
Real-Time Systems

Lecture 02: Timed Behaviour

2013-04-17

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
0
2

–
2
0
1
3
-0

4
-1

7
–

m
a
in

–

Contents & Goals

Last Lecture:

• Motivation, Overview

This Lecture:

• Educational Objectives:

• Get acquainted with one (simple but powerful)
formal model of timed behaviour.

• See how first order predicate-logic can be used to state requirements.

• Content:

• Time-dependent State Variables

• Requirements and System Properities in first order predicate logic

• Classes of Timed Properties

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
p
re

li
m

–

2/31

Recall: Prerequisites

plant sensors

actuators

controller

gas valve

flame sensor

ignition

To

design a (gas burner) controller that meets its requirements

we need

• a formal model of behaviour
in (quantitative) time,

• a language to concisely, conveniently
specify requirements on behaviour,

• a language to specify behaviour
of controllers,

• a notion of “meet” and
a methodology to verify meeting.

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
re

ca
ll

–

3/31

Real-Time Behaviour, More Formally...

–
0
2

–
2
0
1
3
-0

4
-1

7
–

m
a
in

–

4/31

State Variables (or Observables)

• We assume that the real-time systems we consider is characterised by a
finite set of state variables (or observables)

obs1, . . . , obsn

each equipped with a domain D(obsi), 1 ≤ i ≤ n.

• Example: gas burner

gas valve

flame sensor

ignition

• G : Time → {0, 1}

• F : Time → {0, 1}

• I : Time → {0, 1}

• H : Time → {0, 1}

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
m

o
d
el

–

5/31

System Evolution over Time

• One possible evolution (or behaviour) of the considered system over
time is represented as a function

π : Time → D(obs1) × · · · × D(obsn).

• If (and only if) observable obsi has value di ∈ D(obsi) at time t ∈ Time,
1 ≤ i ≤ n, we set

π(t) = (d1, . . . , dn).

• For convenience, we use

obsi : Time → D(obsi)

to denote the projection of π onto the i-th component.

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
m

o
d
el

–

6/31

What’s the time?

• There are two main choices for the time domain Time:

• discrete time: Time = N0, the set of natural numbers.

• continuous
or dense time: Time = R

+

0 , the set of non-negative real numbers.

• Throughout the lecture we shall use the continuous time model and
consider discrete time as a special case.

Because

• plant models usually live in continuous time,

• we avoid too early introduction introduction of hardware
considerations,

• Interesting view: continous-time is a well-suited abstraction from the
discrete-time realms induced by clock-cycles etc.

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
m

o
d
el

–

7/31

Example: Gas Burner gas valve

flame sensor

ignition

One possible evolution of considered system over time is represented as function
π : Time → D(obs1) × · · · × D(obsn).

If (and only if) observable obs i has value di ∈ D(obs i) at time t ∈ Time, set:

π(t) = (d1, . . . , dn).

For convenience: use obsi : Time → D(obsi).

Time

1
H

0

1
G

0

1
I

0

1
F

0

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
m

o
d
el

–

8/31

Example: Gas Burner gas valve

flame sensor

ignition

Time

1
H

0

1
G

0

1
I

0

1
F

0

Time

1
H

0

1
G

0

1
I

0

1
F

0

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
m

o
d
el

–

9/31

Levels of Detail

• Note:
Depending on the choice of observables we can describe a real-time
system at various levels of detail.

For instance,

• if the gas valve has different positions, use

G : Time → {0, 1, 2, 3}

(But: D(G) is never continuous in the lecture, otherwise we had a
hybrid system.)

• if the thermostat and the controller are connected via a bus and
exchange messages, use

B : Time → Msg∗

to model the receive buffer as a finite sequence of messages from Msg .

• etc.

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
m

o
d
el

–

10/31

System Properties

–
0
2

–
2
0
1
3
-0

4
-1

7
–

m
a
in

–

11/31

Predicate Logic

ϕ ::= obs(t) = d | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 =⇒ ϕ2 | ϕ1 ⇐⇒ ϕ2

| ∀ t ∈ Time • ϕ | ∀ t ∈ [t1 + c1, t2 + c2] • ϕ

obs an observable, d ∈ D(obs), t ∈ Var logical variable, c1, c2 ∈ R
+

0 constants.

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
p
ro

p
–

12/31

Predicate Logic

ϕ ::= obs(t) = d | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 =⇒ ϕ2 | ϕ1 ⇐⇒ ϕ2

| ∀ t ∈ Time • ϕ | ∀ t ∈ [t1 + c1, t2 + c2] • ϕ

obs an observable, d ∈ D(obs), t ∈ Var logical variable, c1, c2 ∈ R
+

0 constants.

We assume the standard semantics interpreted over system evolutions

obsi : Time → D(obs), 1 ≤ i ≤ n.

That is, given a particular system evolution π and a formula ϕ, we can tell
whether π satisfies ϕ under a given valuation β, denoted by π, β |= ϕ.

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
p
ro

p
–

12/31

Recall: Predicate Logic, Standard Semantics

Evolution of system over time: π : Time → D(obs1) × · · · × D(obsn).
Iff obsi has value di ∈ D(obsi) at t ∈ Time, set: π(t) = (d1, . . . , dn).
For convenience: use obsi : Time → D(obsi).

