representation of some typical convex figures; since inR2 a unit vectoru= (cosθ, sinθ ), it is specified in the graph by the angleθ
(in radians) along thex-axis and the corresponding value ofH (A, u) along they-axis.
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u∈Sd−1. How do we determine the boundary points ofA? We
answer this question by following the approach given in [3].

The boundary points ofA where the outer normal is eitheru
or parallel tou is precisely the set of points

F(A, u) = L(A, u) ∩ A. (4)

F(A, u) is termed theface of A having outer normalu (see
Fig. 1). Obviously, the dimension ofF(A, u) is at mostd− 1.

Now let uk be some fixed direction andF(A, uk) be the
face of A having the outer normaluk. Our task is to deter-
mine F(A, uk). Since F(A, uk) is a subset of the supporting
hyperplaneL(A, uk), for any pointx∈ F(A, uk) it must satisfy
(because of Eq. (3))

〈x, uk〉 = H (A, uk). (a)

Moreover,F(A, uk) is a subset of the convex bodyA too. So a
pointx of F(A, uk) must also satisfy, for allu, all the following
inequalities (see Eq. (2))

〈x, u〉 ≤ H (A, u). (b)

Now if w is a unit vector in an arbitrary direction andu= uk+
λw, whereλ>0, then using Eqs. (a) and (b) we can write,

〈x,w〉 ≤ H (A, uk + λw)− H (A, uk)

λ
. (c)

Therefore, lettingλ→ 0,

〈x,w〉 ≤ H ′w(A, uk), (5)

where H ′w(A, uk) is the directional derivativeof H (A, u) at
u= uk, in the direction of the unit vectorw. (On the question
of the existence of the directional derivatives we refer the reader
to [29], pp. 25 and 40.)

If we consider all thew’s (i.e., unit vectors in all directions),
then the inequalities of Eq. (5) represent the intersection of the
corresponding halfspaces, and that intersection is precisely the
faceF(A, uk).

Thus one arrives at the following proposition.

PROPOSITION1. If H (A, u) is the support function of a con-
vex body A, then the face F(A, uk) of A having the outer normal
uk has the support function H′u(A, uk), i.e.,

H ′u(A, uk) = H (F(A, uk), u).

According to Proposition 1, the support function ofF(A, uk)
can be determined if the support functionH (A, u) of A is known.
Notice thatF(A, uk) is itself a convex body of dimension at
mostd− 1. Therefore, by repeated application of the directional
derivative one eventually (after at mostd steps) reaches a face
whose dimension is zero; i.e., the face is a singleton point set.

The support functionH ({x}, u) of a singleton point set{x}
is simply〈x, u〉. If the coordinates of the pointx= (x1, x2, . . . ,

xj , . . . , xd) andu= (u1, u2, . . . ,u j , . . . ,ud), then

xj = ∂H ({x}, u)

∂u j
,

where∂H/∂u j denotes apartial derivativeof H with respect
to u j .

Remark. The procedure given above to determine the bound-
ary points from the support function is for general convex bodies
in ad-dimensional space. But for 2- or 3-dimensional bodies, the
procedure reduces to much simpler ones. For example, (1) if the
outer normal directions of two adjacent edges of a convex poly-
gon areu1 andu2, then the intersection of the corresponding
supporting linesL(A, u1) and L(A, u2) (whose equations can
be obtained by using Eq. (2)) gives the vertex ofA at which the
two edges meet. (2) Almost similar consideration follows for a
convex polyhedron too, where the intersection of the supporting
planes corresponding to two adjacent facets (i.e., 2-dimensional
faces or planar faces of a polyhedron) determine their common
edge line, and so on. (3) The procedure turns out to be partic-
ularly simple for convex bodies whose boundaries aresmooth.
(For a formal definition of a smooth boundary, note that a sup-
porting hyperplaneL(A, u) is calledregular if it has only one
point in common withA; i.e., the corresponding faceF(A, u)
is a single point. IfA has only regular supporting hyperplanes,
we say that the boundary ofA is smooth.) For such smooth-
boundary convex bodies, it is easy to derive the following pro-
cedure which we state as a proposition.

PROPOSITION2. If a convex body A has only regular support-
ing hyperplanes, then

xj = ∂H (A, u)

∂u j

holds for the coordinates of each of its boundary pointsx.

From boundary points to support function. H(A, u) can be
obtained using Eq. (1). Clearly, instead of using every point
a∈ A, it is sufficient to consider only the boundary points ofA
there.

2.3. Support Function Transforms a Line into a Point

In this section we shall confine ourselves inR2 (i.e., to 2-
dimensional convex figures), though the approach is easily ex-
tendible to higher dimensions. In higher dimensions the concept
of “line” has to be replaced by “hyperplanes.”

Theprinciple of dualitybetween points and lines inR2, which
essentially consists of transforming a line into a point, has been
used very extensively from the classical projective geometry to
the Hough transform in image processing. It is also known that
the support function of a convex polygon provides one natural
transformation of this kind.
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FIG. 3. Transforming a line into a point: (a) the coordinates of the vertices ofA are (2,−5), (6,−1), (1, 5), (−4, 3), (−5,−3) in thexy-space; (b)A in the
θρ-space (i.e., plot ofθ alongx-axis andρ alongy-axis) where a line becomes a point and a point becomes a sinusoidal curve; (c)A in thest-space (i.e., plot ofs
alongx-axis andt alongy-axis) where again a line becomes a point but a point becomes a circle; (d) the transformation of the point (3, 2) (in thexy-space) into a
circle in thest-space.

θρ-space. Consider a convex polygonA in the Cartesian
coordinate system (Fig. 3a). Since apoint is the primitive entity
in this system, it is generally referred to as thepoint coordinate
space. However, since the coordinate of a pointx in this system
is conventionally denoted by (x, y) in R2, we shall simply call
it the xy-space. For each edge ofA there is only one support-
ing line, and, if the outer normal direction of an edgeei is ui

then the equation of the corresponding supporting lineL(A, ui )
would be (refer to Eq. (3))〈x, ui 〉= H (A, ui ). SinceH (A, ui )
is nothing but the distance from the origino to the edgeei (refer
to Section 2.1), we may follow a more conventional notation
ρi to denote this distance, i.e.,H (A, ui )= ρi . Note that, in the

2-dimensional space a unit vectoru∈S1 is uniquely determined
by the angleθ between the positivex-axis andu (θ varies from
0 to 2π radians), i.e.,u= (cosθ, sinθ ). Therefore, the equation
of L(A, ui ) (see Fig. 3a) can be expressed as

x cosθi + y sinθi = ρi . (6)

(Equation (6) is sometimes referred to as thenormal equation
of a straight line.)

If we now consider a new coordinate system havingθ and
ρ values as its axes, the lineL(A, ui ), which is completely
specified byθi andρi , will be represented as a point in that
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space having the coordinate (θi , ρi ) (Fig. 3b). Let us refer to
this space as theθρ-space, or, more generally, as thesupport
function space. Obviously, a point in thexy-space will be trans-
formed into a sinusoidal curve in theθρ-space. The reason is,
if (xi , yi ) is the Cartesian coordinate of some point, say of the
vertexvi of A, then its support functionH ({vi }, u) is 〈vi , u〉.
Using the conventional notationsH ({vi }, u)= ρ, vi = (xi , yi ),
andu= (cosθ, sinθ ), we can write

ρ = xi cosθ + yi sinθ = 3 sin(θ + φ), (7)

where3= (x2
i + y2

i )
1
2 andφ= tan−1(xi /yi ). Equation (7), which

is clearly a sinusoidal curve, is the representation of the point
(xi , yi ) in theθρ-space. To sum up, a convex polygonA in the
xy-space transforms in theθρ-space into a sequence of sinu-
soidal curves representing its vertices and the intersection point
between two consecutive sine curves representing the respective
edges ofA (Fig. 3b).

