Real-Time Systems

Lecture 01: Introduction

2013-04-16

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

• ./.

- 01 - 2013-04-16 - main

This Lecture:

• Educational Objectives:

- Be able to decide whether you want to stay with us or not. (IOW: an advertisement for the lecture.)
- Agree on formalia.

• Content:

- Overview: content (and non-content) of the lecture.
- Definition reactive, real-time, hybrid system.
- Outlook on methodology for precise development of (provably) correct real-time systems.
- Formalia: dates/times, exercises, exam admission.
- Literature
- A formal model of real-time behaviour.

– 01 – 2013-04-16 – Sprelim

Introduction

3/37

Subject of the Lecture

What is a Real-Time System?

Classical example: Airbag Controller

Requirement: "When a crash is detected, fire the airbag."

- When firing too early: airbag ineffective.
- When firing too late: additional threat.

Say, 300ms (plus/minus small ε) after a crash is the rightTM time to fire.

Then the precise requirement is

"When a crash is detected at time $t_{\rm r}$ fire the airbag at $t+300ms\pm\varepsilon."$

5/37

What is a Real-Time System?

• Other example: Gas Burner

- Leakage is practically unavoidable:
 - for ignition, first open valve
 - then ignite the available gas
 - ignition may fail...

• Leakage is safety critical:

Igniting large amounts of leaked gas may lead to a dangerous explosion.

- 01 - 2013-04-16 - Sairbag -

• The examples have in common that

it matters, when in time

the output for a given input (sequence) takes place.

For instance,

• "fire" 300ms after "crash",

 within any interval of at least 60s, leakage (= have the gas valve open without a flame) amounts to at most 5% of the time.

Note: quantitative (here) vs. qualitative notions of time (untimed).

- Often: There is a physical environment, which has a notion of time, and which evolves while our controller is computing.
- (Half-)Contrast: vending machine for soft-drinks:
 - If the customer is really thirsty, she'll wait.
 - Neither the usage of a really fast or a really slow contemporary controller causes a violation of (timing) requirements.

7/37

• (Real) **Contrast:** transformational systems, such as computing π .

Other Definitions [Douglass, 1999]

- "A real-time system is one that has performance deadlines on its computations and actions."
- Distinguish:
 - "Hard deadlines: performance requirements that absolutely must be met each and every event or time mark." "(Late/data can be bad data.)"
 - "Soft deadlines: for instance about average response times."
 "(Late data is still good.)"
- Design Goal: A **timely system**, i.e. one meeting its performance requirements.
- Note: performance can in general be any unit of quantities:
 - (discrete) number of steps or processor instructions,
 - (discrete or continuous) number of seconds,
 - etc.

01 - 2013-04-16 - Srtdef -

- Reactive Systems interact with their environment by reacting to inputs from the environment with certain outputs.
- A Real-Time System is a reactive system which, for certain inputs, has to compute the corresponding outputs within given time bounds.
- A Hybrid System is a real-time system consisting of continuous and discrete components. The continuous components are time-dependent (!) physical variables ranging over a continuous value set.
- A system is called **Safety Critical** if and only if a malfunction can cause loss of goods, money, or even life.

Reactive Systems

Real-Time Systems

Hybrid Systems

- 01 - 2013-04-16 - Srtdef

The Problem: Constructing Safety-critical RT Systems

• Reactive systems can be partioned into:

- "In constructing a **real-time system** the aim is to control a physically existing environment, the **plant**, in such a way that the controlled plant satisfies all desired (timing) requirements."
- The design of safety critical (reactive) systems requires a high degree of precision:

We want — at best — to be sure that a design meets its requirements.

- Real-time systems are often safety-critical.
- The lecture presents approaches for the precise development of **real-time systems** based on formal, mathematical methods.

10/37

Constructing Safety-critical RT Systems: Examples

"When a crash is detected at time $t_{\rm r}$ fire the airbag at $t+300ms\pm\varepsilon."$

• A controller program is easy:

```
while (true) do
   poll_sensors();
   if (crash) tmr.start(300ms);
   if (tmr.elapsed()) fire := 1;
   update_actuators();
   od
```

• And likely to be believed to be correct.

- 01 - 2013-04-16 - Srtdef -

• More complicated: additional features.

• More complicated: distributed implementation.

Constructing Safety-critical RT Systems: Examples

Prerequisites for Precise Development of Real-Time Systems

Prerequisites for Precise Development of Real-Time Systems

То

design a controller that (provably) meets its requirements

we need

- a formal model of behaviour in (quantitative) time,
- a language to concisely, conveniently specifiy requirements on behaviour,
- a language to specify behaviour of controllers,
- a notion of "meet" and a methodology to verify (or prove) "meeting".

Then we can devise a **methodology** to get **from requirements** to a **(correct) implementation** — here: following [Olderog and Dierks, 2008].

14/37

Sketch of the Methodology: Gas Burner Example

- Requirements
 - At most 5% of any at least 60s long interval amounts to leakage.

