Real-Time Systems
 Lecture 06: DC Properties I

2013-05-08
Dr. Bernd Westphal
Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- DC Syntax and Semantics: Abbreviations ("almost everywhere")
- Satisfiable/Realisable/Valid (from 0)
- Semantical Correctness Proof

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What are obstacles on proving a design correct in the real-world, and how to overcome them?
- Facts: decidability properties.
- What's the idea of the considered (un)decidability proofs?

Content:

- (Un-)Decidable problems of DC variants in discrete and continuous time

Specification and Semantics-based Correctness Proofs of Real-Time Systems with DC

Methodology: Ideal World...

(i) Choose a collection of observables 'Obs'.
(ii) Provide the requirement/specification 'Spec' as a conjunction of DC formulae (over 'Obs').
(iii) Provide a description 'Ctrl' of the controller in form of a DC formula (over 'Obs').
(iv) We say 'Ctrl' is correct (wrt. 'Spec') iff

$$
\models_{0} \mathrm{Ctrl} \Longrightarrow \text { Spec. }
$$

Gas Burner Revisited

(i) Choose observables:

- two boolean observables G and F
(ie. Obs $=\{G, F\}, \mathcal{D}(G)=\mathcal{D}(F)=\{0,1\}$)
- $G=1$: gas valve open
- $F=1$: have flame
- define $L:=G \wedge \neg F$ (leakage)
(ii) Provide the requirement:

$$
\operatorname{Req}: \Longleftrightarrow \square\left(\ell \geq 60 \Longrightarrow 20 \cdot \int L \leq \ell\right)
$$

Gas Burner Revisited

(iii) Provide a description 'Ctrl' of the controller in form of a DC formula (over 'Obs').
Here, firstly consider a design:

- Des-1: $\Longleftrightarrow \square(\lceil L\rceil \Longrightarrow \ell \leq 1)$ "phases of leakage have length at moke"
- Des-2 : $\Longleftrightarrow \square(\lceil L\rceil ;\lceil\neg L\rceil ;\lceil L\rceil) \Longrightarrow \ell>30)$ "intervals where L_{I} looks
(iv) Prove correctness:
- We want (or do we want $\models_{0} \ldots$?):

$$
\models(\text { Des-1 } \wedge \text { Bes- } 2 \Longrightarrow \text { Req })
$$

length bigger than 30"
(Thm. 2.16)

Gas Burner Revisited

(iii) Provide a description 'Ctrl' of the controller in form of a DC formula (over 'Obs').
Here, firstly consider a design:

- Des-1 : $\Longleftrightarrow \square(\lceil L\rceil \Longrightarrow \ell \leq 1)$
- Des-2 : $\Longleftrightarrow \square(\lceil L\rceil ;\lceil\neg L\rceil ;\lceil L\rceil \Longrightarrow \ell>30)$
(iv) Prove correctness:
- We want (or do we want $\models_{0} \ldots$?):

$$
\begin{equation*}
\vDash(\text { Des-1 } \wedge \text { Bes- } 2 \Longrightarrow \text { Req }) \tag{Chm.2.16}
\end{equation*}
$$

- We do show

(Lem. 2.17)

Gas Burner Revisited: Lemma 2.17

Claim: f foll $I_{1}, V,[b, C]$

$$
\because \models \underbrace{\square\left(\ell \leq 30 \Longrightarrow \int L \leq 1\right)}_{\text {Req-1 }} \Longrightarrow \underbrace{\square\left(\ell \geq 60 \Longrightarrow 20 \cdot \int L \leq \ell\right)}
$$

Proof:

- Assume 'Req-1'.
- Let $L_{\mathcal{I}}$ be any interpretation of L, and $[b, e]$ an interval with $e-b \geq 60$,
- Show " $20 \cdot \int L \leq \ell$ ", ie.