In the same way we may argue out the representations of a
circle, ellipse, etc. in theθρ-spaces which have been depicted
earlier in Fig. 2.

st-space. A slight variation of theθρ-space will be of use
to us in the future. Essentially it is apolar transformationof the
θρ-space. Let

s= ρ cosθ, t = ρ sinθ. (8)

Assuming a system having the coordinate axess andt , respec-
tively, we can conceive of thest-space. In thest-space the line
given by Eq. (6) is being represented again as a point having co-
ordinatessi = ρi cosθi andti = ρi sinθi (Fig. 3c). On the other
hand, a point is transformed into a circle. To see this, use Eq. (8)
to writeρ= (s2+ t2)

1
2 andθ = tan−1(t/s), and substitute these

values into Eq. (7) which, after simplification, reduces to

(
s− xi

2

)2
+
(
t − yi

2

)2
=

√

x2
i + y2

i

2

2

. (9)

Equation (9) states that a point (xi , yi ) in thexy-space is trans-
formed in thest-space into a circle whose center is at (xi /2, yi /2)

and the radius is equal to
√

x2
i + y2

i /2. This circle always passes
through the origin (0, 0) and (xi , yi ), and intersects thes-axis and
the t-axis at the points (xi , 0) and (0, yi ), respectively (shown
separately in Fig. 3d). Therefore, the vertices of a convex poly-
gon in thexy-space transform into circular arcs in thest-space,
and the intersection point between two consecutive arcs repre-
sents the corresponding edge ofA (Fig. 3c).

Remark. The transformation of a circle in thexy-space hav-
ing radiusα and centero is particularly interesting. In the
st-space it transforms into the same circle; that means, it remains
invariant.

FIG. 4. An example where the resulting functionH (A, v)× H (B, v) cannot
be a valid support function; the supporting line corresponding to the value
H (A, u3)× H (B, u3) is a redundant line.

2.4. Necessary and Sufficient Conditions for a Function
To Be a Support Function

The support functionH (A, v) (see Eq. (1)) is a scalar func-
tion of the vectorv and hence, in the present case, a mapping
from Rd to R. A natural question is which functions fromRd to
R could be characterized as support functions. This question is
particularly important to us since in the next section we will be
concerned whether a functionH (A, v)× H (B, v) resulting from
some operation× on the given support functionsH (A, v) and
H (B, v) is a valid support function or not. Consider, for exam-
ple, the situation shown in Fig. 4, where no object could have all
the support function valuesH (A, u1)× H (B, u1), H (A, u2)×
H (B, u2), H (A, u3) × H (B, u3), H (A, u4) × H (B, u4), since
the supporting line corresponding to the valueH (A, u3)×
H (B, u3) is a redundant line.

For the characterization of support function, we may state the
following result:

PROPOSITION3. (a) Every real-valued function F(v) defined
for all v ∈ Rd and satisfying the properties

1. F(o) = 0
2. F(λv) = λF(v), for λ>0
3. F(v+ w)≤ F(v)+ F(w)

is a support function of a convex body.
(b) If F(v) is a support function then the convex body it re-

presents must be the intersection of all the halfspaces〈x, v〉≤
F(v).

Part (a) of the result is a classical one whose proof can be found
in [3]. Part (b) follows easily from Eq. (2). We also refer the
reader to [15] for a review on the topic of consistency checking
of support functions.
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FIG. 5. The conditionF(v+w)≤ F(v)+ F(w) ensures that the support func-
tion does not define any supporting hyperplane which is redundant.

(Remark. Condition 3 in the proposition, i.e.,F(v + w)≤
F(v)+ F(w), appears to be most nonintuitive compared to the
other two conditions. However, its connection with the question
of redundant halfspace can be easily demonstrated.

Consider Fig. 5 where we show a part of the boundary of a
convex bodyA (drawn by a solid curve line). Letu1 andu2 be
two arbitrary unit vectors, and letH (A, u1) and H (A, u2) be
the corresponding support function values which are denoted
by the line segmentsoa andob, respectively; the correspond-
ing supporting lines are, respectively,am andbm in the figure
(herem is the intersection point of the two supporting lines). Let
v= u1+ u2, and letL be the supporting line ofA having outer
normalv. It is obvious that if such a lineL moves beyond the
pointm, i.e., beyondL ′, the line becomes a redundant supporting
line.

Now assume that the angle betweenu1 andu2 is φ. There-
fore, ‖v‖=2 cos(φ/2). That means, a supporting line having
outer normalv will not be redundant if the corresponding sup-
port function valueH (A, v)≤ 2 cos(φ/2) · |oc| (the pointc is
the intersection point ofL ′ with the line in the direction ofv;
i.e.,mcis perpendicular tooc). By a simple geometric argument
from the figure we can show that|oa|+ |ob| =2 cos(φ/2) · |oc|.
That means a supporting line will not be redundant if the cor-
responding support functionH (A, v)≤ |oa| + |ob|; i.e., H (A,
u1+ u2)≤ H (A, u1)+ H (A, u2).)

3. GEOMETRIC OPERATIONS BY MEANS
OF SUPPORT FUNCTIONS

We assume that the support functionsH (A, u) andH (B, u) of
two convex bodiesA andB are given. We now show that some
simple algebraic operations on the support functions result in
fairly complicated geometric operations involving the bodiesA
andB.

3.1. MAX and MIN Operations (Convex hullandIntersection)

MAX operation. The max operation is defined as

max{H (A, u), H (B, u)},

for everyu∈Sd−1, where max(α, β) specifies the maximum of
the two real numbersα andβ.

It is not difficult to prove that the max operation results in
theconvex hulloperation of the union ofA andB. We need the
following proposition toward that end.

PROPOSITION4. If H (A, u) and H(B, u) are the support func-
tions of two convex bodies A and B, then the following inequality

H (A, u) ≤ H (B, u) for all u

holds if and only if A⊆ B.

The proof of the proposition follows immediately from Eqs. (1)
(2). The reader may also refer to [3].

We can now state and prove the main result concerning the
max operation.

PROPOSITION5. (a) The functionmax{H (A, u), H (B, u)} is
a support function.

(b)max{H (A, u), H (B, u)}= H (C, u), where C= conv(A∪
B). (Hereconv(X) denotes the convex hull of the set X.)

Proof. (a) Refer to Proposition 3a. Conditions 1 and 2 obvi-
ously hold for max{H (A, u), H (B, u)}, since they hold for both
H (A, u) andH (B, u). Only the condition 3, i.e., the subadditiv-
ity condition, requires to be proved.

Let us writeF(u)= max{H (A, u), H (B, u)}, and assume that
u1, u2 are two arbitrary unit vectors.

F(u1)+ F(u2) = max{H (A, u1), H (B, u1)}
+max{H (A, u2), H (B, u2)}
≥ H (A, u1)+ H (A, u2)

≥ H (A, u1+ u2), sinceH (A, u) is a support

function.

Similarly, F(u1)+ F(u2)≥ H (B, u1+ u2).
Furthermore, sinceF(u1+u2)= max{H (A, u1+ u2), H (B,

u1+ u2)}, F(u1+ u2) is either equal toH (A, u1+ u2) or equal
to H (B, u1+ u2).

Therefore,F(u1)+ F(u2)≥ F(u1+ u2). That means, max{H
(A, u), H (B, u)} is a support function of some convex body,
say,C.

(b) Let max{H (A, u), H (B, u)}= H (C, u), whereC is a con-
vex body. SinceH (C, u)≥ H (A, u) and alsoH (C, u)≥ H (B, u)
for all u, according to Proposition 4,C ⊇ A∪ B.

Let us assume that the convex hull conv(A∪ B) is notC, but
conv(A∪ B)=C′, andC′ is strictly smaller thanC, i.e.,C′ ⊂C.
Therefore, according to Proposition 4,H (C′, u)≤ H (C, u) for
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FIG. 6. Demonstration of the max operation: (a) input convex polygonsA andB (in thexy-space); (b) support function representations ofA andB (theθρ-space);
(c) max{H (A, u), H (B, u)} (theθρ-space); (d) the resulting convex polygonC (in thexy-space) whose support function representation is max{H (A, u), H (B, u)}
as shown in (c); (e) max operation in thest-space, which is nothing but the union∪ of the two regions in thest-space corresponding toA andB polygons.
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all u. For someu, sayu1, let H (C′, u) be strictly smaller than
H (C, u), i.e., H (C′, u1)< max{H (A, u1), H (B, u1)}. But that
is not possible. That means,C=C′. j

We show two convex polygonsA andB (in thexy-space) in
Fig. 6a and their support function representations (i.e.,A andB
in the θρ-space) in Fig. 6b. The max operation of the support
functions is to take, for each fixedθ , the maximum of the two
ρ’s. It is shown in Fig. 6c. The resulting polygon which is equal
to conv(A∪ B) is presented in Fig. 6d.

