Contents & Goals Recall: Prerequisites

sensors

Last Lecture:

« Motivation, Overview controller |
Real-Time Systems This Lecture: :
« Educational Objectives: T
. 3 « Get acquainted with one (simple but powerful) To
Lecture 02: Timed Behaviour formal model of timed behaviour. design a (gas burner) controller that meets its requirements
» See how first order predicate-logic can be used to state requirements. we need
V. o focmel walel of belavine
« Content: i Q.iy*ﬁr_ Foe
2013-04-17 » Time-dependent State Variables N
« Requirements and System Properities in first order predicate logic ca lmgug b §
a f Timed Properti spealy ropuintinents g Fwed
o Classes of Timed Properties §
£ L ea r.rosdx.r #fy bebmints of dklls
Dr. Bernd Westphal & ,
. . u 3 oo whe .« s;iuv ed
Albert-Ludwigs-Universitat Freiburg, Germany ] g N s&vrhf I S&c ﬂ&!\w }.R.b»u.
, 2 ' 3m
State Variables (or Observables) System Evolution over Time
« We assume that the real-time systems we consider is characterised by a + One possible evolution (or behaviour) of the considered system over
finite set of state variables (or observables) time is represented as a function
. bsy, ..., 0bsy 2 Ti D(obs - x D(obs,).
Real-Time Behaviour, More Formally... 001y 008 m: Time — D(obs) x -+ x D(obsn)
each equipped with a domain D(obs;), 1 < i < n. « If (and only if) observable obs; has value d; € D(obs;) at time t € Time,
1<i<mn,weset
w(t) = (di,....dn).
N mXN:__U_@” gas burner » For convenience, we use
obs; : Time — D(obs;)
to denote the projection of  onto the i-th component.
; Sy vl oo’ G, Dle) A0, O i whe cbds 1
: Mo yslr” Foooame o, O el :
: L Siguke iy o gl T, O(TV= g3, 0f w e \> :
L ey ekt M O fogy 0w e :
' 6/



What's the time?

» There are two main choices for the time domain Time:

o discrete time: Time = INy, the set of natural numbers.

« continuous
or dense time:  Time = R, the set of non-negative real numbers.

« Throughout the lecture we shall use the continuous time model and
consider discrete time as a special case.
Because
« plant models usually live in continuous time,
= we avoid too early introduction introduction of hardware
considerations,

« Interesting view: continous-time is a well-suited abstraction from the
discrete-time realms induced by clock-cycles etc.

7
Levels of Detall
+ Note:

Depending on the choice of observables we can describe a real-time

system at various levels of detail.

For instance,

« if the gas valve has different positions, use DG)=£ @) (10),(01), 6,9

)

7
D)= fo12,3 G : Time — {0,1,2,3}
But: D(G) is never continuous in the lecture, otherwise we had a
hybrid system.)

o if the thermostat and the controller are connected via a bus and
exchange messages, use v\m.:.\n enas
. ! tafs
B : Time — Msg o o Ky
to model the receive buffer as a finite sequence of messages from Msg.
o etc.
10/

Example: Gas Burner

One possible evolution of considered system over time is represented as function
7 : Time — D(obs1) X - -+ x D(0bsy).
If (and only if) observable obs; has value d; € D(obs;) at time t € Time, set:
w(t) = (d, ..., dn)-
For convenience: use obs; : Time — D(obs;).

I T
w(B3)= (o sq\&\
7@ =(11,0, ﬁ

N
&

System Properties

8

Example: Gas Burner

Time

f Time
931
Predicate Logic N
J@ . blt] eler
an a logeel vepially
&K:.R/ / o \le1
pu=obs(t) =d| ¢ |1V foiNgh o1 = 2|1 = 92
|Vt e Timesp |Vt e [t +ci,ta+ ¥
\ever — €2, oustanls
obs an observable, d € D(obs), ¢ € Var logical variable, 1, c; € Ry} constants.
mxxx.mﬁ.
W L€ Tine 8764] = 7¢) ol
- codol

VeeTu o KW » 3 Leleermle RE He

, N

3 610" s rejureses

i [
caholby;



Predicate Logic

e At Ve =0 5r]
doice 8+ Vaz=fas,c, .3
doia & Vi = 19,5,4, 8]

Y1 == P2

pu=obs®=d|-¢|o1Ve2|pr1Ap2 |1 = 2
| vWe Timeep |Vic M +c1, B+ ca]op

obs an observable, d € D(obs), t € Var logical variable, ¢, ¢z € _wu constants.

We assume the standard semantics interpreted over system evolutions
obs; : Time — D(obs), 1 <i <n.

That is, given a particular system evolution 7 and a formula ¢, we can tell
whether  satisfies o under a given valuation 3, denoted by ., 3 |= ¢.