$$
\text { let } V \text { a raluatich. }
$$

$$
\ddagger\left[20 \cdot \int L \leq e B(V,[b, e])=\#\right.
$$

ie.

$$
20 \hat{0} \int_{b}^{e} L_{I}(t) d t \underline{\imath}(e-b)
$$

$$
\text { Gas Burner Revisited: Lemma } 2.17 \Longrightarrow \begin{aligned}
& =\underbrace{\square\left(\ell \leq 30 \Longrightarrow \int L \leq 1\right)}_{\text {Req-1 }} \\
& \Rightarrow \square\left(\ell \geq 60 \Longrightarrow 20 \cdot \int L \leq \ell\right)
\end{aligned}
$$

- Set $n:=\left\lceil\frac{e-b}{30}\right\rceil$, i.e. $n \in \mathbb{N}$ with $n-1<\frac{e-b}{30} \leq n$, and split the interval

$$
20 \cdot \int_{b}^{e} L_{I}(L) d t
$$

$=20 \cdot\left(\sum_{i=0}^{n=2} \int_{b+30 i}^{b+30} \sum_{j k}^{b-3(i+1)} L_{\mathcal{L}}(t) d t+\int_{b+30(n-1)}^{e} L_{T}(t) d t\right)$
$\{$ Pea $\cdot \mid\} \leq 20 \cdot \sum_{i=0}^{n-2} 1+20 \cdot 1$
$=20 \cdot n$
$\left\{n-1<\frac{e-b}{30}\right\}<20\left(\frac{e-b}{36}+1\right)$
$=\frac{2}{3}(e-b)+20$
$\leq e-b$

Theorem 2.18
For all state assertions P and all real numbers $r_{1}, r_{2} \in \mathbb{R}$,
(i) $\models \int P \leq \ell$,
(ii) $\models\left(\left(\int P=r_{1}\right)\right.$; $\left.\left(\int P=r_{2}\right)\right) \Longrightarrow\left(\int P=r_{1}+r_{2}\right.$, $)$
(iii) $\models\lceil\neg P\rceil \Longrightarrow \int P=0$,
(iv) $\models\left\rceil \Longrightarrow \int P=0\right.$.

$$
\begin{aligned}
& \vDash(\underbrace{\square(\lceil L\rceil \Longrightarrow \ell \leq 1)}_{\text {Des-1 }} \wedge \underbrace{\square(\lceil L\rceil ;\lceil\neg L\rceil ;\lceil L\rceil \Longrightarrow \ell>30)}_{\text {Des-2 }}) \Longrightarrow \underbrace{\square\left(\ell \leq 30 \Longrightarrow \int L \leq 1\right)}_{\text {Req-1 }} \\
& \text { Proof: } e \leq 30
\end{aligned}
$$

\checkmark 下TLTi（「TV「L7）
\checkmark FLCT K K $\leq 1 ; ~ T G L 7$

$\left\{(i v) \Rightarrow S_{L}=0\right.$
（iii）$\}=v(\sqrt{L} \leq 1) ;\left(S_{L}=0 \vee \sqrt{ }=0\right)$
$\checkmark \sqrt{ }=0$ ；$(J L=0 \cup J L \leq 1)$
$\checkmark \sqrt{L}=0 ; \sqrt{L} \leq 1 ; \delta L=0$
$\left\{D_{s}-2\right\} \Rightarrow(*)$

$\checkmark \Gamma_{2} L 7 ; \rho \leq 1 ; \Gamma_{7} L T$
$\{(i)\} \Rightarrow \delta L=0$
$\checkmark \sqrt{ } \leq 1+0$
$\checkmark J L \leqslant 0+1$
$\checkmark \sqrt{L} \leq 0+1+0$
$\Rightarrow \sqrt{L} \leq 1$

Methodology: The World is Not Ideal...

