
Real-Time Systems

Lecture 03: Duration Calculus I

2013-04-23

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
0
3

–
2
0
1
3
-0

4
-2

3
–

m
a
in

–

Contents & Goals

Last Lecture:

• Model of timed behaviour: state variables and their interpretation

• First order predicate-logic for requirements and system properties

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• Read (and at best also write) Duration Calculus formulae.

• Content:

• Classes of requirements (safety, liveness, etc.)

• Duration Calculus:

Assertions, Terms, Formulae, Abbreviations, Examples

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
p
re

li
m

–

2/42

Recall: Correctness

–
0
3

–
2
0
1
3
-0

4
-2

3
–

m
a
in

–

3/42

Recall: Correctness

• Let ‘Req’ be a requirement,

• ‘Des’ be a design, and

• ‘Impl’ be an implementation.

Recall: each is a set of evolutions, i.e. a subset of
(

Time → ×n
i=1

D(obsi)
)

,
described in any form.

We say

• ‘Des’ is a correct design (wrt. ‘Req’) if and only if

Des ⊆ Req.

• ‘Impl’ is a correct implementation (wrt. ‘Des’ (or ‘Req’)) if and only if

Impl ⊆ Des (or Impl ⊆ Req)

If ‘Req’ and ‘Des’ are described by formulae of first-oder predicate logic,
proving the design correct amounts to proving that ‘Des =⇒ Req’ is valid.

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
co

rr
–

4/42

Classes of Timed Properties

–
0
3

–
2
0
1
3
-0

4
-2

3
–

m
a
in

–

5/42

Safety Properties

• A safety property states that

something bad must never happen [Lamport].

• Example: train inside level crossing with gates open.

• More general, assume observable C : Time → {0, 1} where C(t) = 1
represents a critical system state at time t.

Then

∀ t ∈ Time • ¬C(t)

is a safety property.

• In general, a safety property is characterised as a property that can be
falsified in bounded time.

• But safety is not everything...

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
cl

a
ss

es
–

6/42

Liveness Properties

• The simplest form of a liveness property states that

something good eventually does happen.

• Example: gates open for road traffic.

• More general, assume observable G : Time → {0, 1} where G(t) = 1
represents a good system state at time t.

Then

∃ t ∈ Time • G(t)

is a liveness property.

• Note: not falsified in finite time.

• With real-time, liveness is too weak...

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
cl

a
ss

es
–

7/42

Bounded Response Properties

• A bounded response property states that

the desired reaction on an input occurs in time interval [b, e].

• Example: from request to secure level crossing to gates closed.

• More general, re-consider good thing G : Time → {0, 1} and request
R : Time → {0, 1}.

Then

∀ t1 ∈ Time • (R(t1) =⇒ ∃ t2 ∈ [t1 + 10, t1 + 15] • G(t2))

is a bounded liveness property.

• This property can again be falsified in finite time.

• With gas burners, this is still not everything...

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
cl

a
ss

es
–

8/42

Duration Properties

• A duration property states that

for observation interval [b, e] characterised by a condition A(b, e)
the accumulated time in which the system is in a certain critical
state has an upper bound u(b, e).

• Example: leakage in gas burner.

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
cl

a
ss

es
–

9/42

Duration Properties

• A duration property states that

for observation interval [b, e] characterised by a condition A(b, e)
the accumulated time in which the system is in a certain critical
state has an upper bound u(b, e).

• Example: leakage in gas burner.

• More general, re-consider critical thing C : Time → {0, 1}.

Then

∀ b, e ∈ Time •

(

A(b, e) =⇒

∫ e

b

C(t) dt ≤ u(b, e)

)

is a duration property.

• This property can again be falsified in finite time.

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
cl

a
ss

es
–

9/42

Duration Calculus

–
0
3

–
2
0
1
3
-0

4
-2

3
–

m
a
in

–

10/42

Duration Calculus: Preview

• Duration Calculus is an interval logic.

• Formulae are evaluated in an (implicitly given) interval.

Back to our gas burner:

• G, F, I, H : Time → {0, 1}

gas valve

flame sensor

ignition

• Define L : Time → {0, 1} as G ∧ ¬F .

Strangest operators:

• everywhere — Example: ⌈G⌉

(Holds in a given interval [b, e] iff the gas valve is open almost everywhere.)

• chop — Example: (⌈¬I⌉ ; ⌈I⌉ ; ⌈¬I⌉) =⇒ ℓ ≥ 1

(Ignition phases last at least one time unit.)

• integral — Example: ℓ ≥ 60 =⇒ ∫ L ≤ ℓ

20

(At most 5% leakage time within intervals of at least 60 time units.)

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
d
cp

re
vi

ew
–

11/42

Duration Calculus: Overview

We will introduce three (or five) syntactical “levels”:

(i) Symbols:

f, g, true, false, =, <, >,≤,≥, x, y, z, X, Y, Z, d

(ii) State Assertions:

P ::= 0 | 1 | X = d | ¬P1 | P1 ∧ P2

(iii) Terms:

θ ::= x | ℓ | ∫ P | f(θ1, . . . , θn)

(iv) Formulae:

F ::= p(θ1, . . . , θn) | ¬F1 | F1 ∧ F2 | ∀x • F1 | F1 ; F2

(v) Abbreviations:

⌈ ⌉, ⌈P ⌉, ⌈P ⌉t, ⌈P ⌉≤t, ♦F, �F

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
d
cs

ym
b

–

12/42

Symbols: Syntax

• f, g: function symbols, each with arity n ∈ N0.

Called constant if n = 0.