1273

Requirements and System Properties

« So we can use first-order predicate logic to formally specify requirements.

A requirement 'Req’ is a set of system behaviours with the pragmatics
that, whatever the behavi of the final impl ation are, they

shall lie within this set. &n\?.xm @\ &!&Q&t\?*\ )
*)

For instance, )\N

Req ‘o= V1€ Time e ~(1(t) A ~G(1)

says: “an implementation is fine as long as it doesn’t ignite without gas in
any of its evolutions”.

« We can also use first-order predicate logic to formally describe properties
of the i or design i
For instance,

Des <= VteTimeoI(t) = V' €[t—1,t+1]eG(t))
says that our controller opens the gas valve at least 1 time unit before
ignition and keeps it open.
15/

Recall: Predicate Logic, Sandard Semantics #:7¥2%f

30417

7+ Time — D(obs1) x -+ x D(obsy).
w(t) = (di,...,dn).
ime — D(obs,).

Evolution of system over time:
Iff obs; has value d; € D(obs;) at t € Time, set:
For convenience: use obs; :

ﬂ
pu=obs(t) =d|-p |1Vl o1 A1 = 2|1 = @2
VieTimeep |Vt [t +cp,ta+cr]ep
IV @l % FH 1l 2 e p

« Let 3: Var — Time be a valuation
PN
] _nifs = d)iff ohs, (R(£)) =

R iwﬁ/ o
-

o B 1V iff . & Jﬁ
eRo oo ok, Vs 2 h&mI%w

. Vs
,

o m Bl Vi Times o iff foy all Nmﬂzé.&?ﬁwx T pH )
o mBEVEE [ty + 1ty + o) 0 o iff _§Hmzu,w oAb, xﬁ@ﬂx@f
fo o belpt) g, pbal, gl ﬁ TX@y-

R Al RTEP hlsl mek
=g q pjes

13/n

o

Correctness

o Let ‘Req’ be a requirement,
« 'Des’ be a design, and
« ‘Impl’ be an implementation.

olutions, i.e. a subset of (Time — xI_; D(obs;)),

We say
» ‘Des' is a correct design (wrt. ‘Req’) if and only if

Des C Req.

« 'Impl" is a correct implementation (wrt. ‘Des’ (or ‘Req’)) if and only if

Impl C Des  (or Impl C Req)

If ‘Req" and ‘Des’ are described by formulae of first-oder predicate logic,

proving the design correct amounts to proving that ‘Des = Req’ is valid.
16/

Predicate Logic i el verlls e ‘f.\g\i

/

Note: we can view a closed predicate logic formula ¢ as a concise description
of
{m: Time — D(obsy) X --- x D(0bs,) :,svﬂﬁvd/

the set of all system evolutions satisfying .

a st g
el
For example,

Vit € Time o ~(I(t) A =G(1))

describes all evolutions where there is no ignition with closed gas valve.

1473

Classes of Timed Properties

173



Safety Properties

+ A safety property states that
something bad must never happen [Lamport].

« Example: train inside level crossing with gates open.

= More general, assume observable C : Time — {0, 1} where C(t) = 1
represents a critical system state at time ¢.

Then
Yt € Time s ~C(t)

is a safety property.

= In general, a safety property is characterised as a property that can be
falsified in bounded time.

« But safety is not everything..

Duration Properties

A duration property states that
for observation interval [b, €] characterised by a condition A(b, €)
the accumulated time in which the system is in a certain critical
state has an upper bound u(b, e).

« Example: leakage in gas burner.

= More general, re-consider critical thing C': Time — {0,1}.
Then
e
Vb, € Time e A%y €) = \ C(t) dt < ulb,e v

is a dura

n property.
« This property can again be falsified in finite time.

18/

21m

Liveness Properties

« The simplest form of a liveness property states that
something good eventually does happen.

Example: gates open for road traffic.

More general, assume observable G : Time — {0, 1} where G(t) = 1
represents a good system state at time ¢.

Then

3t € Time o G(t)
is a liveness property.
Note: not falsified in finite time.

veness is too weak...

With real-time,

192

References

3073

Bounded Response Properties

« A bounded response property states that
the desired reaction on an input occurs in time interval [b, e]

« Example: from request to secure level crossing to gates closed.

« More general, re-consider good thing G : Time — {0, 1} and request
R: Time — {0,1}.

Then

Vi, € Time o (R(t) = 3t € [t + 10,11 + 15] o G(t2))

is a bounded liveness property.

» This property can again be falsified in finite time.

v « With gas burners, this is still not everything...

2031

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems
- Formal Specification and Automatic Verification. Cambridge University Press.

31m