(i) Choose a collection of observables 'Obs'.
(ii) Provide specification 'Spec' (conjunction of DC formulae (over 'Obs')).
(iii) Provide a description 'Ctrl' of the controller (DC formula (over 'Obs')).
(iv) Prove 'Curl' is correct (wry. 'Spec').

That looks too simple to be practical. Typical obstacles:
(i) It may be impossible to realise 'Spec'
if it doesn't consider properties of the plant.
(ii) There are typically intermediate design levels between 'Spec' and 'Carl'.
(iii) 'Spec' and 'Carl' may use different observables.
(iv) Proving validity of the implication is not trivial.

Obstacle (i): Assumptions As A Form of Plant Model

- Often the controller will (or can) operate correctly only under some assumptions.
- For instance, with a level crossing
- we may assume an upper bound on the speed of approaching trains, (otherwise we'd need to close the gates arbitrarily fast)
- we may assume that trains are not arbitrarily slow in the crossing, (otherwise we can't make promises to the road traffic)
- We shall specify such assumptions as a DC formula 'Asm' on the input observables and verify correctness of 'Ctrl' wrt. 'Spec' by proving validity (from 0) of

$$
\mathrm{Ctrl} \wedge \mathrm{Asm} \Longrightarrow \mathrm{Spec}
$$

- Shall we care whether 'Asm' is satisfiable?

$$
\text { CHI } \text { a fate } \Rightarrow \text { She if Am not sanfifible }
$$

Obstacle (ii): Intermediate Design Levels

- A top-down development approach may involve
- Spec - specification/requirements
- Des - design
- Ctrl - implementation
- Then correctness is established by proving validity of

$$
\begin{equation*}
\text { Ctrl } \Longrightarrow \text { Des } \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Des } \Longrightarrow \text { Spec } \tag{2}
\end{equation*}
$$

(then concluding Ctrl \Longrightarrow Spec by transitivity)

- Any preference on the order?

Obstacle (iii): Different Observables

- Assume, 'Spec' uses more abstract observables Obs_{A} and 'Ctrl' more concrete ones Obs_{C}.
- For instance:
- in Obs_{A} : only consider gas valve open or closed $(\mathcal{D}(G)=\{0,1\})$
- in Obs_{C} : may control two valves and care for intermediate positions, for instance, to react to different heating requests

$$
\left(\mathcal{D}\left(G_{1}\right)=\{0,1,2,3\}, \mathcal{D}\left(G_{2}\right)=\{0,1,2,3\}\right)
$$

- To prove correctness, we need information how the observables are related - an invariant which links the data values of Obs_{A} and Obs_{C}.
- If we're given the linking invariant as a DC formula, say 'Link ${ }_{C, A}$ ', then proving correctness of 'Ctrl' wrt. 'Spec' amounts to proving validity (from $0)$ of
- For instance,

$$
\begin{aligned}
\text { Link }_{C, A}= & \square\left\lceil G \Leftrightarrow\left(G_{1}+G_{2}>0\right) 7\right. \\
& \nabla T G \Leftrightarrow\left(G_{2}=0, G_{2}=0\right) 7
\end{aligned}
$$

Obstacle (iv): How to Prove Correctness?

- by hand on the basis of DC semantics,
- maybe supported by proof rules,
- sometimes a general theorem may fit (e.g. cycle times of PLC automata),
- algorithms as in Uppaal.

Decidability Results: Motivation

- Recall:

Given assumptions as a DC formula 'Asm' on the input observables, verifying correctness of 'Ctrl' wrt. 'Spec' amounts to proving

$$
\begin{equation*}
\models_{0} \mathrm{Ctrl} \wedge \mathrm{Asm} \Longrightarrow \mathrm{Spec} \tag{1}
\end{equation*}
$$

- If 'Asm' is not satisfiable then (1) is trivially valid, and thus each 'Ctrl' correct wrt. 'Spec'.
- So: strong interest in assessing the satisfiability of DC formulae.
- Question: is there an automatic procedure to help us out? (a.k.a.: is it decidable whether a given DC formula is satisfiable?)
- More interesting for 'Spec': is it realisable (from 0)?
- Question: is it decidable whether a given DC formula is realisable?