ϕ ::= obs(t) = d | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 =⇒ ϕ2 | ϕ1 ⇐⇒ ϕ2

| ∀ t ∈ Time • ϕ | ∀ t ∈ [t1 + c1, t2 + c2] • ϕ

• Let β : Var → Time be a valuation of the logical variables.

• π, β |= obsi(t) = d iff obsi(β(t)) = d

• π, β |= ¬ϕ iff not π, β |= ϕ

• π, β |= ϕ1 ∨ ϕ2 iff ...

• ...

• π, β |= ∀ t ∈ Time • ϕ iff for all t0 ∈ Time, π, β[t 7→ t0] |= ϕ

• π, β |= ∀ t ∈ [t1 + c1, t2 + c2] • ϕ iff
for all t0 ∈ [β(t1) + c1, β(t2) + c2], π, β[t 7→ t0] |= ϕ

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
p
ro

p
–

13/31

Predicate Logic

Note: we can view a closed predicate logic formula ϕ as a concise description
of

{π : Time → D(obs1) × · · · × D(obsn) | π, ∅ |= ϕ},

the set of all system evolutions satisfying ϕ.

For example,

∀ t ∈ Time • ¬(I(t) ∧ ¬G(t))

describes all evolutions where there is no ignition with closed gas valve.

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
p
ro

p
–

14/31

Requirements and System Properties

• So we can use first-order predicate logic to formally specify requirements.

A requirement ‘Req’ is a set of system behaviours with the pragmatics
that, whatever the behaviours of the final implementation are, they
shall lie within this set.

For instance,

Req :⇐⇒ ∀ t ∈ Time • ¬(I(t) ∧ ¬G(t))

says:“an implementation is fine as long as it doesn’t ignite without gas in
any of its evolutions”.

• We can also use first-order predicate logic to formally describe properties
of the implementation or design decisions.

For instance,

Des :⇐⇒ ∀ t ∈ Time • I(t) =⇒ ∀ t′ ∈ [t − 1, t + 1] • G(t′))

says that our controller opens the gas valve at least 1 time unit before
ignition and keeps it open.

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
p
ro

p
–

15/31

Correctness

• Let ‘Req’ be a requirement,

• ‘Des’ be a design, and

• ‘Impl’ be an implementation.

Recall: each is a set of evolutions, i.e. a subset of
(

Time → ×n

i=1D(obsi)
)

,
described in any form.

We say

• ‘Des’ is a correct design (wrt. ‘Req’) if and only if

Des ⊆ Req.

• ‘Impl’ is a correct implementation (wrt. ‘Des’ (or ‘Req’)) if and only if

Impl ⊆ Des (or Impl ⊆ Req)

If ‘Req’ and ‘Des’ are described by formulae of first-oder predicate logic,
proving the design correct amounts to proving that ‘Des =⇒ Req’ is valid.

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
p
ro

p
–

16/31

Classes of Timed Properties

–
0
2

–
2
0
1
3
-0

4
-1

7
–

m
a
in

–

17/31

Safety Properties

• A safety property states that

something bad must never happen [Lamport].

• Example: train inside level crossing with gates open.

• More general, assume observable C : Time → {0, 1} where C(t) = 1
represents a critical system state at time t.

Then

∀ t ∈ Time • ¬C(t)

is a safety property.

• In general, a safety property is characterised as a property that can be
falsified in bounded time.

• But safety is not everything...

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
cl

a
ss

es
–

18/31

Liveness Properties

• The simplest form of a liveness property states that

something good eventually does happen.

• Example: gates open for road traffic.

• More general, assume observable G : Time → {0, 1} where G(t) = 1
represents a good system state at time t.

Then

∃ t ∈ Time • G(t)

is a liveness property.

• Note: not falsified in finite time.

• With real-time, liveness is too weak...

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
cl

a
ss

es
–

19/31

Bounded Response Properties

• A bounded response property states that

the desired reaction on an input occurs in time interval [b, e].

• Example: from request to secure level crossing to gates closed.

• More general, re-consider good thing G : Time → {0, 1} and request
R : Time → {0, 1}.

Then

∀ t1 ∈ Time • (R(t1) =⇒ ∃ t2 ∈ [t1 + 10, t1 + 15] • G(t2))

is a bounded liveness property.

• This property can again be falsified in finite time.

• With gas burners, this is still not everything...

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
cl

a
ss

es
–

20/31

Duration Properties

• A duration property states that

for observation interval [b, e] characterised by a condition A(b, e)
the accumulated time in which the system is in a certain critical
state has an upper bound u(b, e).

• Example: leakage in gas burner.

• More general, re-consider critical thing C : Time → {0, 1}.

Then

∀ b, e ∈ Time •

(

A(b, e) =⇒

∫ e

b

C(t) dt ≤ u(b, e)

)

is a duration property.

• This property can again be falsified in finite time.

–
0
2

–
2
0
1
3
-0

4
-1

7
–

S
cl

a
ss

es
–

21/31

References

–
0
2

–
2
0
1
3
-0

4
-1

7
–

m
a
in

–

30/31

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems

- Formal Specification and Automatic Verification. Cambridge University Press.

–
0
2

–
2
0
1
3
-0

4
-1

7
–

m
a
in

–

31/31