Remark. In Fig. 6e we show the max operation done in the
st-space. In that space the max operation turns out to be nothing
but the set union operation. In this connection it may be of some
use to view the representations of an object in various spaces
as variousgeometric transformations. For example, we may say
that a geometric transformationτθρ transformsA to H (A, u), or,
transformationτst transformsA to its st-space form. Then one
can write

conv(A∪ B)︸ ︷︷ ︸
xy-space

≡ max(τθρ (A), τθρ (B))︸ ︷︷ ︸
θρ -space

≡ τst(A) ∪ τst(B)︸ ︷︷ ︸
st-space

.

MIN operation. The min operation is similarly defined as

min{H (A, u), H (B, u)},

for everyu∈Sd−1, where min(α, β) denotes the minimum of
the two real numbersα andβ.

The min operation, it is not difficult to show, performs the in-
tersection operationA∩ B. But unlike the previous case, min{H
(A, u), H (B, u)} is not a support function. As a result some of
the supporting hyperplanes defined by min{H (A, u), H (B, u)}
may be redundant. But the common intersection of all the halfs-
paces (some of which may be redundant corresponding to the re-
dundant hyperplanes) defined by the function min{H (A, u), H
(B, u)} will result in A∩ B.

To give an example we consider the same two polygons pre-
sented in Fig. 6a, and show the function min{H (A, u), H (B, u)}
in Fig. 7a. The corresponding supporting linesei ’s are depicted
in Fig. 7b. Note that the supporting linese1 ande2 are redundant.
However, the common intersection of the halfspaces defined by
all the supporting lines isA∩ B which is shown in Fig. 7c.

Remark. In the latter part of this paper we shall talk about
polar dualityof a convex body and describe how such a duality
operation can be used to remove redundant supporting lines.

3.2. Addition and Subtraction Operations(Minkowski
Addition/Dilation andMinkowski Decomposition/Erosion)

Addition operation. Theadditionof two support functions
is defined as

H (A, u)+ H (B, u),

for everyu∈Sd−1, where+ denotes the arithmetic addition of
the two real numbers.

The geometric operation performed by the addition operation
is of importance for various reasons. We first state the geometric
operation (in the form of a proposition) and then briefly mention
its significance.

PROPOSITION6. (a) The function H(A, u)+ H (B, u) is a sup-
port function.

(b) H(A, u)+ H (B, u)= H (A⊕ B, u), where⊕ denotesthe
Minkowski additionof two point sets.

(If A and B are two arbitrary sets of points in the real
Euclidean d-dimensional spaceRd, their Minkowski addition,
A⊕ B, is defined as

A⊕ B = {a+ b | a ∈ A, b ∈ B},

where+ denotes the vector addition of two points; A and B are
called the summands of the sum A⊕ B.

It can also be expressed in terms of the set union and geo-
metric translation operations. If Ax denotes the translate of a
set A by a vectorx, that is, Ax = A⊕{x}, then it is easy to see
that

A⊕ B = B⊕ A =
⋃
b∈B

Ab =
⋃
a∈A

Ba.

Note. The proposition simply states that Minkowski addi-
tion reduces to arithmetic addition of two real numbers in the
support function space. It is a well-known result and a simple
proof of the proposition can be found in [17].

The reader may be aware that Minkowski addition⊕ plays
a fundamental role inshape description and analysis. The lin-
ear combination of convex bodieshas been extensively studied
under the classical convexity theory. The study becomes par-
ticularly interesting because ifλ1, λ2, . . . , λn are positive real
numbers andA1, A2, . . . , An are convex bodies then their linear
combinationλ1A1⊕ λ2A2⊕ · · · ⊕ λn An also turns out to be a
convex body. Its application in recent times includes the disci-
pline of mathematical morphologywhere Minkowski addition
(calleddilation in that discipline) is used as the kernel operator
for image processing and analysis [30]. In robotics, Minkowski
addition operation is a primary tool to constructconfiguration
spacefor motion planning [20]. The other important application
domains are blending and offsetting in CAGD [22, 27], geo-
metric modeling [10, 25], textured object modeling, computer
animation [16], type font design [19, 28], etc.

In Fig. 8 we present an example. The two summand poly-
gonsA andB are shown in Fig. 8a and their support functions
H (A, u), H (B, u) in Fig. 8b. The sumH (A, u)+ H (B, u) is
shown in Fig. 8c, whereas the convex polygon corresponding to
H (A, u)+ H (B, u) is shown in Fig. 8d. This polygon is equal
to A⊕ B.
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FIG. 7. Demonstration of the min operation (for input polygons and their support functions, refer to Figs. 6a and 6b): (a) min{H (A, u), H (B, u)} drawn by solid
lines, dashed lines indicateH (A, u), H (B, u) separately (it is theθρ-space); (b) supporting lines corresponding to the function min{H (A, u), H (B, u)} as shown
in (a); supporting linese1 ande2 are redundant; (c) common intersection of the halfspaces defined by the supporting lines gives a convex polygon which is equal
to A∩ B.

Subtraction operation. Thesubtractionoperation (which is
nothing but theinverseof addition operation) is defined as

H (A, u)− H (B, u),

for everyu∈Sd−1, where− denotes the arithmetic subtraction
of one real number from another.

The functionH (A, u)− H (B, u), in general, is not a support
function. This can be understood by examining the following
two cases.

• Case I. LetA andB be two given convex bodies such that
one of the Minkowski summands ofA is the convex bodyB,
i.e., A= B⊕C. Then according to Proposition 6,H (A, u)=

H (B, u)+ H (C, u), and thereby,H (A, u)− H (B, u) is a sup-
port function corresponding to the other summandC.
• Case II. LetA 6= B⊕C, i.e., B is not a summand ofA.

In this caseH (A, u)− H (B, u) cannot be a support function
(because if it is then it implies that there exists a convex bodyC
whose support function isH (A, u)− H (B, u) andB⊕ C= A,
which is contrary to our initial assumption).

In Fig. 9 we present a case whereH (A, u)− H (B, u) is not a
support function. We take the input polygons which are the same
two polygons considered in the example of Fig. 8a. We show
the functionH (A, u)− H (B, u) in Fig. 9a. The corresponding
supporting linesei ’s are depicted in Fig. 9b. Notice that some
of the supporting lines are redundant.
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FIG. 8. Demonstration of theadditionoperation: (a) input convex polygonsA andB (in thexy-space); (b) support function representations ofA andB (theθρ-
space); (c)H (A, u)+H (B, u) drawn by solid lines (theθρ-space); (d) the resulting convex polygonA⊕ B (in thexy-space) whose support function representation
is H (A, u)+ H (B, u) as shown in (c).

It has been shown (for example, refer to [11, 30]) that the com-
mon intersection of all the halfspaces (some of which may be
redundant corresponding to the redundant hyperplanes) defined
by H (A, u)− H (B, u) will result into Aª B, whereª denotes
theMinkowski decompositionoperation (also known aserosion
in the literature of mathematical morphology). (Minkowski de-
compositionAª B is the inverse of Minkowski addition in a
“restricted” sense. It is defined as

Aª B =
⋂
−b∈B̌

A−b.

The setB̌={−b | b∈ B} is called thesymmetrical setof B with
respect to the origin point.)

3.3. Reciprocal Operation (Polar Duality)

Unlike the previously mentioned operations which are all bi-
nary operations, thereciprocal operation is a unary operation.
The reciprocal operation on a support functionH (A, u) is de-
fined as

1

H (A, u)

for everyu∈Sd−1.
The significance of the geometric transformation performed

by means of the reciprocal operation can be properly understood
if we represent 1/H (A, u) in thest-space.

