
Real-TimeSystems

Lecture01: Introduction

2013-04-16

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
0
1

–
2
0
1
3
-0

4
-1

6
–

m
a
in

–

Contents & Goals

Last Lecture:

• ./.

This Lecture:

• Educational Objectives:

• Be able to decide whether you want to stay with us or not.
(IOW: an advertisement for the lecture.)

• Agree on formalia.

• Content:

• Overview: content (and non-content) of the lecture.

• Definition reactive, real-time, hybrid system.

• Outlook on methodology for precise development of (provably) correct
real-time systems.

• Formalia: dates/times, exercises, exam admission.

• Literature

• A formal model of real-time behaviour.

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
p
re

li
m

–

2/37



Introduction

–
0
1

–
2
0
1
3
-0

4
-1

6
–

m
a
in

–

3/37

Subject of theLecture

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
a
ir
b
a
g

–

4/37



What isa Real-TimeSystem?

Classical example: Airbag Controller

Controller
crash fire

Requirement: “When a crash is detected, fire the airbag.”

• When firing too early: airbag ineffective.

• When firing too late: additional threat.

Say, 300ms (plus/minus small ε) after a crash is the rightTM time to fire.

Then the precise requirement is

“When a crash is detected at time t, fire the airbag at t + 300ms ± ε.”

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
a
ir
b
a
g

–

5/37

What isa Real-TimeSystem?

• Other example: Gas Burner

gas valve

flame sensor

ignition

• Leakage is practically unavoidable:

• for ignition, first open valve

• then ignite the available gas

• ignition may fail. . .

• Leakage is safety critical:
Igniting large amounts of leaked gas may lead to a dangerous explosion.

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
g
a
sb

u
rn

er
–

6/37



No, Really, What isa Real-Time System?

• The examples have in common that

it matters, when in time

the output for a given input (sequence) takes place.

For instance,

• “fire” 300ms after “crash”,

• within any interval of at least 60s, leakage (= have the gas valve open

without a flame) amounts to at most 5% of the time.

Note: quantitative (here) vs. qualitative notions of time (untimed).

• Often: There is a physical environment, which has a notion of time, and
which evolves while our controller is computing.

• (Half-)Contrast: vending machine for soft-drinks:

• If the customer is really thirsty, she’ll wait.

• Neither the usage of a really fast or a really slow
contemporary controller causes a violation of
(timing) requirements.

• (Real) Contrast: transformational systems, such as computing π.

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
rt

d
ef

–

7/37

Other Definitions [Douglass, 1999]

• “A real-time system is one that has performance deadlines on its
computations and actions.”

• Distinguish:

• “Hard deadlines: performance requirements that absolutely must be
met each and every event or time mark.”
“(Late data can be bad data.)”

• “Soft deadlines: for instance about average response times.”
“(Late data is still good.)”

• Design Goal:
A timely system, i.e. one meeting its performance requirements.

• Note: performance can in general be any unit of quantities:

• (discrete) number of steps or processor instructions,

• (discrete or continuous) number of seconds,

• etc.

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
rt

d
ef

–

8/37



Definitions: Reactive vs. Real-Time vs. Hybrid Systems

• Reactive Systems interact with their environment
by reacting to inputs from the environment with certain outputs.

• A Real-Time System is a reactive system which, for certain inputs,
has to compute the corresponding outputs within given time bounds.

• A Hybrid System is a real-time system consisting of continuous and
discrete components. The continuous components are time-dependent
(!) physical variables ranging over a continous value set.

• A system is called Safety Critical
if and only if a malfunction can cause loss of goods, money, or even life.

Reactive Systems

Real-Time Systems

Hybrid Systems

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
rt

d
ef

–

9/37

TheProblem: Constructing Safety-critical RT Systems

• Reactive systems can be partioned into:

plant

sensors

actuators

controller

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
rt

d
ef

–

10/37



TheProblem: Constructing Safety-critical RT Systems

• Reactive systems can be partioned into:

plant

sensors

actuators

controller

• “In constructing a real-time system the aim is to control a physically
existing environment, the plant, in such a way that the controlled
plant satisfies all desired (timing) requirements.”

• The design of safety critical (reactive) systems requires a high degree
of precision:
We want — at best — to be sure that a design meets its requirements.

• Real-time systems are often safety-critical.

• The lecture presents approaches for the precise development of real-time
systems based on formal, mathematical methods.