Decidability Results for Realisability: Overview

restricted $D C$			
Fragment	Discrete Time	Continous Time	
RDC	decidable	decidable	
RDC $+\ell=r$	decidable for $r \in \mathbb{N}$	undecidable for $r \in \mathbb{R}^{+}$	
RDC $+\int P_{1}=\int P_{2}$	undecidable	undecidable	
RDC $+\ell=x, \forall x$	undecidable	undecidable	
DC	undecidable	undecidrble	

RDC in Discrete Time

Restricted DC (RDC)

$$
0171 x=0|x=1| \neg P \mid P_{1} \vee P_{2}
$$

$$
F::=\lceil P\rceil\left|\neg F_{1}\right| F_{1} \vee F_{2} \mid F_{1} ; F_{2}
$$

where P is a state assertion, but with boolean observables only.

Note:

- No global variables, thus don't need \mathcal{V}.
- chop is there
- no S_{1} no P (ir general)
- no predicate, vo function symbols
- $\Delta F_{1 . .}$?
- 「7...?

Discrete Time Interpretations

- An interpretation \mathcal{I} is called discrete time interpretation if and only if, for each state variable X,

$$
X_{\mathcal{I}}: \text { Time } \rightarrow \mathcal{D}(X)
$$

with

- Time $=\mathbb{R}_{0}^{+}$,
- all discontinuities are in \mathbb{N}_{0}.
not
DI

Discrete Time Interpretations

- An interpretation \mathcal{I} is called discrete time interpretation if and only if, for each state variable X,

$$
X_{\mathcal{I}}: \text { Time } \rightarrow \mathcal{D}(X)
$$

with

- Time $=\mathbb{R}_{0}^{+}$,
- all discontinuities are in \mathbb{N}_{0}.

$$
\begin{gathered}
\mathbb{H}_{1}^{e} \int_{b}^{e}(t) d t=(e-b) \\
1(e-b)>0
\end{gathered}
$$

- An interval $[b, e] \subset$ Intr is called discrete if and only if $b, e \in \mathbb{N}_{0}$.
- We say (for a discrete time interpretation \mathcal{I} and a discrete interval $[b, e]$)

$$
\mathcal{I},[b, e] \models F_{1} ; F_{2}
$$

if and only if there exists $m \in[b, e] \cap \mathbb{N}_{0}$ such that

$$
\mathcal{I},[b, m] \models F_{1} \quad \text { and } \quad \mathcal{I},[m, e] \models F_{2}
$$

Differences between Continuous and Discrete Time

- Let P be a state assertion.

25/35

Differences between Continuous and Discrete Time

- Let P be a state assertion.

	Continuous Time	Discrete Time
$\begin{array}{r} \models^{?}(\lceil P\rceil ;\lceil P\rceil) \\ \quad \Longrightarrow\lceil P\rceil \end{array}$	\checkmark	\checkmark
$\begin{aligned} & \vdash^{?}\lceil P\rceil \Longrightarrow \\ &(\lceil P\rceil ;\lceil P\rceil) \end{aligned}$	\checkmark	x