At this point, to keep our explanation intuitively simple, we
shall concentrate only on convex polygons in the plane (i.e.,
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FIG. 9. Demonstration of thesubtractionoperation (for input polygons and their support functions, refer to Figs. 8a and 8b): (a)H (A, u)− H (B, u) drawn by
solid lines, dashed lines indicateH (A, u), H (B, u) (it is theθρ-space); (b) supporting lines corresponding to the functionH (A, u)− H (B, u) as shown in (a) some
supporting lines are redundant; (c) common intersection of the halfspaces defined by the supporting lines gives a convex polygon which is equal toAª B.

in R2), though the basic theory is equally applicable to higher
dimensional convex bodies.

Recalling that inR2 we use the notationρ rather thanH (A, u),
the representation of the reciprocal 1/ρ in thest-space becomes
(refer to Eq. (8))

s= cosθ

ρ
, t = sinθ

ρ
. (10)

Eliminatingρ andθ from Eq. (10) using Eq. (7), we obtain

xi s+ yi t − 1= 0. (11)

Equation (11) states that a point (xi , yi ) in the xy-space, by
means of reciprocal operation, becomes a straight line in the
st-space whose equation will bexi x+ yi y− 1= 0.

Exactly in the same way we can show that a straight line
ai x+ bi y+ ci = 0 in thexy-space, by the reciprocal transfor-
mation, becomes a point in thest-space whose coordinate will
be (−ai /ci ,−bi /ci ).

In Fig. 10 we give two examples to demonstrate the geometric
interpretation of the reciprocal operation.

(Note. In the second example (i.e., quadrilateral), the poly-
gonA is completely outside the unit circle centered at the origin
(Fig. 10a); in that case the transformed polygon is completely in-
side the unit circle (Fig. 10c). In the first example, the polygonA
is partly inside and partly outside the unit circle (Fig. 10a) and so
is the transformed polygon (Fig. 10c). The distinction between
these two cases will be clearer from our subsequent discussion.)

In summary, the reciprocal operation of the support function is
adual transformation—a transformation that transforms a point
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FIG. 10. Two examples of reciprocal operation onH (A, u) and corresponding geometric transformation: (a) Input polygonA (xy-space); unit circle is also
shown; (b) Support functionH (A, u) (dotted) and its reciprocal 1/H (A, u) (θρ-space); (c) Polygon corresponding to 1/H (A, u) in thest-space; input polygonA
and unit circle (dotted) are drawn in the same space to show the relationship among them.
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FIG. 11. Polar duality: Polar lineL of a pointp.

into a line and a line into a point. Since there exist many such
dual transformations, it is required to characterize the type of
duality obtained by the reciprocal transformation. We show that
it is nothing but the well-knownpolar dualitywhich is briefly
described below.

Let p= (xi , yi ) be a given point andB be the unit circle about
the origin (i.e., having equationx2+ y2= 1). With respect to
the positions ofp andB, there arise two cases.

(i) If p lies outsideB (Fig. 11a), draw tangents toB from p.
Let the tangents touchB in pointsb1 andb2. The lineL through
b1 andb2 is called thepolar of the pointp. SinceL is perpen-
dicular to the lineop and the equation ofB can be rewritten as
x · x+ y · y− 1= 0, it is easy to show that the equation ofL will
bexxi + yyi − 1= 0.

(ii) If p lies insideB (Fig. 11b), draw a lineL ′ throughp
perpendicular toop. Let L ′ intersectB at the pointsb1 andb2,
and letT1 andT2 be the tangent lines toB through those two
pointsb1 andb2, respectively. The lineL drawn through the
intersection point ofT1 andT2 and perpendicular toop is the
polar line ofp in this case. The equation ofL, in this case too,
will be xxi + yyi − 1= 0.

Note. Another way to look at the pointp and its polarL is
to observe thatL is perpendicular to the lineop at the pointp′

such that|op| |op′| =1.
Thus the dual transformation we obtain by the reciprocal op-

eration is the polar duality. The polar duality, one may note, not
only transforms a point into its polar line or vice versa, but also
suggests a set transformation in the following way. LetA be a
convex polygon which can be viewed as the intersection of the
halfspaces defined by its boundary lines. By means of polar du-
ality the vertices ofA can be transformed into their polar lines
which, in turn, define a set of halfspaces. The intersection of
these halfspaces results in another convex polygon, sayA∗. The
polygon A∗ is known as thepolar dual(polar body) of A. The
concept of polar dual, the reader may be aware, is widely studied
in the theory of convex bodies.

From the observation that|op| |op′| =1, the polar duality in
the generalRd space is often defined as follows. LetA be a
subset ofRd; the polar dual setA∗ of A is

A∗ = {x ∈ Rd | 〈a, x〉 ≤ 1 for all a ∈ A}. (12)

We now state some properties of polar duality which are of
use to us. (For the proofs of the results refer to [13, 26].)

PROPOSITION7. If A, B are any subsets ofRd then:

(i) A∗∗ = cl conv(A ∪ {o}), where cl A denotesclosureof A
and{o} denotes the origin point.

(In particular, if A is a closed convex set containing the origin
o then A∗∗ = A.)

(ii) A∗∗∗ = A∗.
(iii) (A∪ B)∗ = A∗ ∩ B∗.
(iv) If A and B are closed convex sets containing o then

(A∩ B)∗ = conv(A∗ ∪ B∗).
(v) If A ⊆ B then A∗ ⊇ B∗ and A∗∗ ⊆ B∗∗.

The importance of the polar bodyA∗ in analyzing the prop-
erty of a given convex bodyA has been adequately explored by
mathematicians. The results such as (i) the unit ballB is its own
polar dual, (ii) the ellipsoids (ellipse inR2) have ellipsoids as
polar duals, and (iii) volume(A) volume(A∗) is invariant of the
linear shape ofA (refer to [2]) obviously arouse intrinsic math-
ematical interest in studying polar duality. Here we avoid any
such discussion, but quickly indicate, by means of two examples,
its significance in geometric computing.

• Dual versions of geometric operations: The way set com-
plement operation connects set union and set intersection opera-
tion, in a similar way polar operation connects the max and min
operations as dual operations. Note the following results that we
obtain from Proposition 7 (all throughout we assume that the
origin lies within the bodies):

A∩ B = (conv(A∗ ∪ B∗))∗ (13)
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FIG. 12. Demonstration thatA∩ B= (conv(A∗ ∪ B∗))∗: (a) input polygonsA, B and their polar bodiesA∗, B∗; (b) C= conv(A∗ ∪ B∗) (drawn by solid line)
andD=C∗; note thatD= A∩ B.

conv(A∪ B) = (A∗ ∩ B∗)∗ (14)

These expressions essentially state that the intersection of two
convex bodies (min operation) is equivalent to the convex hull of
the union of their polar bodies (max operation), and vice versa.
In Fig. 12 we demonstrate this result. The input polygonsA, B
and their polar bodiesA∗, B∗ are shown in Fig. 12a. By means of
max operation we compute conv(A∗ ∪ B∗) and then compute its
polar body using the reciprocal operation (Fig. 12b); The polar
body D is equal toA∩ B.
• Removal of redundant supporting lines: We have shown

before that min{H (A, u), H (B, u)}, though eventually result-
ing into A∩ B, is not a support function, and therefore may give
rise to redundant supporting lines (as shown in Fig. 7, for ex-
ample). On the other hand Eq. (13) expresses thatA∩ B can
be obtained by means of a convex hull and polar dual operation
without producing any redundant supporting lines in between.
This observation suggests that the redundant supporting lines
may be removed by means of reciprocal operation.

Note. The conventional polar dual operation (defined by
Eq. (12)) is apoint transformation, i.e., every point of a given
setA is being transformed. In contrast, our way of accomplish-
ing polar dual by the reciprocal 1/(H (A, u)) is a boundary
operation—only the points of the boundary of the setA are
being transformed. As long asA is a convex body andH (A, u)
is a valid support function, the two approaches do not make
any difference. The difference can be seen if a given function
F(u) is not a support function. And it is precisely this differ-
ence that can be utilized to remove redundant supporting lines
from F(u).