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
rt

d
ef

–

10/37

Constructing Safety-critical RT Systems: Examples

Controller
crash fire

“When a crash is detected at time t, fire the airbag at t + 300ms ± ε.”

• A controller program is easy:

while (true) do

poll_sensors();

if (crash) tmr.start(300ms);

if (tmr.elapsed()) fire := 1;

update_actuators();

od

• And likely to be believed to be correct.

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
rt

d
ef

–

11/37



Constructing Safety-critical RT Systems: Examples

• More complicated: additional features.

Controller
crash fire

off

• More complicated: distributed implementation.

Sens Controller Act
m/s

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
rt

d
ef

–

12/37

Constructing Safety-critical RT Systems: Examples

gas valve

flame sensor

ignition

• Leakage is safety critical:
Igniting large amounts of leaked gas may lead to a dangerous explosion.

• Controller program for ignition is easy:

while (!flame) do

open_valve();

wait(t);

ignite();

od

• Is it correct? (Here: Is it avoiding dangerous explosions?)

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
rt

d
ef

–

13/37



Prerequisites for Precise Development of Real-Time Systems

plant

sensors

actuators

controller

To

design a controller that (provably) meets its requirements

we need

• a formal model of behaviour in (quantitative) time,

•

•

•

Then we can devise a methodology to get from requirements to a (correct)
implementation — here: following [Olderog and Dierks, 2008].

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
rt

d
ef

–

14/37

Prerequisites for Precise Development of Real-Time Systems

plant

sensors

actuators

controller

To

design a controller that (provably) meets its requirements

we need

• a formal model of behaviour in (quantitative) time,

• a language to concisely, conveniently specifiy requirements on behaviour,

•

•

Then we can devise a methodology to get from requirements to a (correct)
implementation — here: following [Olderog and Dierks, 2008].

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
rt

d
ef

–

14/37



Prerequisites for Precise Development of Real-Time Systems

plant

sensors

actuators

controller

To

design a controller that (provably) meets its requirements

we need

• a formal model of behaviour in (quantitative) time,

• a language to concisely, conveniently specifiy requirements on behaviour,

• a language to specify behaviour of controllers,

• a notion of “meet” and a methodology to verify (or prove) “meeting”.

Then we can devise a methodology to get from requirements to a (correct)
implementation — here: following [Olderog and Dierks, 2008].

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
rt

d
ef

–

14/37

Sketch of theMethodology: GasBurner Example

• Requirements

• At most 5% of any at least 60s long interval amounts to leakage.

• Reflective Design

• Time intervals with leakage last at most 1s.

• After each leak, wait 30s before opening valve again.

• Constructive Design

• PLC Automaton
(open valve for 0.5s;
ignite;

if no flame after 0.1s close valve)

• Implementation

• IEC 61131-3 program

gas valve

flame sensor

ignition

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
in

tr
o

–

15/37



Content Overview

–
0
1

–
2
0
1
3
-0

4
-1

6
–

m
a
in

–

16/37

Content

Introduction

• First-order Logic

• Duration Calculus (DC)

• Semantical Correctness
Proofs with DC

• DC Decidability

• DC Implementables

• PLC-Automata

• Timed Automata (TA), Uppaal

• Networks of Timed Automata

• Region/Zone-Abstraction

• Extended Timed Automata

• Undecidability Results

obs : Time → D(obs) 〈obs0, ν0〉, t0
λ0−→ 〈obs1, ν1〉, t1 . . .

• Automatic Verification...

• ...whether TA satisfies DC formula, observer-based

Recap

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
co

n
te

n
t

–

17/37



Tying It All Together

abstraction
level

formal description
language I

semantic
integration

automatic
verification

formal descr.
language II

Require-
ments

Duration
Calculus

Constraint
Diagrams

DC
timed

automata
Live Seq.
Charts

satisfied by ⇒ ‖

Designs PLC-Automata DC
timed

automata

Programs
C code

PLC code

logical

semantics

logical

semantics

compiler

(
equiv.

equiv.

equiv.

operational semantics

operational semantics

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
co

n
te

n
t

–

18/37

Maybe-Content

• Worst Case Execution Time

• Recall over-simplified airbag controller:

while (true) do

poll_sensors();

if (crash) tmr.start(300ms);

if (tmr.elapsed()) fire := 1;

update_actuators();

od

• The execution of poll sensors() and update actuators() also
takes time! (And we have to consider it!)