- In particular: $\ell=1 \Longleftrightarrow(\lceil 1\rceil \wedge \neg(\lceil 1\rceil ;\lceil 1\rceil))$ (in discrete time).
$\bullet=1 \quad: \Longleftrightarrow\lceil 1\rceil \wedge \neg(\lceil 1\rceil ;\lceil 1\rceil)$
- $\ell=0 \quad!\Longleftrightarrow\rceil\lceil 1\rceil$
- true $\quad: \Longleftrightarrow \ell=0 \vee \neg(l=0)$
$-\int P=0 \quad \therefore \Longleftrightarrow\lceil P\rceil \vee \ell=0$
$\cdot \int P=1 \quad \Longleftrightarrow\left(\int P=0\right) ;(T P T \wedge l=1) ; \int P=0$
- $\int P=k+1 \Longleftrightarrow\left(\int P=k\right) ;\left(\int P=1\right)$
- $\int P \geq k \quad \Longleftrightarrow\left(\int P=k\right)$; true
- $\int P>k \quad \Longleftrightarrow \int P \geq k+1$
$\cdot \int P \leq k \quad \Longleftrightarrow \neg\left(\int P>k\right)$
- $\int P<k \quad \Longleftrightarrow \int \rho \leq k-1$
where $k \in \mathbb{N}$.
shh

in RDC

Decidability of Satisfiability/Realisability from 0

Theorem 3.6.
The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.

$R D C$ formula $F, D T I I$.

Sketch: Proof of Theorem 3.6

- give a procedure to construct, given a formula F, a regular language $\mathcal{L}(F)$ such that

$$
\mathcal{I},[0, n] \models F \text { if and only if } w \in \mathcal{L}(F)
$$

where word w describes \mathcal{I} on $[0, n]$
(suitability of the procedure: Lemma 3.4)

- then F is satisfiable in discrete time if and only if $\mathcal{L}(F)$ is not empty (Lemma 3.5)
- Theorem 3.6 follows because
- $\mathcal{L}(F)$ can effectively be constructed,
- the emptyness problem is decidable for regular languages.

Construction of $\mathcal{L}(F)$

- Idea:
- alphabet $\Sigma(F)$ consists of basic conjuncts of the state variables in F,
- a letter corresponds to an interpretation on an interval of length 1 ,
- a word of length n describes an interpretation on interval $[0, n]$.
- Example: Assume F contains exactly state variables X, Y, Z, then

$$
\begin{aligned}
\Sigma(F)= & \{\underset{\sim}{X} \wedge Y \wedge Z, X \wedge Y \wedge \neg Z, X \wedge \neg Y \wedge Z, X \wedge \neg Y \wedge \neg Z, \\
& \neg X \wedge Y \wedge Z, \neg X \wedge Y \wedge \neg Z, \neg X \wedge \neg Y \wedge Z, \neg X \wedge \neg Y \wedge \neg Z\}
\end{aligned}
$$

Construction of $\mathcal{L}(F)$ more Formally

Definition 3.2. A word $w=a_{1} \ldots a_{n} \in \Sigma(F)^{*}$ with $n \geq 0$ describes a discrete interpretation \mathcal{I} on $[0, n]$ if and only if

$$
\forall j \in\{1, \ldots, n\} \forall t \in] j-1, j\left[: \mathcal{I} \llbracket a_{j} \rrbracket(t)=1\right.
$$

For $n=0$ we put $w=\varepsilon$.

- Each state assertion P can be transformed into an equivalent disjunctive normal form $\bigvee_{i=1}^{m} a_{i}$ with $a_{i} \in \Sigma(F)$.
- Set $D N F(P):=\left\{a_{1}, \ldots, a_{m}\right\}(\subseteq \Sigma(F))$. finite words of lougth ut lost one
- Define $\mathcal{L}(F)$ inductively:

$$
\begin{aligned}
\mathcal{L}(\lceil P\rceil) & =\operatorname{DNF}(P))^{\dagger}, \\
\mathcal{L}\left(\neg F_{1}\right) & =\mathcal{L}(F) \backslash \mathcal{Z}\left(F_{1}\right), \\
\mathcal{L}\left(F_{1} \vee F_{2}\right) & =\mathcal{L}\left(F_{1}\right) \cup \mathcal{L}\left(F_{2}\right), \\
\mathcal{L}\left(F_{1} ; F_{2}\right) & =\mathcal{L}\left(F_{n}\right), \mathcal{Z}\left(F_{2}!\right.
\end{aligned}
$$

References

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