We present an example to demonstrate the method. Consider
the example of the subtraction operation where the function
F(u)= H (A, u)− H (B, u) (drawn in Fig. 9a by solid lines) is

not a support function and thereby gives rise to redundant sup-
porting lines (as shown in Fig. 9b). Note that the distance of a
redundant supporting line from the origin is always more than the
essential supporting line in that direction. As a result the reci-
procal operation 1/(F(u)) will transform, in thest-space, the
redundant supporting lines into points which are nearer to the
origin than the points corresponding to the essential supporting
lines (shown asC in Fig. 13). Obviously, the convex hull of those
points (shown asD, which is equal to conv(C)) will contain only
the furthermost points and eliminate the nearer points. Now the

FIG. 13. Removal of redundant supporting lines by the reciprocal opera-
tion (for input polygons and the functionH (A, u) − H (B, u) refer to Fig. 9):
PolygonC (drawn by solid lines) is the representation of the reciprocal 1/

(H (A, u) − H (B, u)) in thest-space; polygonD is equal to conv(C), and the
polygonE= D∗; note thatE becomes equal toAª B as shown in Fig. 9c.
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polar dual of the convex hull (i.e., the reciprocal operation on
the convex hull) will produce the convex figure corresponding
to the functionF(u), but without the redundant supporting lines
(shown asE= D∗ = Aª B in Fig. 13).

3.4. Translation and Scaling Operations
(Offsetting, Rotation, and Scaling)

Simple geometric transformations such as translation or scal-
ing, in theθρ-space, produce more complex transformations in
thexy-space. InR2 such transformations are relatively easy to
follow.

Writing ρ(A, θ ) for the support function, its translation along
the θ -axis by an amountφ is nothing but to setρnew= ρ(A,
θ −φ) which, in turn, is equivalent toρ(rotφ(A), θ ); by rotφ(A)
we mean rotation ofA by an angleφ about the origin. That
means, translation of the support function along theθ -axis is the
rotation of the bodyA in thexy-space (Fig. 14).

On the other hand translation of the support function along
theρ-axis is not a simple geometric transformation in thexy-
space, becauseρ(A, θ )+ λ, whereλ is some positive real num-
ber, is equal toρ(A, θ )+ ρ(Bλ, θ ), whereρ(Bλ, θ ) is the support
function of a ballBλ (i.e., circular disk inR2) having radiusλ
and center at the origin. Thusρ(A, θ )+ λ= ρ(A⊕ Bλ, θ ). That
means, translation of the support function along theρ-axis in the
positive direction is nothing but theoffsetof A by an amountλ
(Fig. 14). (For the definition and utilities of the offset operation,
refer to [8]).

It obviously follows that scaling the support function by some
positive scaling factor is nothing but scaling the bodyA by the
same factor, sinceλρ(A, θ )= ρ(λA, θ ).

FIG. 14. Translation of support function ofA alongθ -axis produces rot(A)
which is a rotated version ofA, whereas translation along the positiveρ-axis
produces offset(A)—offset of A; the polygonsc(A) is a scaled version ofA,
obtained by scaling the support function.

3.5. Symmetric Addition Operation(Symmetrization)

The symmetric additionoperation on a support function
H (A, u) is defined as

1

2
(H (A, u)+ H (A,−u)),

for everyu∈Sd−1.
Noting thatH (A,−u)= H (Ǎ, u), where the seťA={−a |

a ∈ A} (often Ǎ is called thesymmetrical setof A with respect
to the origin point), and recalling Proposition 6, we arrive at the
following result.

PROPOSITION 8. The function1
2(H (A, u)+ H (A,−u)) is a

support function and is equal to H( 1
2(A⊕ Ǎ), u).

The set12(A⊕ Ǎ) is called theSteiner symmetralof A with
respect to the origin point, and the process of generating the set
from A is known assymmetrization. Note that the set12(A⊕ Ǎ) is
acentrally symmetricset whose center of symmetry is the origin.

For example, we consider a convex polygonA (shown in
Fig. 15b) whose support functionH (A, u) is presented in
Fig. 15a. The Steiner symmetral (also the symmetrical setǍ) of
A is given in Fig. 15b and the corresponding functionH ( 1

2(A⊕
Ǎ)) in Fig. 15a. (Note that inR2, Ǎ can be obtained by rotating
A throughπ radians about the origin, and therebyH (A,−u) as
ρ(A, π + θ )).

Remark. For more details on symmetrization we refer the
reader to [1] and [32]. The importance of symmetrization in a
shape analysis task can be easily gauged from the basic idea
behind symmetrization. The idea is to replace a given bodyA
by a more symmetric bodyA′ in such a way that quite a few
properties ofA remain invariant inA′. The study of those prop-
erties in A′ rather than in the original bodyA becomes easier
since the former possesses more symmetry than the latter. Let
us mention a couple of such invariant properties in the case of
the Steiner symmetral:

1. The length of theperimeterof A and1
2(A⊕ Ǎ) is the same.

(One can immediately see here the importance of symmetriza-
tion in dealing withisoperimetric problems.)

2. Thewidthof A and 1
2(A⊕ Ǎ) in any given direction is the

same. (The width ofA in the directionu is given byW(A, u) =
H (A, u)+ H (A,−u).)

3.6. Fourier Series Expansion of the Support Function
and Some Related Geometric Computations

In R2 the support functionρ(A, θ ) is a real-valued integrable
function on [−π, π ]. We may, therefore, consider theFourier
series expansionof the support function. Our interest lies in the
fact that important geometric data like area Area(A), perime-
ter Peri(A), and Steiner pointz(A) can be succinctly expressed
in terms of the coefficients of the Fourier series. Some of the
isoperimetric problems too can be easily formulated and solved
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FIG. 15. Symmetrization of convex body by means of support function: (a)A, B,C denote the support functionH (A, u), H (Ǎ, u), 1
2(H (A, u) + H (A,−u)),

respectively; (b)A is the input convex polygon,B denotes the symmetrical setǍ of A, andC= 1
2(A⊕ B), i.e.,C is the Steiner symmetral12(A⊕ Ǎ).

by means of the Fourier expansion. The Fourier series approach,
one must also note, can be quickly generalized to higher dimen-
sions.

The Fourier series expansion of the support functionρ(A, θ )
of a convex figureA in R2 can be written as

ρ(A, θ ) =
∞∑

n=0

(an cosnθ + bn sinnθ ), (15)

where

a0 = 1

2π

π∫
−π
ρ(A, θ ) dθ, an = 1

π

π∫
−π
ρ(A, θ ) cosnθ dθ

b0 = 0, bn = 1

π

π∫
−π
ρ(A, θ ) sinnθ dθ.

We can now state some useful results:

Area(A) = πa2
0 −

1

2
π

∞∑
n=2

(n2− 1)
(
a2

n + b2
n

)
(16)

Peri(A) = 2πa0 (17)

z(A) = (a1, b1). (18)

For more details the reader may refer to [12].

Remark. There is a host of other geometric operations which
can be easily conceptualized and computed within the sup-
port function framework. For example, theHausdorff distance
dH (A, B) between two convex bodiesAandB can be expressed,

in terms of support functions, as

dH (A, B) = max{|H (A, u)− H (B, u)| |u ∈ Sd−1}. (19)

At present, however, we do not delve further.

4. SOME OTHER REPRESENTATION SCHEMES
WHICH BELONG TO THE SAME CLASS OF THE

SUPPORT FUNCTION REPRESENTATION

The support function representation is one of a class of rep-
resentation schemes that can be expressed in terms of a general
formulation such as the following:

It is to represent a convex body in terms of aboundary parameteras a
function ofouter normal direction(or tangent direction) of the boundary
points of the body. (By boundary parameter one means any representative
geometric characteristic of the boundary of the body.)

The boundary parameter, in case of support function, is taken
to be the signed distance from the origin to the supporting
line/hyperplane at a boundary point. But this is not the only
choice. It is possible to design representation schemes choosing
some other boundary parameters, but always as a function of
outer normal/tangent direction of the boundary. All such repre-
sentation schemes will possess the same basic characteristics as
those of the support function representation. We may say that
all of them belong to the same class of the support function
representation.