Content Overview

Content

Introduction

- First-order Logic
- Duration Calculus (DC)
- Semantical Correctness Proofs with DC
- DC Decidability
- DC Implementables
- PLC-Automata

 $obs: \mathsf{Time} \to \mathscr{D}(obs)$

- Timed Automata (TA), Uppaal
- Networks of Timed Automata
- Region/Zone-Abstraction
- Extended Timed Automata
- Undecidability Results

 $\langle obs_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_0} \langle obs_1, \nu_1 \rangle, t_0 \xrightarrow{\lambda_1} \langle obs_1, \nu_2 \rangle, t_2 \xrightarrow{\lambda_1} \langle obs_1, \nu_2 \rangle, t_2 \xrightarrow{\lambda_1} \langle obs_1, \nu_2 \rangle, t_2 \xrightarrow{\lambda_1} \langle obs_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_2} \langle obs_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_1} \langle obs_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_2} \langle obs_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_2} \langle obs_2, \nu_2 \rangle, t_3 \xrightarrow{\lambda_1} \langle obs_2, \nu_2 \rangle, t_4 \xrightarrow{\lambda_2} \langle obs_2, \nu_2 \rangle, t_4$

- Automatic Verification...
- ...whether TA satisfies DC formula, observer-based

Recap

- 01 - 2013-04-16 - Scontent -

Maybe-Content

Tying It All Together

- Worst Case Execution Time
 - Recall over-simplified airbag controller:

```
while (true) do
    poll_sensors();
    if (crash) tmr.start(300ms);
    if (tmr.elapsed()) fire := 1;
    update_actuators();
    od
• The execution of poll_sensors() and update_actuators() also
```

takes time! (And we have to consider it!)

• Maybe in lecture:

How to determine the WCET of, for instance, C code. (A science of its own.)

Non-Content

- Scheduling
 - Recall over-simplified airbag controller:

- Not in lecture: Specialised methods to determine...
 - ...whether the bus provides sufficient bandwidth.
 - ...whether the Real-Time OS controlling CPU 'Controller' schedules the airbag control code in time.
 - ...how to distribute tasks over multiple CPUs.
 - etc.
 - (Also a science of its own.)

20/37

Formalia

- Lecturer: Dr. Bernd Westphal
- Support: Dennis Gauss
- Homepage:

http://swt.informatik.uni-freiburg.de/teaching/SS2013/rtsys

• Questions:

- 01 - 2013-04-16 - Sformalia -

- "online":
- (i) ask immediately or in the break
- "offline":
- (i) try to solve yourself
- (ii) discuss with colleagues
- (iii) contact lecturer by mail (cf. homepage) or just drop by:
 - Building 52, Room 00-020

22/37	
-------	--

Formalia: Dates/Times, Break

• Schedule:				
Wednesday,	week N :	10–12 lecture	(exercises M online)	
5.		14–16 lecture 10–12 lecture		
•		14:00 14–16 tutorial 10–12 lecture	(exercises M early turn-in) (exercises M late turn-in) (exercises $M + 1$ online)	
With a prefix of lectures, with public holidays; see homepage for details.				

• Location:

• Tuesday, Wednesday: here

• Break:

 Unless a majority objects now, we'll have a 10 min. break in the middle of each event from now on.

Formalia: Lectures

- Course language: English (slides/writing, presentation, questions/discussions)
- Presentation: half slides/half on-screen hand-writing — for reasons
- Script/Media:
 - slides without annotations on homepage, trying to put them there before the lecture
 - slides with annotations on homepage, 2-up for printing, typically soon after the lecture
 - recording on eLectures portal with max. 1 week delay (link on homepage – eLectures is updated first, look there!)

• Interaction:

absence often moaned but **it takes two**, so please ask/comment immediately

Formalia: Exercises and Tutorials

- Schedule/Submission:
 - Recall: exercises online on Wednesday before (or soon after) lecture, regular turn in on corresponding tutorial day until 14:00 local time
 - should work in groups of max. 3, clearly give names on submission
 - please submit **electronically** by Mail to **me** (cf. homepage), some \DeltaTEX styles on homepage; paper submissions are tolerated

• Didactical aim:

- deal more extensively with notions from lecture (easy)
 explore corner cases or alternatives (medium)
- evaluate/appreciate approaches
 (difficult)
 - (unicul
- additional **difficulty**: imprecise/unclear tasks by intention

• True aim: most complicated rating system ever, namely two ratings

- Good-will ("reasonable solution with knowledge before tutorial")
 - Evil/Exam ("reasonable solution with knowledge after tutorial")
 - 10% bonus for early submission.

Formalia: Exam

• Exam Admission:

50% of the maximum possible non-bonus **good-will points** in total are **sufficient** for admission to exam

• Exam Form: (oral or written) not yet decided

- 01 - 2013-04-16 - Sformalia -

26/37

Formalia: Evaluation

Speaking of grading and examination...

• Mid-term Evaluation:

We will have a **mid-term evaluation**^a, but we're **always** interested in comments/hints/proposals concerning form or content.

^athat is, students are asked to evaluate lecture, lecturer, and tutor...

Formalia: Questions?

- 01 - 2013-04-16 - Sformalia -

References

- 01 - 2013-04-16 - main -

References

[Douglass, 1999] Douglass, B. P. (1999). Doing Hard Time. Addison-Wesley.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems* - *Formal Specification and Automatic Verification*. Cambridge University Press.