Assume: constants 0, 1, · · · ∈ N0; binary ‘+’ and ‘·’.

• p, q: predicate symbols, also with arity.

Assume: constants true, false; binary =, <, >,≤,≥.

• x, y, z ∈ GVar: global variables.

• X, Y, Z ∈ Obs: state variables or observables, each of a data type D
(or D(X),D(Y),D(Z) to be precise).

Called boolean observable if data type is {0, 1}.

• d: elements taken from data types D of observables.

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
d
cs

ym
b

–

13/42

Symbols: Semantics

• Semantical domains are

• the truth values B = {tt, ff},

• the real numbers R,

• time Time,
(mostly Time = R

+

0 (continuous), exception Time = N0 (discrete time))

• and data types D.

• The semantics of an n-ary function symbol f

is a (mathematical) function from R
n to R, denoted f̂ , i.e.

f̂ : Rn → R.

• The semantics of an n-ary predicate symbol p

is a function from R
n to B, denoted p̂, i.e.

p̂ : Rn → B.

• For constants (arity n = 0) we have f̂ ∈ R and p̂ ∈ B.

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
d
cs

ym
b

–

14/42

Symbols: Examples

• The semantics of the function and predicate symbols assumed above

is fixed throughout the lecture:

• ˆtrue = tt, ˆfalse = ff

• 0̂ ∈ R is the (real) number zero, etc.

• +̂ : R2 → R is the addition of real numbers, etc.

• =̂ : R2 → B is the equality relation on real numbers,

• <̂ : R2 → B is the less-than relation on real numbers, etc.

• “Since the semantics is the expected one, we shall often simply use the
symbols 0, 1, +, ·, =, < when we mean their semantics 0̂, 1̂, +̂, ·̂, =̂, <̂.”

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
d
cs

ym
b

–

15/42

Symbols: Semantics

• The semantics of a global variable is not fixed (throughout the lecture)
but given by a valuation, i.e. a mapping

V : GVar → R

assigning each global variable x ∈ GVar a real number V(x) ∈ R.

We use Val to denote the set of all valuations, i.e. Val = (GVar → R).

Global variables are though fixed over time in system evolutions.

• The semantics of a state variable is time-dependent.
It is given by an interpretation I, i.e. a mapping

I : Obs → (Time → D)

assigning each state variable X ∈ Obs a function

I(X) : Time → D(X)

such that I(X)(t) ∈ D(X) denotes the value that X has at time t ∈ Time.

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
d
cs

ym
b

–

16/42

Symbols: Representing State Variables

• For convenience, we shall abbreviate I(X) to XI .

• An interpretation (of a state variable) can be displayed in form of a
timing diagram.

For instance,

XI : D(X)

Time

d1

d2

with D(X) = {d1, d2}.

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
d
cs

ym
b

–

17/42

Duration Calculus: Overview

We will introduce three (or five) syntactical “levels”:

(i) Symbols:

f, g, true, false, =, <, >,≤,≥, x, y, z, X, Y, Z, d

(ii) State Assertions:

P ::= 0 | 1 | X = d | ¬P1 | P1 ∧ P2

(iii) Terms:

θ ::= x | ℓ | ∫ P | f(θ1, . . . , θn)

(iv) Formulae:

F ::= p(θ1, . . . , θn) | ¬F1 | F1 ∧ F2 | ∀x • F1 | F1 ; F2

(v) Abbreviations:

⌈ ⌉, ⌈P ⌉, ⌈P ⌉t, ⌈P ⌉≤t, ♦F, �F

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
d
cs

ta
ss

–

18/42

State Assertions: Syntax

• The set of state assertions is defined by the following grammar:

P ::= 0 | 1 | X = d | ¬P1 | P1 ∧ P2

with d ∈ D(X).

We shall use P, Q, R to denote state assertions.

• Abbreviations:

• We shall write X instead of X = 1 if D(X) = B.

• Define ∨, =⇒ , ⇐⇒ as usual.

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
d
cs

ta
ss

–

19/42

State Assertions: Semantics

• The semantics of state assertion P is a function

IJP K : Time → {0, 1}

i.e. IJP K(t) denotes the truth value of P at time t ∈ Time.

• The value is defined inductively on the structure of P :

IJ0K(t) = 0,

IJ1K(t) = 1,

IJX = dK(t) =

{

1 , if XI = d

0 , otherwise,

IJ¬P1K(t) = 1 − IJP1K(t)
IJP1 ∧ P2K(t) =

{

1 , if IJP1K(t) = IJP2K(t) = 1

0 , otherwise,

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
d
cs

ta
ss

–

20/42

State Assertions: Notes

• IJXK(t) = IJX = 1K(t) = I(X)(t) = XI(t), if X boolean.

• IJP K is also called interpretation of P .

We shall write PI for it.

• Here we prefer 0 and 1 as boolean values (instead of tt and ff) — for
reasons that will become clear immediately.

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
d
cs

ta
ss

–

21/42

State Assertions: Example

• Boolean observables G and F .

• State assertion L := G ∧ ¬F .

Time

1

0
GI

1

0
FI

1

0
LI

0 1 1.2 2 3 4

• LI(1.2) = 1, because

• LI(2) = 0, because

–
0
3

–
2
0
1
3
-0

4
-2

3
–

S
d
cs

ta
ss

–

22/42

References

–
0
3

–
2
0
1
3
-0

4
-2

3
–

m
a
in

–

41/42

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems

- Formal Specification and Automatic Verification. Cambridge University Press.

–
0
3

–
2
0
1
3
-0

4
-2

3
–

m
a
in

–

42/42