In fact, in classical mathematics as well as in computer vision,
graphics, and related fields one comes across a number of rep-
resentation schemes which apparently look very disparate, but
a close examination shows that they belong to the same class
in the above sense. We mention a few of them as demonstrative
examples.
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FIG. 16. The tangent line at a point (x, f ) of the boundary curve subtends an
angleϕ with the x-axis, so the value ofα= tanϕ; the intercept of the tangent
line with they-axis is−β.

4.1. The Legendre Transformation

There are two ways of viewing a classical curve or surface—
either as a locus of points or as an envelope of tangents. The
notion of theLegendre transformationstems from the latter
view. The fundamental idea of the Legendre transformation is
to represent the boundary points of a figure by its “tangent line
coordinates” instead of by its “point coordinates” [5]. Recollect
that the line coordinate of a straight liney−αx+β = 0 is (α, β)
in the straight line space, i.e., in theαβ-space. (In some literature
the line coordinate is taken to be equal to (α,−β).)

We consider a simple example inR2 as shown in Fig. 16. Let
us assume that a part of the boundary curve of a figureA is given
by the equationy= f (x). That part of the boundary, therefore,
can be thought of as a set of points having point coordinates
(x, f (x)). (To simplify the notation we write point coordinate of
a point simply as (x, f ) instead of (x, f (x)).) The straight line
which is tangent to the boundary curve at a point (x, f ) has the
coefficient values,

α = d f

dx
= fx, and β = x fx − f.

Therefore, the line coordinate of the tangent line is (fx, x fx − f ).
In the Legendre transformation the boundary ofA is repre-

sented by the set of tangent line coordinates (fx, x fx − f ), in-
stead of the set of point coordinates (x, f ). The similarity of this
representation with the support function representation is quite
clear now. The “boundary parameter” in this case is they-axis
interceptx fx − f as a function of the tangent directionfx.

For the sake of completeness we mention how to determine
the point coordinates from the tangent line coordinates. Since
α= fx andβ = x fx − f ,

dβ

dα
= βα = x + fx

dx

dα
− d f

dx
· dx

dα
= x,

and

f = −β + x fx = αβα − β.

That means, the point coordinate of the boundary curve is (βα,

αβα −β) if the tangent line coordinate is (α, β).

Remark. The duality between the boundary point coordi-
nates and the tangent line coordinates becomes obvious when
we express the above formulas in the following form:

f + β = xα

α = fx

x = βα

The Legendre transformation is always feasible if the equation

α = fx

can be solved forx, i.e., when f (x) is a differentiable function
and it is possible to establish a one-to-one correspondence be-
tween the points and the tangent lines of the boundary curve.
For example, the Legendre transformation is not well defined if
the boundary curve contains someline segments; similarly, the
Legendre transformation is also not well defined if the boundary
curve has somecorner pointswhere it is not differentiable. For
more details on the Legendre transformation we refer the reader
to [5, 26].

4.2. The Extended Circular Image (Extended Gaussian Image,
Curvature Functions of Convex Bodies)

The extended circular imageis the 2-dimensional counter-
part of theextended Gaussian imagewhich is a representation
scheme for convex polyhedra in the 3-dimensional space [14].
(For orientedC2 surfaces (i.e., twice continuously differentiable
surfaces) one may refer to [24], and for the generalRd space refer
to [3].)

In the extended circular image, the boundary curve is repre-
sented in terms of “radius of curvature”γ as a function of outer
normal directionθ .

To demonstrate the idea we assume that the boundary curve is
described parametrically in terms of the arc-lengths (measured
along the curve from some arbitrary starting point) by the equa-
tionsx= x(s), y= y(s). The functionsx(s) andy(s) are related
to θ by the equations

dx

ds
= −sinθ,

dy

ds
= cosθ. [a]

The radius of curvature can now be obtained by the formula,

γ = ds

dθ
.
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(In the literature one often finds that the radius of curvature is
defined as the reciprocal of the “curvature”κ at each point of
the curve, i.e., asγ (s)= 1

κ(s) .)
It is not difficult to show that

γ (s) = 1
dx
ds · d2y

ds2 − d2x
ds2 · dy

ds

. [b]

The extended circular imageγ (θ ) (i.e.,γ as a function ofθ ) can
be easily obtained now using Eqs. [b] and [a].

Remark. In case the boundary curve is given as a general
parametric equationx= x(t), y= y(t), then the extended circu-
lar imageγ (θ ) can be obtained using the following results in
conjunction with Eq. [b]:

γ (t) =
((

dx
dt

)2+ ( dy
dt

)2)3/2

dx
dt · d2y

dt2 − d2x
dt2 · dy

dt

and

(
ds

dt

)2

=
(

dx

dt

)2

+
(

dy

dt

)2

.

[c]

The reader may recall in this context that the general para-
metric equation of a circle of radiusα, with center at (0, 0)
is x(t)=α cosθ, y(t)=α sinθ ; its parameterization in terms
of arc-length isx(s)=α cos(s

α
), y(s)=α sin(s

α
). One may start

with any of these two forms to obtainγ (θ )=α.

Note. The extended circular image representation is not
mathematically completein the sense that it does not preserve
the position information of the body with respect to some given
coordinate system. The boundary curve can be recovered from
γ (θ ), provided it is convex, uniquelyup to translation. The equa-

FIG. 17. Slope diagram representation of a convex polygon.

tion of the boundary curve can be shown to be

x(s) = x(0)−
θ (s)∫
θ (0)

sinφ · γ (φ) dφ, and

y(s) = y(0)+
θ (s)∫
θ (0)

cosφ · γ (φ) dφ,

where (x(0), y(0)) is the arbitrary starting point wheres= 0, and
θ (0) is the value ofθ ats= 0, etc. For further details the reader
may refer to [4, 14].

4.3. The Slope Diagram Representation

Theslope diagramrepresentation is particularly designed to
represent polygons and polyhedra whose boundaries contain
lines, planes, etc. The basic idea is to arrange thefaces(i.e., pla-
nar faces or facets, edges, vertices, etc.) of a polygon/polyhedron
according to their outer normal directions. For a convex poly-
gon, since all its outer normal vectors lie on a unit circle, the
unit circle is taken to be the basis for its slope diagram repre-
sentation. (For a polyhedron, the basis is the unit sphere.) The
representation scheme goes as follows (Fig. 17):

a. The outer normal direction at each edge of the polygon can
be represented by the corresponding point on a unit circle. It is
called anedge point. (By “corresponding point” one means that
point on the unit circle where the outer normal direction is the
same as the outer normal direction of the edge.)

b. At each vertex of the polygon, it is possible to draw innu-
merably many outer normals filling an angle (supplementary to
the interior angle at the vertex). This set of outer normal direc-
tions at the vertex is represented by the corresponding arc on the
unit circle. It is called avertex arc.
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c. Each edge point is assigned a number which is equal to the
“length” of the corresponding edge. This may be considered to
be the weight of the edge point. No weight is assigned to any
vertex arc.

Any convex polygon can be recovered uniquely (up to trans-
lation) from its slope diagram. To obtain the exact position of
the polygon with respect to some given coordinate system, the
coordinate position (xv1, yv1) of any vertex, say the first vertex
v1, is maintained separately.

One may point out that the slope diagram representation can
be derived from the concept of the extended circular image [14].
Note that, at any point on each edge of a polygon, the value of
the radius of curvatureγ (θ ) tends to infinity. However, the fact
that

∫
ds= ∫ γ (θ ) dθ implies that “the integral of the extended

circular image over some angular interval is equal to the length
of the curve which has normal direction falling in that interval.”
Therefore, each edge of the polygon can be mapped into an
impulse of area equal to the length of the edge. The angle where
this impulse appears is just the outer normal direction of the
corresponding edge. Thus we can write

γ (θ ) =
n∑

i=1

l i δ(θ − θi ), [d]

whenn is the number of edges,l i is the length andθi is the outer
normal direction of thei th edge, andδ denotes the impulse
function. The slope diagram representation is nothing but the
representation of Eq. [d] in a diagrammatic way.

More details on the slope diagram can be found in [11].

4.4. The Normal Transform Representation

Thenormal transformrepresentation [6, 18] is another vari-
ation of the extended circular image. But unlike the extended
circular image, it includes implicitly the exact position informa-
tion of the body. Leta be any point on the boundary of a convex
bodyA, i.e.,a∈ boun(A) and the outer normal vector (not nec-
essarily a unit vector) of the supporting hyperplane ata beva.
The vectorwa is then defined as

wa = −va

〈va, a〉 .