• Maybe in lecture:
How to determine the WCET of, for instance, C code.
(A science of its own.)

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
co

n
te

n
t

–

19/37



Non-Content

• Scheduling

• Recall over-simplified airbag controller:

Sens Controller Act
m/s

• Not in lecture: Specialised methods to determine...

• ...whether the bus provides sufficient bandwidth.
• ...whether the Real-Time OS controlling CPU ‘Controller’ schedules

the airbag control code in time.
• ...how to distribute tasks over multiple CPUs.
• etc.

(Also a science of its own.)

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
co

n
te

n
t

–

20/37

Formalia

–
0
1

–
2
0
1
3
-0

4
-1

6
–

m
a
in

–

21/37



Formalia: Event

• Lecturer: Dr. Bernd Westphal

• Support: Dennis Gauss

• Homepage:

http://swt.informatik.uni-freiburg.de/teaching/SS2013/rtsys

• Questions:

• “online”:
(i) ask immediately or in the break

• “offline”:
(i) try to solve yourself
(ii) discuss with colleagues
(iii) contact lecturer by mail (cf. homepage) or just drop by:

Building 52, Room 00-020

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
fo

rm
a
li
a

–

22/37

Formalia: Dates/Times, Break

• Schedule:

Wednesday, week N : 10–12 lecture (exercises M online)

Tuesday, week N + 1: 14–16 lecture

Wednesday, week N + 1: 10–12 lecture

Monday, week N + 2: 14:00 (exercises M early turn-in)

Tuesday, week N + 2: 14–16 tutorial (exercises M late turn-in)

Wednesday, week N + 2: 10–12 lecture (exercises M + 1 online)

With a prefix of lectures, with public holidays; see homepage for details.

• Location:

• Tuesday, Wednesday: here

• Break:

• Unless a majority objects now,
we’ll have a 10 min. break in the middle of each event from now on.

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
fo

rm
a
li
a

–

23/37



Formalia: Lectures

• Course language: English
(slides/writing, presentation, questions/discussions)

• Presentation:
half slides/half on-screen hand-writing — for reasons

• Script/Media:

• slides without annotations on homepage,
trying to put them there before the lecture

• slides with annotations on homepage, 2-up for printing,
typically soon after the lecture

• recording on eLectures portal with max. 1 week delay
(link on homepage – eLectures is updated first, look there!)

• Interaction:
absence often moaned but it takes two,
so please ask/comment immediately

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
fo

rm
a
li
a

–

24/37

Formalia: Exercises andTutorials

• Schedule/Submission:

• Recall: exercises online on Wednesday before (or soon after) lecture,
regular turn in on corresponding tutorial day until 14:00 local time

• should work in groups of max. 3, clearly give names on submission

• please submit electronically by Mail to me (cf. homepage),
some LATEX styles on homepage; paper submissions are tolerated

• Didactical aim:

• deal more extensively with notions from lecture (easy)

• explore corner cases or alternatives (medium)

• evaluate/appreciate approaches (difficult)

• additional difficulty: imprecise/unclear tasks — by intention

• True aim: most complicated rating system ever, namely two ratings

• Good-will (“reasonable solution with knowledge before tutorial”)

• Evil/Exam (“reasonable solution with knowledge after tutorial”)

10% bonus for early submission.

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
fo

rm
a
li
a

–

25/37



Formalia: Exam

• Exam Admission:

50% of the maximum possible non-bonus good-will points in total
are sufficient for admission to exam

• Exam Form: (oral or written) not yet decided

–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
fo

rm
a
li
a

–

26/37

Formalia: Evaluation

Speaking of grading and examination...

• Mid-term Evaluation:
We will have a mid-term evaluationa, but we’re always interested in
comments/hints/proposals concerning form or content.

athat is, students are asked to evaluate lecture, lecturer, and tutor...–
0
1

–
2
0
1
3
-0

4
-1

6
–

S
fo

rm
a
li
a

–

27/37



Formalia: Questions?
–

0
1

–
2
0
1
3
-0

4
-1

6
–

S
fo

rm
a
li
a

–

28/37

References

–
0
1

–
2
0
1
3
-0

4
-1

6
–

m
a
in

–

36/37



References

[Douglass, 1999] Douglass, B. P. (1999). Doing Hard Time. Addison-Wesley.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems

- Formal Specification and Automatic Verification. Cambridge University Press.

–
0
1

–
2
0
1
3
-0

4
-1

6
–

m
a
in

–

37/37