The vectorwa is called the normal transform ofa. By perform-
ing the normal transform of everya∈ boun(A), one obtains the
normal transform representationN (A) of the bodyA.

Dorst and Boomgaard, who proposed the representation
scheme, proved some interesting properties of the normal trans-
form and produced a number of demonstrative examples [6]:

• Since〈a,wa〉=−1, it is easy to prove that the normal trans-
form is aninvolution, i.e.,N−1=N . That means, if we perform
the normal transform onN (A), we get back the boundary ofA.
• If A is a polygon thenN (A) will also be a polygon. The

edges ofA transform to points and vertices ofA transform to
lines by means of normal transform.

• For a parametric curve (x(t), y(t)) in R2, the normal trans-
form representation becomes,

w(t) = (−ẏ, ẋ)

ẋ y− ẏx
(t),

whereẋ denotes differentiation with respect to the parametert ,
etc.

Remark. The reader must have realized by now that the
normal transform representation is essentially the “polar dual”
which had been discussed earlier in Section 3.3.

4.5. The Upper and Lower Slope Transforms

Consider functions defined onRd and whose range is any
subset of the extended reals̄R=R ∪ {−∞,∞}. For any such
function f (x) its upper slope transformis defined as the func-
tion S∨ : Rd→ R̄ and itslower slope transformas the function
S∧ : Rd→ R̄, for everyv∈Rd, such that [21]

S∨(v) = sup
x∈Rd

{ f (x)− 〈v, x〉}, v ∈ Rd

S∧(v) = inf
x∈Rd
{ f (x)− 〈v, x〉}, v ∈ Rd

where “sup” and “inf” denote supremum and infimum, respec-
tively.

Maragos, who proposed the scheme, has shown that the slope
transforms are closely related to the Legendre transformation.
To see the essence of his argument consider a curvef (x) in
R1. Let us further assume thatf (x) is a differentiableconcave
function. (A function f (x) defined on some convex setK is
called concave if and only if

f (λx1+ (1− λ)x2) ≥ λ f (x1)+ (1− λ) f (x2),

where x1, x2∈ K and 0≤ λ≤ 1. A typical example of a
1-dimensional concave function is shown in Fig. 18a.)

In the 1-dimensional space the hyperplane〈v, x〉 becomes
a straight line, sayαx, whereα, x ∈R. Geometricallyαx is a
straight line passing through the origin and having the slopeα

(Fig. 18a). Now consider the upper slope transformS∨(α). It is
easy to see that if a straight line is drawn whose slope isα, but
whosey-axis intercept is equal tof (x1)−αx1 for some point
x1, then that line will pass through the point (x1, f (x1)) of the
curve. Therefore, asx varies the maximum of{ f (x)−αx}can be
obtained when they-axis intercept attains its maximum value.
This occurs when a line having the slopeα becomestangent
to the concave curvef (x). That means, for everyα the upper
slope transformS∨(α)= f (x∗)−αx∗, where fx(x∗)=α (here
fx(x)= (d f (x))/dx). Clearly,S∨ is nothing but the Legendre
transformation.

Exactly in the same way, if one considers a differentiable
convexfunction (a function f is convex if− f is concave), it
can be shown that the lower slope transformS∧(α) becomes
equal to the Legendre transformation (Fig. 18b).
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FIG. 18. Demonstration of the upper and the lower slope transforms.

Note. The reader may take note of the following points.

• The slope transforms and the Legendre transformation are
not exactly the same representation. The Legendre transforma-
tion is not well defined iffx =α cannot be solved forx, while
slope transforms provide a representation even in such a case;
this representation, however, is not mathematically complete in
the sense that it is not possible to recover the original function
from the slope transforms in such a case. The reader may refer
to [21] for further details.
• In fact, the slope transform is more closely related to the

conjugateof a function. Letf (x) be any closed convex function
onRd. The conjugatef c of f is defined as

f c(v) = − inf
x∈Rd
{ f (x)− 〈v, x〉}, v ∈ Rd

= sup
x∈Rd

{〈v, x〉 − f (x)}, v ∈ Rd.

For more details on the conjugate of a function the reader may
refer to [26, 29].
• There is an implicit assumption, in all the previous repre-

sentation schemes, that theorientationof the boundary curve/
surface of the body is known so that one can distinguish, for
example, whether a boundary point has an orientationθ or
π + θ . No such assumption is made in case of the slope trans-
forms.

A few other representation schemes which are also related are
Young–Fenchel conjugate(or simply conjugateof a function
as mentioned above) [21, 26],pedal curve, dual curve[4, 6],
hodograph[7], etc. We request the reader to look into them.

5. CONCLUDING REMARKS: NEW GEOMETRIC
OPERATIONS AND INVESTIGATION TOWARD

NONCONVEX BODIES

After living with the subject for a long time we strongly feel
that the support function and its related representation schemes
should be investigated much further. The following two direc-
tions, we suppose, will be of particular interest: (1) exploration

of some new geometric operations and (2) extension of “support
function-like” representation for nonconvex bodies.

(1) Concerning the first point, we have observed that various
algebraic manipulations of support functions may lead to the dis-
covery of new and unsuspected geometric operations. Currently
we have been investigating further into this direction and hope
to report the progress in near future. Here we merely mention
two such examples.
• The first operation is essentially thepolar dual of the

sum of reciprocals of two support functions. Let A andB be two
convex polygons inR2 and let their respective support functions
beρA(θ ) andρB(θ ). We first form a functionf (θ )= 1

2(1/ρA+
1/ρB). (The factor 1

2 is just a normalization factor to ensure
that if A= B, i.e.,ρA= ρB= ρ then f (θ ) becomes equal to the
reciprocal 1/ρ.) The representation off (θ ) in thest-space gives
rise to a set of pointsP={ f (θ ) cosθ, f (θ ) sinθ | θ ∈ [0, 2π ]}.
The setP is a closed curve enclosing a region which may not
be, in general, a convex region. We take the convex hull ofP,
and then the polar dual of it, i.e., (conv(P))∗. Let us denote
(conv(P))∗ by the notationA¯ B, where “̄ ” is a binary oper-
ation. Note thatA¯ A= A. In Fig. 19 we show two examples
of the A¯ B operation.
• We note thatA¯ B is not equivalent to thepolar dual of

the sum of polar dualsof AandB. We denote the latter asA® B,
and define it asA® B= ( 1

2(A∗ ⊕ B∗))∗. (The factor12 is again a
normalization factor to ensure that ifA= B, thenA® B= A.)
In Fig. 20 we show two examples of the “®” operation where
the input polygons are the same as considered in Fig. 19.

(2) The design of representation schemes for nonconvex bod-
ies must be of an immediate concern. Note that a nonconvex do-
main problem is often transformed into a convex domain prob-
lem either by approximating a nonconvex object to a convex
object, or, by decomposing the nonconvex object into its con-
vex components. It is, however, more parsimonious to design
schemes in which a nonconvex body is directly represented like
a support function. Here we give some hints toward that direction
by means of 2-dimensional examples.
• If A is a nonconvex polygon then the support function

definition, i.e., Eq. (1), cannot be used to representA. This is
because H(A,u) in this case will not contain the complete in-
formation of A, and therefore, the application of Eq. (2) will
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FIG. 19. Two examples of “̄ ” operation: (a) The input polygonsA andB are triangle and pentagon respectively; polygonC= A¯ B is an octagon (drawn by
solid lines). (b) The input polygonsA andB are diamond and square, respectively;C= A¯ B is an octagon (drawn by solid lines).

yield not the original polygonA, but the convex hull conv(A) of
A. So instead of representing the entire nonconvex point setA,
one method is to represent the boundary bdA of the polygonA
which consists of vertices and edges. The idea is, exactly like
those of a convex polygon, a vertex of bdA can be represented
by a sinusoidal curve (in theθρ-space) or a circular arc (in thest-
space), and an edge of bdA by a point (in both the spaces). Such
a representation is depicted in Fig. 21 for a typical nonconvex
polygon.

Remark.

(a) Figure 21b (as well as Fig. 21c) is a self-crossing curve.
If we remove the self-crossing portion of the curve, the rest

FIG. 20. Two examples of “®” operation: (a) The input polygonsA and B are triangle and pentagon, respectively, and polygonC= A® B (drawn by solid
lines). (b) The input polygonsA andB are diamond and square, respectively, andC= A® B (drawn by solid lines).

of curve will represent the valid support function of a convex
polygon which will be nothing but conv(A).

(b) Apart from many other important issues, the issue ofoc-
clusioncan be very clearly explained and dealt with by means of
such a representation. Consider the origino as a vantage point
from where we look at the object. Then theoccluding contour
of the object, i.e., those points where the outer normal of the
contour is at a right angle to the viewing direction, is simply
those points whereρ= 0. In Fig. 22 we present a typical exam-
ple to demonstrate the basic idea. We refer the reader to [31]
where an algorithm, to build anaspect graphof arbitrary 2- and
3-dimensional bodies, has been suggested which is based on this
method.



      

FIG. 21. A support function-like representation of nonconvex polygon: (a) A typical nonconvex polygonA; (b) its representation in theθρ-space; (c) its
representation in thest-space.

FIG. 22. Identification ofoccluding contourby ρ= 0 values: (a) Considering origino to be a vantage point, some of the directed edges haveo in their left and
some haveo in their right; (b) such a situation can be clearly brought out by means of the support function-like representation of the polygon in theθρ-space.
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• The domain of convex bodies can be considerably enlarged
by means of a representation, called theradial function, which is
closely related to the support function. The essential difference
is, whereas the support function is defined for convex sets, the
radial function is defined for the more generalstar-shapedsets.
A setA in Rd is star-shaped relative to a pointo if for each point
a∈ A, the line segment betweeno anda lies entirely withinA.
If A is a star-shaped body ato, its radial functionD(A, x) is
defined by

D(A, x) = max{λ ≥ 0 | λx ∈ A}, for x ∈ Rd\{o}. (20)

It is immediately clear from the definition that

D(A, x)x ∈ bd A, for x ∈ Rd\{o}. (21)

Note that in creating thest-space (see Section 2.3) we have
indirectly made use of the radial function concept. In Eq. 21, re-
placingx byu and considering the radial function valueD(A, x)
to be equal toρ, one obtains Eq. 8 of thest-space.

The radial function and the support function are related by the
following equation [29],

D(A∗, u) = 1

H (A, u)
, for u ∈ Sd−1. (22)

Equation 22 clearly explains why by means of the reciprocal
operation 1/H (A, u) in the st-space, we obtain the polar dual
A∗ of A (see Section 3.3).
• Some complex transformations of support functions too can

create specialized nonconvex domains. We give here a simple ex-
ample. If the reciprocal operation is generalized to 1/H (A, u)n

FIG. 23. ConsideringA to be a unit square, 1/H (A, u)n are plotted in the
st-space: (a)n= 1 which is the polar dualA∗; (b) n= 2; (c) n= 4; (d) n= 1

2
which is a convex figure.

for n≥ 2, we obtain an interesting nonconvex domain some of
whose representative elements are shown in Fig. 23. This do-
main is one kind of generalization of thesuperquadrics(i.e.,
superellipse inR2) objects.

ACKNOWLEDGMENTS

We thank the anonymous referees of this paper for their valuable suggestions.

REFERENCES

1. R. V. Benson,Euclidean Geometry and Convexity, McGraw-Hill, New
York, 1966.

2. M. Berger,Geometry I & II , Springer-Verlag, Berlin/New York, 1987.

3. T. Bonnesen and W. Fenchel,Theory of Convex Bodies, BCS Associates,
Moscow, Idaho, 1987.

4. J. W. Bruce and P. J. Giblin,Curves and Singularities, Cambridge Univ.
Press, Cambridge, UK, 1984.

5. R. Courant and D. Hilbert,Methods of Mathematical Physics, Vol. II,
Interscience/Wiley, New York, 1962.

6. L. Dorst and R. van den Boomgaard, Two dual representations of mor-
phology based on the parallel normal transport property,2nd International
Workshop on Visual Form, Capri, Italy, 1994.

7. G. Farin,Curves and Surfaces for Computer Aided Geometric Design,
Academic Press, San Diego, 1988.

8. I. D. Faux and M. J. Pratt,Computational Geometry for Design and Manu-
facture, Ellis Horwood, Chichester, 1979.

9. R. J. Gardner,Geometric Tomography, Cambridge Univ. Press, Cambridge,
UK, 1995.

10. P. K. Ghosh, A mathematical model for shape description using minkowski
operators,Comput. Vision Graphics Image Process. 44, 1988, 239–269.

11. P. K. Ghosh and R. M. Haralick, Mathematical morphological operations
of boundary-represented geometric objects,J. Math. Imaging Vision6(2/3),
1996, 199–222.

12. H. Groemer, Fourier series and spherical harmonics in convexity, inHand-
book of Convex Geometry(P. M. Gruber and J. M. Wills, Eds.), Chap. 4.8,
Elsevier Science, Amsterdam/New York, 1993.

13. B. Grunbaum,Convex Polytopes, Interscience, London, 1967.

14. K. P. Horn and J. Weldon, Filtering closed curves,IEEE Trans. Pattern
Anal. Mach. Intell.8(5), 1986, 665–668.

15. W. C. Karlet al., Local tests for consistency of support hyperplane data,
J. Math. Imaging Vision6(2/3), 1996.

16. A. Kaul and J. R. Rossignac, Solid-interpolating deformations: Construc-
tion and animation of pips,Comput. Graphics16(1), 1992, 107–115.

17. P. J. Kelly and M. L. Weiss,Geometry and Convexity, Wiley, New York,
1979.

18. P. Keuning,2D Shape from Touching, Ph.D. thesis, University of Amster-
dam, April 1995.

19. D. E. Knuth,TEX and METAFONT, Digital Press, Am. Math. Soc. Provi-
dence, 1979.

20. J. C. Latombe,Robot Motion Planning, Kluwer Academic, Dordrecht,
1991.

21. P. Maragos, Slope transforms: Theory and application to nonlinear signal
processing,IEEE Trans. Signal Process.43(4), 1995, 864–877.

22. A. E. Middleditch, The representation and manipulation of convex poly-
gons, inTheoretical Foundations of Computer Graphics and CAD(R. A.
Earnshaw, Ed.), Springer-Verlag, Berlin/New York, 1988.



       

SUPPORT FUNCTION REPRESENTATION OF CONVEX BODIES 403

23. E. E. Milios, Recovering shape deformation by an extended circular image
representation, inSecond International Conference on Computer Vision,
December 5–8, 1988, pp. 20–29. IEEE Comput. Soc., Los Alamitos, CA.

24. V. S. Nalwa, Representing oriented piecewisec2 surfaces, inSecond Inter-
national Conference on Computer Vision, December 5–8, 1988, pp. 40–51.
IEEE Comput. Soc., Los Alamitos, CA.

25. A. A. G. Requicha and J. R. Rossignac, Solid modeling and beyond,IEEE
Comput. Graphics Appl.12(5), 1992, 31–44.

26. R. T. Rockafellar,Convex Analysis, Princeton Univ. Press, Princeton, 1970.

27. J. R. Rossignac and A. A. G. Requicha, Offsetting operations in solid mod-
elling, Comput. Aided Geom. Design3(2), 1986, 129–148.

28. R. Rubinstein,Digital Typography, Addison-Wesley, Reading, MA,
1988.

29. R. Schneider,Convex Bodies: The Brunn-Minkowski Theory, Cambridge
Univ. Press, Cambridge, UK, 1993.

30. J. Serra,Image Analysis and Mathematical Morphology, Academic Press,
San Diego, 1982.

31. M. Wrightet al., Beyond the Hough Transform: Further Properties of theRθ
Mapping and Their Applications,Lecture Notes in Comput. Sci., Vol. 1144,
pp. 361–380. Springer-Verlag, Berlin/New York, 1996.

32. I. M. Yaglom and V. G. Boltyanskii,Convex Figures, Holt, Rinehart &
Winston, New York, 1961.


